

Abstract— Technology trends indicate that exascale systems will

have billion-way parallelism, and each node will have about three
orders of magnitude more intra-node parallelism than today’s
peta-scale systems. The majority of current runtime systems focus
a great deal of effort on optimizing the inter-node parallelism by
maximizing the bandwidth and minimizing the latency of the use
of interconnection networks and storage, but suffer from the lack
of scalable solutions to expose the intra-node parallelism. Many-
task computing (MTC) is a distributed fine-grained paradigm that
aims to address the challenges of managing parallelism and
locality of exascale systems. MTC applications are typically
structured as direct acyclic graphs of loosely coupled short tasks
with explicit input/output data dependencies. The task execution
framework of MTC has a distributed design that focuses on hiding
execution latency and achieving good load balancing in the face of
large number of compute resources, storage, and number of tasks.
Runtime systems with an asynchronous MTC task execution
model include MATRIX, Charm++, Legion, HPX, STAPL,
Swift/T, Hadoop's YARN and Spark/Sparrow. This project aims
to benchmark these runtime systems with an emphasis on the task
execution framework, using MTC workloads of different data
dependency patterns. The goal is to understand the performance,
scalability, and efficiency of these runtime systems in scheduling
different data-intensive workloads with a variety of task
granularity.

Index Terms—benchmark, data intensive computing, exascale,
many-task computing, MATRIX, MTC

I. BACKGROUND INFORMATION

HE eight systems that we are about to benchmark are all
open-source projects. Most of them are academics research

projects but YARN which is the Hadoop resource manager
component is a professional project. This system allows to run
distributes workloads and applications, often following the
Map-Reduce paradigm. Swift is a workflow system which
allows to run parallel applications with its parallel programing
model. This project is developed by University of Chicago and
ANL. Spark is a project from UC Berkeley encompassed by the
Sparrow project which is a large scale task scheduler system
with in-memory queries system. Charm++ is a distributed
parallel programming paradigm from UIUC and Legion is a
data-centric parallel programming system developed by

Stanford University. Finally HPX is a general purpose C++
runtime system for parallel and distributed applications of any
scale developed by Louisiana State University and Staple is a
framework for developing parallel programs from Texas A&M.

MATRIX is a many-task computing job scheduling system
[3]. There are many resource managing systems aimed towards
data-intensive applications. Furthermore, distributed task
scheduling in many-task computing is a problem that has been
considered by many research teams. In particular, Charm++ [4],
Legion [5], Swift [6], [10], Spark [1][2], HPX [12], STAPL [13]
and MATRIX [11] offer solutions to this problem and have
each separately been benchmarked with various metrics.

The main difficulty of the project is to grasp the complexity
of each runtime system and figure out the scheduling part of the
system in order to be able to measure the same metrics on every
system. The main goal of this benchmark is to draw a
comparison of the scaling performances of these scheduling
systems while testing it on different types of workloads. As a
matter of fact, it is often difficult to make sure that we run the
benchmarks the exact same way on different systems. That
means that we have to make sure that we only take in account
the relevant metrics and measures relative to our study. Thus
we need to produce similar workloads on every of these runtime
systems which can imply having similar DAG decomposition
for the application on which we want to measure the
benchmark. In some cases runtime systems don’t handle the
decomposition of the application in DAGs. Thus we will have
to produce this DAGs on our own. Finding the right testbeds is
also one of the tremendous challenge in doing benchmark of
different runtime systems since we ought to find MATRIX
benefits over concurrent systems.

II. PROPOSED SOLUTION

This project will compare seven scheduling systems through
benchmarks to evaluate throughput and efficiency. In order to
perform an accurate comparison, a detailed performance profile
will be done for each system with the same workload. Different
workloads of fine granularity and intensity will be used, as well
as different scales up to 128 nodes. The benchmarks for each
system will be performed using Amazon Web Services (AWS).
For each of these runtime systems we will need to follow
installation guidelines and tutorials in order to grasp the

MATRIX: Bench - Benchmarking the state-of-
the-art Task Execution Frameworks of Many-

Task Computing

Thomas Dubucq, Tony Forlini, Virgile Landeiro Dos Reis, and Isabelle Santos

Illinois Institute of Technology, Chicago, IL, USA
{tdubucq, tforlini, vlandeir, isantos1}@hawk.iit.edu

T

architecture and dependencies of these programs. Once these
programs are installed and running on one instance, we will
need to set up and automate as far as possible the deployment
of the application on several node in our Amazon cluster. Some
of these systems may require the same underneath running
systems such as Open MPI for message passing interface or
GASNet for network high performance communication.

