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Abstract— Technology trends indicate that exascale systeml
have billion-way parallelism, and each node will hee about three
orders of magnitude more intra-node parallelism tha today’s
peta-scale systems. The majority of current runtimesystems focus
a great deal of effort on optimizing the inter-nodeparallelism by
maximizing the bandwidth and minimizing the latencyof the use
of interconnection networks and storage, but suffefrom the lack
of scalable solutions to expose the intra-node pdlelism. Many-
task computing (MTC) is a distributed fine-grainedparadigm that
aims to address the challenges of managing paraikih and
locality of exascale systems. MTC applications araypically
structured as direct acyclic graphs of loosely codpd short tasks
with explicit input/output data dependencies. Thedsk execution
framework of MTC has a distributed design that focises on hiding
execution latency and achieving good load balancing the face of
large number of compute resources, storage, and nurer of tasks.
Runtime systems with an asynchronous MTC task exetion
model include MATRIX, Charm++, Legion, HPX, STAPL,
Swift/T, Hadoop's YARN and Spark/Sparrow. This project aims
to benchmark these runtime systems with an emphasim the task
execution framework, using MTC workloads of differat data
dependency patterns. The goal is to understand thgerformance,
scalability, and efficiency of these runtime systemin scheduling
different data-intensive workloads with a variety d task
granularity.

Index Terms—benchmark, data intensive computing, exascale,
many-task computing, MATRIX, MTC

|. BACKGROUNDINFORMATION

Stanford University. Finally HPX is a general puspoC++
runtime system for parallel and distributed appi@as of any
scale developed by Louisiana State University atagl€ is a
framework for developing parallel programs from agX@XA&M.
MATRIX is a many-task computing job scheduling syst
[3]. There are many resource managing systems aioveatds
data-intensive applications. Furthermore, disteduttask
scheduling in many-task computing is a problem hzst been
considered by many research teams. In particutear@++ [4],
Legion [5], Swift [6], [10], Spark [1][2], HPX [12]STAPL [13]
and MATRIX [11] offer solutions to this problem arhve
each separately been benchmarked with variousasetri
The main difficulty of the project is to grasp tb@mplexity
of each runtime system and figure out the schegyart of the
system in order to be able to measure the samémetr every
system. The main goal of this benchmark is to dmaw
comparison of the scaling performances of thesedding
systems while testing it on different types of wodds. As a
matter of fact, it is often difficult to make sutteat we run the
benchmarks the exact same way on different systdimat
means that we have to make sure that we only takedount
the relevant metrics and measures relative to tuatys Thus
we need to produce similar workloads on every e§éruntime
systems which can imply having similar DAG deconifos
for the application on which we want to measure the
benchmark. In some cases runtime systems don’tléahd
decomposition of the application in DAGs. Thus wi# have
to produce this DAGs on our own. Finding the ritggtbeds is
also one of the tremendous challenge in doing breadk of

HE eight systems that we are about to benchmarlalare different runtime systems since we ought to find X

open-source projects. Most of them are academsesareh
projects but YARN which is the Hadoop resource ngana
component is a professional project. This systdawalto run
distributes workloads and applications, often feileg the
Map-Reduce paradigm. Swift is a workflow system chhi
allows to run parallel applications with its paehlprograming
model. This project is developed by University dfi€ago and
ANL. Spark is a project from UC Berkeley encompadsgthe
Sparrow project which is a large scale task sclegdsystem
with in-memory queries system. Charm++ is a disted
parallel programming paradigm from UIUC and Legisna
data-centric parallel programming system developsd

benefits over concurrent systems.

