
 

 
Abstract— Technology trends indicate that exascale systems will 

have billion-way parallelism, and each node will have about three 
orders of magnitude more intra-node parallelism than today’s 
peta-scale systems. The majority of current runtime systems focus 
a great deal of effort on optimizing the inter-node parallelism by 
maximizing the bandwidth and minimizing the latency of the use 
of interconnection networks and storage, but suffer from the lack 
of scalable solutions to expose the intra-node parallelism. Many-
task computing (MTC) is a distributed fine-grained paradigm that 
aims to address the challenges of managing parallelism and 
locality of exascale systems. MTC applications are typically 
structured as direct acyclic graphs of loosely coupled short tasks 
with explicit input/output data dependencies. The task execution 
framework of MTC has a distributed design that focuses on hiding 
execution latency and achieving good load balancing in the face of 
large number of compute resources, storage, and number of tasks. 
Runtime systems with an asynchronous MTC task execution 
model include MATRIX, Charm++, Legion, HPX, STAPL, 
Swift/T, Hadoop's YARN and Spark/Sparrow. This project aims 
to benchmark these runtime systems with an emphasis on the task 
execution framework, using MTC workloads of different data 
dependency patterns. The goal is to understand the performance, 
scalability, and efficiency of these runtime systems in scheduling 
different data-intensive workloads with a variety of task 
granularity. 
 

Index Terms—benchmark, data intensive computing, exascale, 
many-task computing, MATRIX, MTC 
 

I. BACKGROUND INFORMATION 

HE eight systems that we are about to benchmark are all 
open-source projects. Most of them are academics research 

projects but YARN which is the Hadoop resource manager 
component is a professional project. This system allows to run 
distributes workloads and applications, often following the 
Map-Reduce paradigm. Swift is a workflow system which 
allows to run parallel applications with its parallel programing 
model. This project is developed by University of Chicago and 
ANL. Spark is a project from UC Berkeley encompassed by the 
Sparrow project which is a large scale task scheduler system 
with in-memory queries system. Charm++ is a distributed 
parallel programming paradigm from UIUC and Legion is a 
data-centric parallel programming system developed by 

Stanford University. Finally HPX is a general purpose C++ 
runtime system for parallel and distributed applications of any 
scale developed by Louisiana State University and Staple is a 
framework for developing parallel programs from Texas A&M. 

MATRIX is a many-task computing job scheduling system 
[3]. There are many resource managing systems aimed towards 
data-intensive applications. Furthermore, distributed task 
scheduling in many-task computing is a problem that has been 
considered by many research teams. In particular, Charm++ [4], 
Legion [5], Swift [6], [10], Spark [1][2], HPX [12], STAPL [13] 
and MATRIX [11] offer solutions to this problem and have 
each separately been benchmarked with various metrics. 

The main difficulty of the project is to grasp the complexity 
of each runtime system and figure out the scheduling part of the 
system in order to be able to measure the same metrics on every 
system. The main goal of this benchmark is to draw a 
comparison of the scaling performances of these scheduling 
systems while testing it on different types of workloads. As a 
matter of fact, it is often difficult to make sure that we run the 
benchmarks the exact same way on different systems. That 
means that we have to make sure that we only take in account 
the relevant metrics and measures relative to our study. Thus 
we need to produce similar workloads on every of these runtime 
systems which can imply having similar DAG decomposition 
for the application on which we want to measure the 
benchmark. In some cases runtime systems don’t handle the 
decomposition of the application in DAGs. Thus we will have 
to produce this DAGs on our own. Finding the right testbeds is 
also one of the tremendous challenge in doing benchmark of 
different runtime systems since we ought to find MATRIX 
benefits over concurrent systems. 

II. PROPOSED SOLUTION 

This project will compare seven scheduling systems through 
benchmarks to evaluate throughput and efficiency. In order to 
perform an accurate comparison, a detailed performance profile 
will be done for each system with the same workload. Different 
workloads of fine granularity and intensity will be used, as well 
as different scales up to 128 nodes. The benchmarks for each 
system will be performed using Amazon Web Services (AWS). 
For each of these runtime systems we will need to follow 
installation guidelines and tutorials in order to grasp the 
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architecture and dependencies of these programs. Once these 
programs are installed and running on one instance, we will 
need to set up and automate as far as possible the deployment 
of the application on several node in our Amazon cluster. Some 
of these systems may require the same underneath running 
systems such as Open MPI for message passing interface or 
GASNet for network high performance communication.  
 