1) Charm++
The Charm ++ system is made of a parallel programming
paradigm and a runtime system. In this section we will explain
the runtime system architecture and how the charm++
programming paradigm allows us to write applications
decomposed as Direct Acyclic Graphs. Charm++ programs use
objects called chares to represent the entities responsible for
launching the different tasks of the application. Thus the
parallelism is not implicit as it is in other runtime systems such
as Swift.
As a matter of fact, one needs to explicitly write the
dependencies between the different chares. Furthermore, those
chare objects can communicate through asynchronous message
passing. Those messages don't interfere with the running state
of a chare hence the asynchronous design. Each chare has an
associated state and belongs to the global object space which
keeps track of all the tasks to execute. Finally the programmer
doesn't need to consider the number or processors on which to
run the tasks or the type of interconnect for the message passing,
one only needs to specify how chare objects interact with each
other.
We built the Charm++ runtime system on a vanilla Ubuntu OS
within a c3.large EC2 instance. All the nodes on which the
application will run need to be configured to allow SSH
connection between each other and to specify the list of all the
nodes within the nodelist configuration file. Our first test
application is a simple bag of sleep tasks which simply waits
for a given amount of time. The code for this application
basically consists in a parallel for loop going through a chare
array which launches the sleep tasks in a distributed way on the
different nodes. Then the arguments for this application are the
number of seconds to wait and the number of nodes on which
to run the application.
We set up a timing of each task and we write it into a log file in
order to reduce the overhead of a display on the standard output.
Finally a python script reads through the file to compute the
total latency of the application. We also compute the total
running time in order to be able to know the communication
overhead we subtracting the latency from the total running time.

2) Legion
The Legion runtime system has a similar architecture. The
different tasks are represented by a function which is called by
a TaskLauncher object. Unlike for Charm++, the parallelism
does not have to be explicit. The way the different tasks are
interacting defines the Direct Acyclic Graph of the application.
Finally a top level task is responsible for launching all the
subsequent tasks of the application. One can specify leaf tasks
in order to optimize the running time of the application since
those tasks have no data dependencies with other tasks.
However the Legion runtime system requires underlying
systems which are GASNet for network interconnect and

message passing and CUDA because GASNet requires GPU
enabled configuration to be able to run. Nevertheless we don't
plan on running the benchmark on GPU instances so far. The
GASnet application needs to be built with the TCP/UDP so
called "conduit" to use the classic network communication. One
might also set up MPI as the underlying communication
conduit.
Moreover the application follows the same previous pattern
with a parallel for loop of sleep tasks. The different nodes on
which to run the application are defined within the shell
environment with an environment variable specifying the IP
addresses of each node. The same python script is responsible
for retrieving the latency of each task and summing it up to get
the total latency. The throughput is computed by taking the
number of task executed per second.
Finally, benchmarking dynamic runtime systems such as
Legion is quite tricky to do correctly. In particular, some
benchmarks which are otherwise appealing, such as launching
a bunch of empty or nearly empty tasks in order to measure
runtime overhead are especially poor predictors of Legion
performance. This is because the Legion runtime operates in a
pipeline and goes to quite a bit of effort to ensure that analysis
stays off the critical path.
As a result, to get real insight into the Legion system, one would
need to take the runtime architecture into account when
designing the benchmarks. Since Legion's feature set diverges
so widely from other task based runtimes it is not clear whether
it is even possible to perform an apples-to-apples comparison
with even the closest comparable runtimes.

3) Swift/T
The objective of this project is to be able to benchmark several
systems on the same hardware: EC2 instances. As Swift/T has
only a very limited documentation to deploy on Amazon Web
Services, there has been different challenges when installing
and configuring Swift/T so it can run on several EC2 nodes.
Our first step has been to install and configure correctly Swift/T
to run on a local machine. This has been done only with one
limitation. The Swift/T documentation indicates that either
OpenMPI or MPICH can be used but when configuring it with
OpenMPI, it does not run as it seems that some shared libraries
are not in the right folder. We did not look more into details for
this issue as Swift/T was running correctly using MPICH. We
also noticed that having both MPI implementations on a system
lead to a more complicated configuration and most of the time
it is easier to keep only MPICH to make Swift/T run smoothly.
Once Swift/T had been running on a local machine, we
followed the same process to install it on an EC2 instance and
created an AMI image so we can launch several instances with
Swift installed. Once again, we used MPICH.
The part of the Swift/T installation that has been the most time
consuming is the deployment of Swift/T on several instances
(i.e. run a Swift/T program in a distributed fashion).
First of all, it is indicated in the documentation that compute
nodes need to be able to SSH between them. To allow this, we
have created a private key that is distributed through all the
compute nodes and we modify the SSH configuration on every
compute node to use this private key. Note that the private key
and the SSH configuration file are not stored in the AMI image