Il. PROPOSEDSOLUTION

This project will compare seven scheduling systémmeugh
benchmarks to evaluate throughput and efficieneyrtler to
perform an accurate comparison, a detailed perfocmprofile
will be done for each system with the same workldzitferent
workloads of fine granularity and intensity will beed, as well
as different scales up to 128 nodes. The benchniarksach
system will be performed using Amazon Web Serv(igé§'S).
For each of these runtime systems we will needotmi
installation guidelines and tutorials in order toagp the



architecture and dependencies of these prograntse Gese
programs are installed and running on one instaweewill
need to set up and automate as far as possibetiieyment
of the application on several node in our Amazaistelr. Some
of these systems may require the same underneatiingi
systems such as Open MPI for message passingactedr
GASNet for network high performance communication.

1) Charm++

message passing and CUDA because GASNet requirels GP

enabled configuration to be able to run. Neverdggelge don't
plan on running the benchmark on GPU instancesisdlhe

GASnet application needs to be built with the TAPRJso

called "conduit" to use the classic network comroation. One

might also set up MPI as the underlying communicati
conduit.

Moreover the application follows the same previgastern

with a parallel for loop of sleep tasks. The diffietr nodes on

The Charm ++ system is made of a parallel progrargmiwhich to run the application are defined within thkell
paradigm and a runtime system. In this section Wleewplain  environment with an environment variable specifythg IP
the runtime system architecture and how the charm+addresses of each node. The same python scrigspemsible
programming paradigm allows us to write applicationfor retrieving the latency of each task and sumniting to get
decomposed as Direct Acyclic Graphs. Charm++ prograse the total latency. The throughput is computed b§nta the
objects called chares to represent the entitiggoresble for number of task executed per second.

launching the different tasks of the applicatiohus the Finally, benchmarking dynamic runtime systems suash
parallelism is not implicit as it is in other rumt& systems such Legion is quite tricky to do correctly. In partiem] some

as Swift.

As a matter of fact, one needs to explicitly writke
dependencies between the different chares. Furtirerrthose
chare objects can communicate through asynchramessage
passing. Those messages don't interfere with theimg state
of a chare hence the asynchronous design. Eack tlagran
associated state and belongs to the global objexteswhich
keeps track of all the tasks to execute. Finallyghogrammer
doesn't need to consider the number or processonshizh to
run the tasks or the type of interconnect for tlesgage passing,
one only needs to specify how chare objects intevih each
other.

We built the Charm++ runtime system on a vanillaibtin OS
within a c3.large EC2 instance. All the nodes oricivithe
application will run need to be configured to alldB&H
connection between each other and to specify shefiall the
nodes within the nodelist configuration file. Oursf test
application is a simple bag of sleep tasks whichpsy waits
for a given amount of time. The code for this aqgdiion
basically consists in a parallel for loop goingotigh a chare
array which launches the sleep tasks in a distibutay on the
different nodes. Then the arguments for this apfibo are the
number of seconds to wait and the number of nodestach
to run the application.

We set up a timing of each task and we write i@ itog file in
order to reduce the overhead of a display on tredstrd output.
Finally a python script reads through the file timpute the
total latency of the application. We also comptie total
running time in order to be able to know the comitation
overhead we subtracting the latency from the totahing time.

2) Legion

The Legion runtime system has a similar architecturhe
different tasks are represented by a function whidalled by
a TaskLauncher object. Unlike for Charm++, the peliam
does not have to be explicit. The way the differarsks are
interacting defines the Direct Acyclic Graph of tiqgplication.
Finally a top level task is responsible for laumghiall the
subsequent tasks of the application. One can gplegif tasks
in order to optimize the running time of the apglion since
those tasks have no data dependencies with otfley. ta
However the Legion runtime system requires undeglyi
systems which are GASNet for network interconneatl a

benchmarks which are otherwise appealing, suchwaghing

a bunch of empty or nearly empty tasks in ordem&asure
runtime overhead are especially poor predictorsLegion

performance. This is because the Legion runtimeateg in a
pipeline and goes to quite a bit of effort to elstirat analysis
stays off the critical path.