1) Charm++ 
The Charm ++ system is made of a parallel programming 
paradigm and a runtime system. In this section we will explain 
the runtime system architecture and how the charm++ 
programming paradigm allows us to write applications 
decomposed as Direct Acyclic Graphs. Charm++ programs use 
objects called chares to represent the entities responsible for 
launching the different tasks of the application. Thus the 
parallelism is not implicit as it is in other runtime systems such 
as Swift.  
As a matter of fact, one needs to explicitly write the 
dependencies between the different chares. Furthermore, those 
chare objects can communicate through asynchronous message 
passing. Those messages don't interfere with the running state 
of a chare hence the asynchronous design. Each chare has an 
associated state and belongs to the global object space which 
keeps track of all the tasks to execute. Finally the programmer 
doesn't need to consider the number or processors on which to 
run the tasks or the type of interconnect for the message passing, 
one only needs to specify how chare objects interact with each 
other. 
We built the Charm++ runtime system on a vanilla Ubuntu OS 
within a c3.large EC2 instance. All the nodes on which the 
application will run need to be configured to allow SSH 
connection between each other and to specify the list of all the 
nodes within the nodelist configuration file. Our first test 
application is a simple bag of sleep tasks which simply waits 
for a given amount of time. The code for this application 
basically consists in a parallel for loop going through a chare 
array which launches the sleep tasks in a distributed way on the 
different nodes. Then the arguments for this application are the 
number of seconds to wait and the number of nodes on which 
to run the application. 
We set up a timing of each task and we write it into a log file in 
order to reduce the overhead of a display on the standard output. 
Finally a python script reads through the file to compute the 
total latency of the application. We also compute the total 
running time in order to be able to know the communication 
overhead we subtracting the latency from the total running time. 
 
2) Legion 
The Legion runtime system has a similar architecture. The 
different tasks are represented by a function which is called by 
a TaskLauncher object. Unlike for Charm++, the parallelism 
does not have to be explicit. The way the different tasks are 
interacting defines the Direct Acyclic Graph of the application. 
Finally a top level task is responsible for launching all the 
subsequent tasks of the application. One can specify leaf tasks 
in order to optimize the running time of the application since 
those tasks have no data dependencies with other tasks. 
However the Legion runtime system requires underlying 
systems which are GASNet for network interconnect and 

message passing and CUDA because GASNet requires GPU 
enabled configuration to be able to run. Nevertheless we don't 
plan on running the benchmark on GPU instances so far. The 
GASnet application needs to be built with the TCP/UDP so 
called "conduit" to use the classic network communication. One 
might also set up MPI as the underlying communication 
conduit.  
Moreover the application follows the same previous pattern 
with a parallel for loop of sleep tasks. The different nodes on 
which to run the application are defined within the shell 
environment with an environment variable specifying the IP 
addresses of each node. The same python script is responsible 
for retrieving the latency of each task and summing it up to get 
the total latency. The throughput is computed by taking the 
number of task executed per second. 
Finally, benchmarking dynamic runtime systems such as 
Legion is quite tricky to do correctly. In particular, some 
benchmarks which are otherwise appealing, such as launching 
a bunch of empty or nearly empty tasks in order to measure 
runtime overhead are especially poor predictors of Legion 
performance. This is because the Legion runtime operates in a 
pipeline and goes to quite a bit of effort to ensure that analysis 
stays off the critical path.  
As a result, to get real insight into the Legion system, one would 
need to take the runtime architecture into account when 
designing the benchmarks. Since Legion's feature set diverges 
so widely from other task based runtimes it is not clear whether 
it is even possible to perform an apples-to-apples comparison 
with even the closest comparable runtimes. 
 