but are distributed from a local machine to the EC2 nodes using
a python script.
We also need to create a hostfile that contains all the IP
addresses of the workers and that is used by MPI: this is also
generated by the python script and distributed over all the
workers. This python script has been developed using the boto
module for EC2. Finally, to run a program on several machine,
we compile it using STC and send the *.tic file to all the
workers. Then we can connect to a worker and run the following
command:

export TURBINE_LAUNCH_OPTIONS="-f=hosts.txt"
turbine program.tic

Justin M. Wozniak has been kind enough to answer our
questions about Swift/T and how to run it on several EC2
instances once the program has been compiled using STC. The
problem encountered and that took us several days to debug is
that there has been a change in the environment variable name
from TURBINE_LAUNCH_OPTS (December 2014) to
TURBINE_LAUNCH_OPTIONS (March 2015) but the
documentation has not been updated except in one place
(http://swift-lang.org/Swift-T/guide.html#_concurrency).
Neither the guide related to Swift/T on EC2
(http://www.mcs.anl.gov/exm/local/guides/turbine-
sites.html#_ec2) nor the program documentation (turbine –h)
have been updated to this day. However, once we have noticed
this problem, we have been able to run benchmarks without any
issue.
In order to simplify the benchmarking process, we have written
a small python API based on boto that allows a user to launch
EC2 instances, create automatically the configuration files
needed for Swift/T and copy them to all the running instances,
deploy a given Swift script with possible arguments. Using this
API and a JSON file describing the benchmarks we want to run,
we are able to run every benchmark and get back the results in
one command line.

4) Sparrow
The source code of Sparrow provides an example of sleeping
benchmark but unfortunately it lacks several features required
for our project. Indeed their benchmark consists in requesting
the scheduling of bags of tasks of random length sleeps at a
regular interval. No acknowledgement of task ending was made
and the different timings were only prompted in the debugger
log. Therefore we needed to code our own Frontend and
Backend applications. The following paragraphs will detail
how the implementation of these two applications answer to the
specifications of our benchmark.
First of all we needed to have a total time measurement for
individual tasks and for the whole benchmark. The
implemented solution is a TCP server/clients. The Frontend
application runs a multithreaded TCP server while each
Backend application connects to it and send acknowledgement
messages. Each Backend has a dedicated thread on the server,
whose only job is to store the message arrival time and the
message content in a thread safe fifo queue that is then
processed by the main thread of the Frontend. On the Backend
side, messages are batched to reduce network congestion. These
messages contain the number of finished tasks, individual

relative delay compared to the earliest task finished and total
batching time. These recorded delays are then subtracted on the
Frontend side to get the most accurate timing.
We also needed to log the local time spend during each phases
of the scheduling. That feature has been added in the Frontend
and Backend applications and also in the Sparrow node monitor
-which is responsible for the assignment of a task to a particular
backend-. The results are stored in a csv text file. Both The
Frontend and the Sparrow node monitor have their own file
while the backend uses a thread safe class to store its results -
indeed, since the execution of requested tasks is multithreaded,
a thread safe solution was required-.
Unfortunately there is no possible way to stop the processes
required in the benchmark in the Frontend code -the Sparrow
API launches threads that you don’t have handles on- so we
needed to use external scripts to automatize the benchmarking.
The following paragraphs will detail the python scripts we
coded.
Two scripts are in charge of the configuration files necessary
for the whole benchmark. One creates the configuration files of
both the Frontend and Backend application and the other
modifies the Sparrow nodemonitor configuration file -adds new
nodes’ IP addresses to an existing configuration or sets a new
configuration file-.
One script is responsible of launching and terminating AWS
instances and another allows to launch and kill Backend
applications and nodemonitor applications locally on a node.
We also coded a script that wraps all the SSH commands
necessary to the benchmark -start/kill the processes on node, set
the configuration files on a new node, update the configurations
on an already working node and fetch the results on the nodes-
Finally a script wraps all of the previous scripts to launch a
series of benchmarks with different settings.