As aresult, to get real insight into the Legiostsyn, one would
need to take the runtime architecture into accowhen

designing the benchmarks. Since Legion's featurdigerges
so widely from other task based runtimes it iscleér whether
it is even possible to perform an apples-to-apptasparison
with even the closest comparable runtimes.

3) Swift/T

The objective of this project is to be able to benark several
systems on the same hardware: EC2 instances. A8 TShas
only a very limited documentation to deploy on Ama\Veb
Services, there has been different challenges vilgalling
and configuring Swift/T so it can run on several2Etdes.
Ouir first step has been to install and configumeezdly Swift/T
to run on a local machine. This has been done witly one
limitation. The Swift/T documentation indicates theither
OpenMPI or MPICH can be used but when configurtngiih
OpenMPl, it does not run as it seems that someedHifararies
are not in the right folder. We did not look monéoi details for
this issue as Swift/T was running correctly usingI&IH. We
also noticed that having both MPI implementationasystem
lead to a more complicated configuration and méshe time
it is easier to keep only MPICH to make Swift/T mmoothly.
Once Swift/T had been running on a local machine, w
followed the same process to install it on an E@2ance and
created an AMI image so we can launch severalnosgawith
Swift installed. Once again, we used MPICH.

The part of the Swift/T installation that has bé&le& most time
consuming is the deployment of Swift/T on severstances
(i.e. run a Swift/T program in a distributed fashjio

First of all, it is indicated in the documentatitirat compute
nodes need to be able to SSH between them. To #iisywe
have created a private key that is distributedughoall the
compute nodes and we modify the SSH configuratioewery
compute node to use this private key. Note thaptheate key
and the SSH configuration file are not stored mAMI image



but are distributed from a local machine to the BG&es using
a python script.

We also need to create a hostfile that containsthedl IP

addresses of the workers and that is used by Mg also
generated by the python script and distributed alerthe

workers. This python script has been developedgusia boto
module for EC2. Finally, to run a program on selerachine,
we compile it using STC and send the *.tic file ath the

workers. Then we can connect to a worker and refdifowing

command:

export TURBI NE_LAUNCH OPTI ONS="-f =hosts. txt"
turbine programtic

relative delay compared to the earliest task fiishnd total
batching time. These recorded delays are thenasibtt on the
Frontend side to get the most accurate timing.

We also needed to log the local time spend duraunip @hases
of the scheduling. That feature has been adddukiftontend
and Backend applications and also in the Sparraye moonitor
-which is responsible for the assignment of a taskparticular
backend-. The results are stored in a csv text Blgth The
Frontend and the Sparrow node monitor have thein &lg
while the backend uses a thread safe class to issaresults -
indeed, since the execution of requested tasksiliithmeaded,
a thread safe solution was required-.

Unfortunately there is no possible way to stop phecesses
required in the benchmark in the Frontend code Sparrow

Justin M. Wozniak has been kind enough to answer Opp| |aunches threads that you don't have handlessonwe

questions about Swift/T and how to run it on sev&@?2

needed to use external scripts to automatize thehpearking.

instances once the program has been compiled 83iy The  The following paragraphs will detail the python ipts we
problem encountered and that took us several @egisliug is coded.

that there has been a change in the environmeiatbl@mame  Two scripts are in charge of the configurationsfileecessary

from TURBINE_LAUNCH_OPTS (December 2014) toforthe whole benchmark. One creates the configurdiles of
TURBINE_LAUNCH_OPTIONS (March 2015) but the poth the Frontend and Backend application and tero

documentation has not been updated except in oaee pl modifies the Sparrow nodemonitor configuration faelds new

(http://swift-lang.org/Swift-T/guide.html#_concuney).
Neither the guide related to Swift/T on
(http://www.mcs.anl.gov/exm/local/guides/turbine-
sites.html#_ec2) nor the program documentatiorbifter —h)
have been updated to this day. However, once we haticed
this problem, we have been able to run benchmaitkeut any
issue.