5) HPX
HPX is a general purpose C++ runtime system for parallel and
distributed applications developed by the STE||AR Group at
Louisiana State University. By a runtime system, we mean that
any application that uses HPX will be directly linked to its
libraries. This library adheres to the C++11 standard and uses
the Boost C++ libraries. HPX is an open-source implementation
of the ParalleX (Kaiser, Hartmut, Maciej Brodowicz, and
Thomas Sterling. "Parallex an advanced parallel execution
model for scaling-impaired applications." Parallel Processing
Workshops, 2009. ICPPW'09. International Conference on.
IEEE, 2009) theoretical execution model.
Using the HPX runtime system, parallel applications use
futures. A future can be described as a value that exists now or
will be produced in the future. In other terms, a future
encapsulates a delayed computation. It acts as a proxy for a
result initially not known, most of the time because the
computation of the result has not completed yet.
Typically a function is used to produce the value of a future.
This producer function will be executed asynchronously in a
new HPX thread. Once the action has finished executing, a
write operation is performed on the future. When the result of a
delayed computation is needed, the future is read, or the reader
thread is suspended until the future is ready.

Help and documentation for HPX can be obtained on the
STE||AR Group website, on the IRC #ste||ar channel on
freenode, or through the HPX users mailing list.
 Benchmarks of HPX have been done by the STE||AR Group
(Raj, Rekha. Performance Analysis with HPX. Diss. Louisiana
State University, 2014) regarding rate of execution, thread idle-
rate and task length among others on up to 16 cores of one node.
We have started by installing and running HPX on a local
machine. The first step was to install all of the dependencies for
HPX, and testing them to ensure that they were properly
functioning. The dependencies are the Boost C++ libraries, the
Portable Hardware Locality (HWLOC) library, CMake, the
google-perftools development files, and libunwind, a
dependency of google-perftools. To ensure a working Boost
installation, we compiled Boost from sources ourselves. Some
of the dependencies listed in the HPX documentation were
ambiguous. For instance the documentation only indicates that
google-perftools is needed, however, libgoogle-perftools-dev is
also required.
Furthermore, regarding the dependencies, not all compatible
versions are compatible amongst themselves. For instance,
Boost V1.49.0 and later are recommended, but Boost V1.56.0
can't be used for HPX with gcc V4.6.x, so we had to double
check the version numbers for all dependencies.
Finally, the C++ HDF5 libraries must be compiled with enabled
threadsafety support. This has to be explicitly specified while
configuring the HDF5 libraries as it is not the default.
The next step was to build HPX. HPX requires an out-of-tree
build. In other terms, HPX must be built in a directory separate
from the source directory. For this build, it was necessary to
specify the location of the Boost installation previously
mentioned. Once the build is complete, HPX is delivered with
a testing utility. The following step was to run an elementary
program on a local machine using HPX. The documentation for
HPX states that compiling and linking HPX needs
approximately 2GB of memory per parallel process to be
available. However, to compile the hello_world example with a
single parallel process, that was not enough and we had to use
a 4GB swap file in order to double our amount of memory. The
hello_world program prints out a hello world message on every
OS-thread on every locality.
The subsequent step is to write verbose sleep tasks. In order to
write an application which uses services from the HPX runtime
system it is necessary to initialize the HPX library by inserting
certain calls into the code of the application. This can be done
by including the file hpx/hpx_main.hpp, in which case the
main() function will be the HPX entry point, or by including the
file hpx/hpx_init.hpp and providing an hpx_main function that
will be invoked at the specified entry point for HPX.
Writing these tasks has had its own set of difficulties. For
instance, to build HPX components, the documentation states
that the following command may be used to compile a sample
hello world program.

c++ --o hello_world hello_world_component.cpp
`pkg-config ---cflags ---libs -hpx_component` --
DHPX_COMPONENT_NAME=hello_world
In fact, to compile the functions using HPX, I had to remove the
excess '-'s and add the option -lboost_program_options to
the command.