In order to simplify the benchmarking process, \&eehwritten
a small python API based on boto that allows a tsésunch
EC2 instances, create automatically the configomafiles
needed for Swift/T and copy them to all the runrimgtances,
deploy a given Swift script with possible argumehising this
APl and a JSON file describing the benchmarks wetwarun,
we are able to run every benchmark and get backethéts in
one command line.

4) Sparrow

The source code of Sparrow provides an exampléeepmg

benchmark but unfortunately it lacks several fezsguequired
for our project. Indeed their benchmark consistseiquesting
the scheduling of bags of tasks of random lengtes at a
regular interval. No acknowledgement of task endiag made
and the different timings were only prompted in tebugger

nodes’ IP addresses to an existing configuratiogets a new

EC2¢onfiguration file-.

One script is responsible of launching and ternmigaAWS
instances and another allows to launch and kill kBad
applications and nodemonitor applications localiyaonode.
We also coded a script that wraps all the SSH camisa
necessary to the benchmark -start/kill the procesesenode, set
the configuration files on a new node, update tidigurations
on an already working node and fetch the resulthhemodes-
Finally a script wraps all of the previous scriptslaunch a
series of benchmarks with different settings.

5) HPX

HPX is a general purpose C++ runtime system foalfrand

distributed applications developed by the STE||ARUP at
Louisiana State University. By a runtime system,mean that
any application that uses HPX will be directly gtk to its
libraries. This library adheres to the C++11 staddand uses
the Boost C++ libraries. HPX is an open-source @nmntation
of the ParalleX (Kaiser, Hartmut, Maciej Brodowicand

Thomas Sterling. "Parallex an advanced parallelceien

model for scaling-impaired applications." ParalR¥bcessing
Workshops, 2009. ICPPW'09. International Conferenoe

log. Therefore we needed to code our own Frontemdl ajggg, 2009) theoretical execution model.

Backend applications. The following paragraphs wlitail
how the implementation of these two applicatiornsseer to the
specifications of our benchmark.

First of all we needed to have a total time meanerg for

Using the HPX runtime system, parallel applicaticnse
futures. A future can be described as a valuegkiats now or
will be produced in the future. In other terms,fudure
encapsulates a delayed computation. It acts a®xy ffor a

individual tasks and for the whole benchmark. Theesu": |n|t|a||y not known' most of the time becauthe

implemented solution is a TCP server/clients. Thentend
application runs a multithreaded TCP server whikche
Backend application connects to it and send ackedgdment
messages. Each Backend has a dedicated thread sariler,
whose only job is to store the message arrival tand the
message content in a thread safe fifo queue thahes

processed by the main thread of the Frontend. @B#tkend
side, messages are batched to reduce network ¢mmgdhese
messages contain the number of finished tasksyithdil

computation of the result has not completed yet.

Typically a function is used to produce the valdieduture.

This producer function will be executed asynchratpin a

new HPX thread. Once the action has finished eksgut

write operation is performed on the future. Whenrisult of a
delayed computation is needed, the future is reathe reader
thread is suspended until the future is ready.



Help and documentation for HPX can be obtained o t
STE||AR Group website, on the IRC #ste|lar charorel
freenode, or through the HPX users mailing list.

Benchmarks of HPX have been done by the STERARIp
(Raj, Rekha. Performance Analysis with HPX. Disguilsiana
State University, 2014) regarding rate of execuytibread idle-
rate and task length among others on up to 16 cdi@se node.
We have started by installing and running HPX ofocal
machine. The first step was to install all of tlepeindencies for
HPX, and testing them to ensure that they were gytpp
functioning. The dependencies are the Boost Cratlibs, the
Portable Hardware Locality (HWLOC) library, CMakthe
google-perftools development files, and libunwind
dependency of google-perftools. To ensure a worlBogst
installation, we compiled Boost from sources owsgl Some
of the dependencies listed in the HPX documentatiene
ambiguous. For instance the documentation onlycatds that
google-perftools is needed, however, libgoogletpets-dev is
also required.
Furthermore, regarding the dependencies, not afipatible
versions are compatible amongst themselves. Fdarios,
Boost V1.49.0 and later are recommended, but Bgb$§6.0
can't be used for HPX with gcc V4.6.x, so we hadioable
check the version numbers for all dependencies.
Finally, the C++ HDF5 libraries must be compiledwenabled
threadsafety support. This has to be explicitlycef while
configuring the HDF5 libraries as it is not the algf.
The next step was to build HPX. HPX requires andjtttee
build. In other terms, HPX must be built in a ditegy separate
from the source directory. For this build, it wascassary to
specify the location of the Boost installation poesly
mentioned. Once the build is complete, HPX is deld with
a testing utility. The following step was to run elementary
program on a local machine using HPX. The docuntiemtfor
HPX states that compiling and linking HPX need
approximately 2GB of memory per parallel processb
available. However, to compile the hello_world ex¢erwith a
single parallel process, that was not enough antiagieto use
a 4GB swap file in order to double our amount ofmogy. The
hello_world program prints out a hello world messag every
OS-thread on every locality.
The subsequent step is to write verbose sleep.thsksder to
write an application which uses services from tifXHuntime
system it is necessary to initialize the HPX lilgray inserting
certain calls into the code of the application.sTtan be done
by including the file hpx/hpx_main.hpp, in whichseathe
main() function will be the HPX entry point, or lhcluding the
file hpx/hpx_init.hpp and providing an hpx_main ¢tion that
will be invoked at the specified entry point for KIP
Writing these tasks has had its own set of diffiesl For
instance, to build HPX components, the documeniaiates
that the following command may be used to compiample
hello world program.

c++ --0 hello_world hello_world_component.cpp
“pkg-config ---cflags ---libs -hpx_component’ --
DHPX COMPONENT_NAME=hello_world
In fact, to compile the functions using HPX, | hademove the
excess '-'s and add the optidboost_program_options to
the command.

6) STAPL

STAPL (Standard Adaptive Parallel Library) is agid C++
library developed at Texas A&M University. There arlot of
publications concerning this project from 1998 @12 but
unfortunately, the code is nowhere to be foundheninternet.
We tried to contact the developing team by emaiktgpl-
support@tamu.edu and by directly emailing one efdteator
of STAPL (Lawrence Rauchwerger) but we did not gey
response from them. Therefore, we have not beentalshake
any progress on this part of the project.

7) MATRIX

MATRIX is a fully-distributed task execution framevk for
Many-Task Computing data intensive applicationstiayed at
the IIT. MATRIX delegates a scheduler on each cammode
to manage local resources and schedule tasks. MAIERIsed
on top of ZHT -Zero Hop distributed hashTable, alsweloped
at the IIT- which manages task metadata. MATRIXIenpents
a data-aware work stealing technique to optimizth boad
balancing and data-locality. Matrix is used to lelurpre-
compile sleep programs, already existing on eacleno
Python scripts are used to launch instances, mechmearks and
grab the logs of every instance. The results avegased with
the tools supplied in the dataproc folder.

Minor issues were encountered during the deploynsert
running of MATRIX. First, slight errors in the cagfiration file
-e.g. wrong folder in a path- entails segmentafigit at launch
without any other information, which took some titmefix.
The launching of a scheduler must be done afteZtdll have
been started on all instances, which caused sooublér for
higher scales.

0 evaluate the performance for each of these gigjeve will

compute the throughput, the latency and the effijewith

workloads of varying sizes. We will also scale gvevaluated
system from 1 node to 128 nodes in order to evaltad

scalability. The latency of a system is definedtss average
time period between the issue of a request andgbmning of
the system’s response to this request. The loveciatency the
better the performance of the system. We will meaghe

average latency by issuing a very large amounnaflsrequest)
and by recording the latency time for each requésie

throughput of a system is the number of requedt ithean

handle per second of running time. It should be ksphigh as
possible. We will measure it by submitting sevevarkloads

of varying size to the evaluated systems and bypedimg the
average number of requests executed per seconeffitiency

of a system is defined as the ratio of the effectiwoughput
over the theoretical throughput.