6) STAPL
STAPL (Standard Adaptive Parallel Library) is a parallel C++
library developed at Texas A&M University. There are a lot of
publications concerning this project from 1998 to 2015 but
unfortunately, the code is nowhere to be found on the internet.
We tried to contact the developing team by emailing stapl-
support@tamu.edu and by directly emailing one of the creator
of STAPL (Lawrence Rauchwerger) but we did not get any
response from them. Therefore, we have not been able to make
any progress on this part of the project.

7) MATRIX
MATRIX is a fully-distributed task execution framework for
Many-Task Computing data intensive applications developed at
the IIT. MATRIX delegates a scheduler on each compute node
to manage local resources and schedule tasks. MATRIX is used
on top of ZHT -Zero Hop distributed hashTable, also developed
at the IIT- which manages task metadata. MATRIX implements
a data-aware work stealing technique to optimize both load
balancing and data-locality. Matrix is used to launch pre-
compile sleep programs, already existing on each node.
Python scripts are used to launch instances, run benchmarks and
grab the logs of every instance. The results are processed with
the tools supplied in the dataproc folder.
Minor issues were encountered during the deployment and
running of MATRIX. First, slight errors in the configuration file
-e.g. wrong folder in a path- entails segmentation fault at launch
without any other information, which took some time to fix.
The launching of a scheduler must be done after all ZHT have
been started on all instances, which caused some trouble for
higher scales.

III. EVALUATION

To evaluate the performance for each of these projects, we will
compute the throughput, the latency and the efficiency with
workloads of varying sizes. We will also scale every evaluated
system from 1 node to 128 nodes in order to evaluate the
scalability. The latency of a system is defined as the average
time period between the issue of a request and the beginning of
the system’s response to this request. The lower the latency the
better the performance of the system. We will measure the
average latency by issuing a very large amount of small request)
and by recording the latency time for each request. The
throughput of a system is the number of request that it can
handle per second of running time. It should be kept as high as
possible. We will measure it by submitting several workloads
of varying size to the evaluated systems and by computing the
average number of requests executed per second. The efficiency
of a system is defined as the ratio of the effective throughput
over the theoretical throughput.

1) Charm++
As previously said, the experiments has been performed on
C3.large Amazon EC2 instances with an dedicated AMI for
each runtime system. Python scripts are responsible for
automating the launch of instances following the scaling from
1 to 128 nodes. Other python scripts are responsible for

automating the variation of experiments variables such as the
sleep time and the number of tasks within the bag of tasks.
We first compute the throughput which is a relevant metric for
Sleep(0) tasks which do nothing on purpose. Here are the results
we found for Charm++.

Charm++ seems to give us satisfying results with an increasing
throughput as the number of nodes increases. The maximal
value reached for the throughput is about 63K tasks per second.
Then we computed the throughput and efficiency for tasks from
10ms to 1 second.

First, we didn’t plot the throughput for 1ms tasks because we
obtained wrong results for these measures since the total
execution time was below the ideal execution time. Most likely
some tasks have been dropped because the number of tasks to
execute was too high (~12 billion tasks). For the other sleep
tasks, we find an increasing throughput up to more than 10000
tasks per second on 128 nodes which is a satisfying number.

Concerning the efficiency, it is almost 100% efficient for both
sleep(10) ms and sleep(100) ms. Then it falls nearly blow 99%
efficiency for sleep(1) sec which shows that Charm++ gives
excellent results and good scaling for this benchmark.
 Finally we plotted the task latency for all kind of non-null sleep
for all number of nodes:

As expected, the task latency is steady as we increase the
number of nodes on which we run the application, except for
fine grain tasks.

2) Legion
We launched the same workload with the same kind of
application with Legion runtime system. Unfortunately, the
legion system is not built to run on heavy clusters. As a
consequence, the implementation of the runtime system limits
the number of machines on which to run applications to 32.
Thus we performed our benchmark up to this limit but weren’t
able to scale up to 128 nodes.

We found that the throughput for sleep(0) tasks is increasing
which indicates that the system scales for 32 nodes. On the other
hand the throughput for 32 nodes is about 10000 tasks par
seconds which is way below the performance of charm++ but
above other systems performance.