EVALUATION

1) Charm++

As previously said, the experiments has been paddron
C3.large Amazon EC2 instances with an dedicated AdvI
each runtime system. Python scripts are respondite
automating the launch of instances following thalisg from
1 to 128 nodes. Other python scripts are respansibi



automating the variation of experiments variableshsas the
sleep time and the number of tasks within the Hagsks.

We first compute the throughput which is a relevastric for
Sleep(0) tasks which do nothing on purpose. Hex¢herresults ® ° ° ® ° ° ° °
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Then we computed the throughput and efficiencydeks from We launched the same workload with the same kind of
10ms to 1 second. application with Legion runtime system. Unfortugtethe

legion system is not built to run on heavy clusteks a
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Finally we plotted the task latency for all kindhmn-null sleep
for all number of nodes:



As expected the throughput is increasing with tteles The
maximum throughput is reached for sleep(1) ms &8 dodes
with about 10000 tasks per second. We also fouattigger
task have a doubling throughput with the numberarfes, but
sleep(1) ms tasks tend to reach an upper bound thieescale

increases.
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in order to benchmark the system throughput anlizeshthat
the system simply does not scale for these tasks.

Instead of being multiply by two when multiplyiniget number
of nodes by two, the throughput is actually dividbgdwo. This
is clearly a configuration problem but discussiavith two

Swift developers - Justin Wozniak and Timothy Amosg —
did not change this situation. To convince ourselifet this
was not due to an error from our side, we ran diffetypes of

good efficiency and are also scaling. On the otfaexd smaller tasks (1ms to 1000ms) and looked at the througleffittiency,
tasks such as sleep(10ms) or sleep(lms) show pood&d task latency metrics.

efficiency, with a lower bound of 28% for sleep()nfisr 32

nodes. That means that the scheduling and comntiamica

overhead introduced for fine grained tasks is stotliat the
task duration itself. Thus the cost of scheduliadnigher for
such tasks which might not worth such deployment.
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As for Charm++, the task latency is steady with sbale but
not for sleep(1) ms tasks.

3) Swift/T
The benchmark results for Swift/T are far from lgeimhat is
expected from this system. We started by runnieg0) tasks
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tasks that scale the best as the computed throt¢gdid line)
is close to the ideal throughput (dashed line) w2 nodes.
Once we reach the scale of 32 nodes, then the ghput
stabilizes and the decreases when benchmarkingluster of
128 nodes. We observe the same trend for sub-seeskd
except that the smaller the task length, the fakgecomputed
throughput moves away from the ideal throughputwdealing
up. One bottleneck could be the load balancingeseas only
one load balancing server is used in this benchnVaek have
tried scaling up dynamically the number of loadabaing
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servers and it did not seem to affect the restitsvever, we
think this possible solution should be evaluatedimgnd this
could a part of the future work on this project.

In a similar fashion, we observe that the compu@fidiency

and task latency get very poor very fast (staréing nodes) for
sub-second tasks. However, the efficiency staysecobup to
32 nodes for the one second tasks with a valu@%f.9

4) Sparrow

We ran the benchmarks with a single Frontend antou
nodes. Unfortunately, high number of tasks submissfrom a
single point started to cause troubles when thechrearks
required more than 10,000 tasks. After this poiré, noticed
inconsistency in task identification and task deggions —more
tasks would be registered as finished than the eurobtasks
submitted-. This situation would continue up toega&in point,
then with the number of submission still increasing blocked
on runtime errors. We realized that a single subimispoint
causes a bottleneck as the rest of the systenaliangc
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For the configurations which we were able to beratknshow

good scalability. While coarser tasks scale linefirler task

seem to reach an upper bound but this bound caddalthe

single-Frontend bottleneck.
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Sparrow latency is extremely low. A close look lhe humber
shows that it actually increases at higher scabes, that
increased delay could again be attributed to thenténd
bottleneck. This is easier to see on the Efficiegraph below.