0

2

4

6

8

10

1 2 4 8 16 32

T
h

o
u

sa
n

d
s

Number of nodes

Legion Throughput (tasks/s)

0.1

10

1000

100000

1 2 4 8 16 32 64 128

T
h

ro
u

g
h

p
u

t
(T

a
sk

/s
)

Number of nodes

Charm ++ Throughput

Sleep (1000) Sleep(100) Sleep(10)

0

20

40

60

80

1 2 4 8 16 32 64 128

T
a

sk
s

p
e

r
se

co
n

d

T
h

o
u

sa
n

d
s

Number of nodes

Charm++ Throughput (tasks/s)

Sleep(0)

98%

99%

100%

1 2 4 8 16 32 64 128
Number of nodes

Charm++ Efficiency

Sleep(10) Sleep(100) Sleep(1000)

0.1

10

1000

1 2 4 8 16 32

T
h

ro
u

g
h

p
u

t
(T

a
sk

/s
)

Number of nodes

Legion Throughput

Sleep (1000) Sleep(100) Sleep(10) Sleep(1)

1E-03

1E-02

1E-01

1E+00

1E+01

1 2 4 8 16 32 64 128

T
a

sk
 L

a
te

cn
y

 (
s)

Number of nodes

Charm ++ Task Latency

Sleep(1000) Sleep(100) Sleep(10) Sleep(1)

As expected the throughput is increasing with the scale. The
maximum throughput is reached for sleep(1) ms for 128 nodes
with about 10000 tasks per second. We also found that bigger
task have a doubling throughput with the number of nodes, but
sleep(1) ms tasks tend to reach an upper bound when the scale
increases.

As for Charm++, we found that coarse grained tasks show very
good efficiency and are also scaling. On the other hand smaller
tasks such as sleep(10ms) or sleep(1ms) show poorer
efficiency, with a lower bound of 28% for sleep(1ms) for 32
nodes. That means that the scheduling and communication
overhead introduced for fine grained tasks is slower that the
task duration itself. Thus the cost of scheduling is higher for
such tasks which might not worth such deployment.

As for Charm++, the task latency is steady with the scale but
not for sleep(1) ms tasks.

3) Swift/T
The benchmark results for Swift/T are far from being what is
expected from this system. We started by running sleep(0) tasks

in order to benchmark the system throughput and realized that
the system simply does not scale for these tasks.
Instead of being multiply by two when multiplying the number
of nodes by two, the throughput is actually divided by two. This
is clearly a configuration problem but discussions with two
Swift developers - Justin Wozniak and Timothy Armstrong –
did not change this situation. To convince ourselves that this
was not due to an error from our side, we ran different types of
tasks (1ms to 1000ms) and looked at the throughput, efficiency,
and task latency metrics.

For the throughput, we notice that the sleep(1000) tasks are the
tasks that scale the best as the computed throughput (solid line)
is close to the ideal throughput (dashed line) up to 32 nodes.
Once we reach the scale of 32 nodes, then the throughput
stabilizes and the decreases when benchmarking on a cluster of
128 nodes. We observe the same trend for sub-second tasks
except that the smaller the task length, the faster the computed
throughput moves away from the ideal throughput when scaling
up. One bottleneck could be the load balancing server as only
one load balancing server is used in this benchmark. We have
tried scaling up dynamically the number of load balancing

1E-03

1E-02

1E-01

1E+00

1E+01

1 2 4 8 16 32

T
a

sk
 L

a
te

n
cy

 (
s)

Number of nodes

Legion Task Latency

Sleep(1000) Sleep(100) Sleep(10) Sleep(1)

0%

50%

100%

1 2 4 8 16 32
Number of nodes

Legion Efficiency

Sleep(1) Sleep(10) Sleep(100) Sleep(1000)

0

2

4

6

8

1 2 4 8 16

T
a

sk
s/

s
T

h
o

u
sa

n
d

s

Number of nodes

Throughput (tasks/s)

0%

20%

40%

60%

80%

100%

1 4 16 64

Number of nodes

Swift/T Efficiency

Sleep(1) Sleep(10) Sleep(100) Sleep(1000)

1

10

100

1000

1 2 4 8 16 32 64 128

T
a

sk
s/

s

Number of nodes

Swift/T Throughput (tasks/s)

Sleep(10) Sleep(100) Sleep(1000)

0.01

1

100

10000

1 2 4 8 16 32 64 128
Number of nodes

Swift/T Task Latency (ms)

Sleep(1) Sleep(10) Sleep(100) Sleep(1000)

servers and it did not seem to affect the results. However, we
think this possible solution should be evaluated again and this
could a part of the future work on this project.
In a similar fashion, we observe that the computed efficiency
and task latency get very poor very fast (starting at 2 nodes) for
sub-second tasks. However, the efficiency stays correct up to
32 nodes for the one second tasks with a value of 92%.

4) Sparrow
We ran the benchmarks with a single Frontend and up to 64
nodes. Unfortunately, high number of tasks submissions from a
single point started to cause troubles when the benchmarks
required more than 10,000 tasks. After this point, we noticed
inconsistency in task identification and task duplications –more
tasks would be registered as finished than the number of tasks
submitted-. This situation would continue up to a certain point,
then with the number of submission still increasing, we blocked
on runtime errors. We realized that a single submission point
causes a bottleneck as the rest of the system is scaling.

For the configurations which we were able to benchmark show
good scalability. While coarser tasks scale linearly finer task
seem to reach an upper bound but this bound could due to the
single-Frontend bottleneck.

Sparrow latency is extremely low. A close look to the number
shows that it actually increases at higher scales, but that
increased delay could again be attributed to the Frontend
bottleneck. This is easier to see on the Efficiency graph below.

5) MATRIX
MATRIX was configured to create a DAG of type bag of tasks.

MATRIX throughput is scaling up to 64 nodes, after which
throughput for all sleeps except sleep(1000) drops. As for
Sparrow, this might be due to the client bottleneck.
As for the throughput, latency shows anomalies for the 128

nodes scale. We can also notice that MATRIX has a low bound
for its latency of 10-20ms. This can be explained by the
dependency checking for each task when it is not needed for the
benchmarks we ran.

1

100

10000

1 2 4 8 16 32 64T
h

ro
u

g
h

p
u

t
(T

a
sk

/s
)

Number of nodes

Sparrow Throughput

Sleep (1000) Sleep(100) Sleep(10)

0.1

1

10

100

1000

10000

1 2 4 8 16 32 64T
a

sk
 L

a
te

n
cy

 (
m

s)

Number of nodes

Sparrow average Latency

Sleep(1000) Sleep(100) Sleep(10)

Sleep(1) Sleep(0)

0.45

0.65

0.85

1 2 4 8 16 32 64

T
a

sk
 E

ff
ic

ie
n

cy

Number of nodes

Sparrow average Task Efficiency

Sleep(1000) Sleep(100) Sleep(10) Sleep(1)

1

10

100

1000

10000

1 2 4 8 16 32 64 128

T
h

ro
u

g
h

p
u

t
(T

a
sk

s/
s)

Number of nodes

MATRIX Throughput

Sleep (1000) Sleep(100) Sleep(10)

Sleep(1) Sleep(0)

10

100

1000

10000

1 2 4 8 16 32 64 128

T
a

sk
 L

a
te

n
cy

 (
m

s)

Number of nodes

MATRIX Task Latency

Sleep(1000) Sleep(100) Sleep(10)

Sleep(1) Sleep(0)

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32 64 128

E
ff

ic
ie

n
cy

Number of nodes

MATRIX Task Efficiency

Sleep(1000) Sleep(100) Sleep(10) Sleep(1)

The efficiency graph shows that MATRIX has more trouble
with the finer grain workloads while having good efficiency for
coarser grain workloads.

6) Summary
We chose to use the sleep(100) benchmark as a comparison
point as it was the one for which we had the more data.

Charm++, Legion and Sparrow have near perfect efficiency
even at the higher scales of our benchmark. MATRIX has a
good efficiency, and stay constant over the benchmark. Its
lower results could be due to systematic task dependency
checking. Swift efficiency crashes after 2 nodes.

All system benchmarked except Swift show scaling throughput.
Indeed, each system throughput roughly doubles when the scale
is doubled. Nevertheless two groups seem to emerge: the 10
tasks per sec per node-Charm ++ and Legion- and the 20 tasks
per sec per node -MATRIX and Sparrow-.

Here is a table which sums up the workloads for every runtime
system:

System Per task duration (ms) Expected time (s)
Swift/T 1 3

 10 3
 100 30
 1000 100

Charm++ 1/10/100/1000 100
Legion 1/10/100/1000 10
Sparrow 1/10/100/1000 25
MATRIX 1/10/100/1000 25

IV. RELATED WORK

MATRIX is a many-task computing job scheduling
system [3]. There are many resource managing systems
aimed towards data-intensive applications. Furthermore,
distributed task scheduling in many-task computing is a
problem that has been considered by many research
teams. In particular, Charm++ [4], Legion [5], Swift [6],
Hadoop YARN [7], Spark [1][2], HPX [9], STAPL [10]
and MATRIX [8] offer solutions to this problem and have
each separately been benchmarked with various metrics.