5) MATRIX
MATRIX was configured to create a DAG of type bddasks.
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MATRIX throughput is scaling up to 64 nodes, aftenich
throughput for all sleeps except sleep(1000) drds.for
Sparrow, this might be due to the client bottleneck
As for the throughput, latency shows anomaliestifer 128
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nodes scale. We can also notice that MATRIX haseldound
for its latency of 10-20ms. This can be explainad the
dependency checking for each task when it is nedee for the
benchmarks we ran.
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The efficiency graph shows that MATRIX has moreuble Here is a table which sums up the workloads forementime
with the finer grain workloads while having goofi@éncy for  system:
coarser grain workloads.

System | Per task duration (ms) Expected time (s)
6) Summary Swift/T 1 3
We chose to use the sleep(100) benchmark as a csmpa 10 3
point as it was the one for which we had the mata.d 100 30
Efficiency, sleep(100) 1000 100
- _ _ Charm++ 1/10/100/1000 100
09 Legion 1/10/100/1000 10
08 Sparrow 1/10/100/1000 25
07 MATRIX 1/10/100/1000 25
0.6
0.5
0.4 IV. RELATED WORK
03 MATRIX is a many-task computing job scheduling
0.2 system [3]. There are many resource managing sgstem
0.1 aimed towards data-intensive applications. Furtloeem
0 distributed task scheduling in many-task computing
1 2 4 8 16 32 64 128

problem that has been considered by many research
teams. In particular, Charm++ [4], Legion [5], SWB],

—e— Charm++ Legion MATRIX Sparrow Swift HadOOp YARN [7]’ Spark [l][Z], HPX [9], STAPL [10]
and MATRIX [8] offer solutions to this problem ahdve

Charm++, Legion and Sparrow have near perfectieffty each separately been benchmarked with variousasetri
even at the higher scales of our benchmark. MATR&$ a

good efficiency, and stay constant over the benckmis

lower results could be due to systematic task digery

checking. Swift efficiency crashes after 2 nodes. V. CONCLUSION

Many research teams tackled the distributed tabkehding
Throughput, sleep(100) subject recently. Each team has come up with tveir system
and compared it to the systems the industry iseadsr using.

1400 Unfortunately the results each of them separatebsgnted
1200 does not give as is an overall view of the différsystems
1000 performance against each other. The testing envieon,
workload, and worker’s specification they used wdifeerent,
800 making a direct comparison of all systems diffictitis project
600 aims to use a single testing environment, tesietkgstems on
the same workload, and use the same metrics eacbfdhem
400 . ) . ;
to provide a fair comparison of the systems studied
200 ~ :
As a future work, we would like to run workloads
0 decomposed in different kind of direct acyclic drapn order
1 4 16 64 to test a large variety of possible applicationfgenance.
Those DAGs could be for instance set in fan-in,-dah of
—e—Charm++ Legion MATRIX Sparrow swift  parallel architecture which simulates different laggtion

workloads. Finally to simulate intensive applicagowith a lot
of dependencies we could look at the traces of apphications

All system benchmarked except Swift show scalimgughput. . -
and simulate the corresponding programs of our own.

Indeed, each system throughput roughly doubles wiescale

is doubled. Nevertheless two groups seem to eméngeiO
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APPENDIX

As this project is a benchmarking of several system
distributing the work between team members has basw:
- Thomas Dubucq benchmarked the systems MATRIX
and Sparrow;
- Tony Forlini benchmarked the systems Charm++ and
Legion;
- Virgile Landeiro Dos Reis benchmarked Swift/T;
- Isabelle Santos benchmarked HPX.