V. CONCLUSION

Many research teams tackled the distributed task-scheduling
subject recently. Each team has come up with their own system
and compared it to the systems the industry is currently using.
Unfortunately the results each of them separately presented
does not give as is an overall view of the different systems
performance against each other. The testing environment,
workload, and worker’s specification they used were different,
making a direct comparison of all systems difficult. This project
aims to use a single testing environment, test these systems on
the same workload, and use the same metrics each one of them
to provide a fair comparison of the systems studied.

As a future work, we would like to run workloads
decomposed in different kind of direct acyclic graphs in order
to test a large variety of possible application performance.
Those DAGs could be for instance set in fan-in, fan-out of
parallel architecture which simulates different application
workloads. Finally to simulate intensive applications with a lot
of dependencies we could look at the traces of such applications
and simulate the corresponding programs of our own.

VI. REFERENCES

[1] Zaharia, Matei, et al. "Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing."
Proceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Association,
2012.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 4 8 16 32 64 128

Efficiency, sleep(100)

Charm++ Legion MATRIX Sparrow Swift

0

200

400

600

800

1000

1200

1400

1 4 16 64

Throughput, sleep(100)

Charm++ Legion MATRIX Sparrow Swift

[2] Ousterhout, Kay, et al. "Sparrow: distributed, low latency
scheduling." Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 2013.

[3] Rajendran, Anupam. MATRIX: Many-Task Computing
Execution Fabric for Extreme Scales. Diss. Illinois
Institute of Technology, 2013.

[4] Zheng, Gengbin, Lixia Shi, and Laxmikant V. Kalé. "FTC-
Charm++: an in-memory checkpoint-based fault tolerant
runtime for Charm++ and MPI." Cluster Computing, 2004
IEEE International Conference on. IEEE, 2004.

[5] Bauer, Michael, et al. "Legion: expressing locality and
independence with logical regions." Proceedings of the
international conference on high performance computing,
networking, storage and analysis. IEEE Computer Society
Press, 2012.

[6] Wozniak, Justin M., et al. "Turbine: A distributed-memory
dataflow engine for high performance many-task
applications." Fundamenta Informaticae 128.3 (2013):
337-366.

[7] Wozniak, Justin M., et al. "Swift/T: Large-scale
Application Composition via Distributed-memory
Dataflow Processing." Cluster, Cloud and Grid Computing
(CCGrid), 2013 13th IEEE/ACM International Symposium
on. IEEE, 2013.

[8] Phillips, James C., et al. "Petascale Tcl with NAMD,
VMD, and Swift/T." Proceedings of the 1st First
Workshop for High Performance Technical Computing in
Dynamic Languages. IEEE Press, 2014.

[9] Wozniak, Justin M., et al. "A model for tracing and
debugging large-scale task-parallel programs with
MPE." Proc. LASH-C at PPoPP (2013).

[10] Vavilapalli, Vinod Kumar, et al. "Apache hadoop yarn: Yet
another resource negotiator." Proceedings of the 4th
annual Symposium on Cloud Computing. ACM, 2013.

[11] Wang, Ke, Kevin Brandstatter, and Ioan Raicu.
"Simmatrix: Simulator for many-task computing execution
fabric at exascale." Proceedings of the High Performance
Computing Symposium. Society for Computer Simulation
International, 2013.

[12] Kaiser, Hartmut, Maciej Brodowicz, and Thomas Sterling.
"Parallex an advanced parallel execution model for
scaling-impaired applications." Parallel Processing
Workshops, 2009. ICPPW'09. International Conference on.
IEEE, 2009.

[13] An, Ping, et al. "STAPL: An adaptive, generic parallel C++
library." Languages and Compilers for Parallel
Computing. Springer Berlin Heidelberg, 2003. 193-208.

APPENDIX

As this project is a benchmarking of several systems,
distributing the work between team members has been easy:

- Thomas Dubucq benchmarked the systems MATRIX
and Sparrow;

- Tony Forlini benchmarked the systems Charm++ and
Legion;

- Virgile Landeiro Dos Reis benchmarked Swift/T;
- Isabelle Santos benchmarked HPX.