3) Swift/T 
The objective of this project is to be able to benchmark several 
systems on the same hardware: EC2 instances. As Swift/T has 
only a very limited documentation to deploy on Amazon Web 
Services, there has been different challenges when installing 
and configuring Swift/T so it can run on several EC2 nodes. 
Our first step has been to install and configure correctly Swift/T 
to run on a local machine. This has been done only with one 
limitation. The Swift/T documentation indicates that either 
OpenMPI or MPICH can be used but when configuring it with 
OpenMPI, it does not run as it seems that some shared libraries 
are not in the right folder. We did not look more into details for 
this issue as Swift/T was running correctly using MPICH. We 
also noticed that having both MPI implementations on a system 
lead to a more complicated configuration and most of the time 
it is easier to keep only MPICH to make Swift/T run smoothly. 
Once Swift/T had been running on a local machine, we 
followed the same process to install it on an EC2 instance and 
created an AMI image so we can launch several instances with 
Swift installed. Once again, we used MPICH. 
The part of the Swift/T installation that has been the most time 
consuming is the deployment of Swift/T on several instances 
(i.e. run a Swift/T program in a distributed fashion). 
First of all, it is indicated in the documentation that compute 
nodes need to be able to SSH between them. To allow this, we 
have created a private key that is distributed through all the 
compute nodes and we modify the SSH configuration on every 
compute node to use this private key. Note that the private key 
and the SSH configuration file are not stored in the AMI image 



 

but are distributed from a local machine to the EC2 nodes using 
a python script. 
We also need to create a hostfile that contains all the IP 
addresses of the workers and that is used by MPI: this is also 
generated by the python script and distributed over all the 
workers. This python script has been developed using the boto 
module for EC2. Finally, to run a program on several machine, 
we compile it using STC and send the *.tic file to all the 
workers. Then we can connect to a worker and run the following 
command: 
 
export TURBINE_LAUNCH_OPTIONS="-f=hosts.txt" 
turbine program.tic 
 
Justin M. Wozniak has been kind enough to answer our 
questions about Swift/T and how to run it on several EC2 
instances once the program has been compiled using STC. The 
problem encountered and that took us several days to debug is 
that there has been a change in the environment variable name 
from TURBINE_LAUNCH_OPTS (December 2014) to 
TURBINE_LAUNCH_OPTIONS (March 2015) but the 
documentation has not been updated except in one place 
(http://swift-lang.org/Swift-T/guide.html#_concurrency). 
Neither the guide related to Swift/T on EC2 
(http://www.mcs.anl.gov/exm/local/guides/turbine-
sites.html#_ec2) nor the program documentation (turbine –h) 
have been updated to this day. However, once we have noticed 
this problem, we have been able to run benchmarks without any 
issue. 
In order to simplify the benchmarking process, we have written 
a small python API based on boto that allows a user to launch 
EC2 instances, create automatically the configuration files 
needed for Swift/T and copy them to all the running instances, 
deploy a given Swift script with possible arguments. Using this 
API and a JSON file describing the benchmarks we want to run, 
we are able to run every benchmark and get back the results in 
one command line. 
 
4) Sparrow 
The source code of Sparrow provides an example of sleeping 
benchmark but unfortunately it lacks several features required 
for our project. Indeed their benchmark consists in requesting 
the scheduling of bags of tasks of random length sleeps at a 
regular interval. No acknowledgement of task ending was made 
and the different timings were only prompted in the debugger 
log. Therefore we needed to code our own Frontend and 
Backend applications. The following paragraphs will detail 
how the implementation of these two applications answer to the 
specifications of our benchmark. 
First of all we needed to have a total time measurement for 
individual tasks and for the whole benchmark. The 
implemented solution is a TCP server/clients. The Frontend 
application runs a multithreaded TCP server while each 
Backend application connects to it and send acknowledgement 
messages. Each Backend has a dedicated thread on the server, 
whose only job is to store the message arrival time and the 
message content in a thread safe fifo queue that is then 
processed by the main thread of the Frontend. On the Backend 
side, messages are batched to reduce network congestion. These 
messages contain the number of finished tasks, individual 

relative delay compared to the earliest task finished and total 
batching time. These recorded delays are then subtracted on the 
Frontend side to get the most accurate timing. 
We also needed to log the local time spend during each phases 
of the scheduling. That feature has been added in the Frontend 
and Backend applications and also in the Sparrow node monitor 
-which is responsible for the assignment of a task to a particular 
backend-. The results are stored in a csv text file. Both The 
Frontend and the Sparrow node monitor have their own file 
while the backend uses a thread safe class to store its results -
indeed, since the execution of requested tasks is multithreaded, 
a thread safe solution was required-. 
Unfortunately there is no possible way to stop the processes 
required in the benchmark in the Frontend code -the Sparrow 
API launches threads that you don’t have handles on- so we 
needed to use external scripts to automatize the benchmarking. 
The following paragraphs will detail the python scripts we 
coded. 
Two scripts are in charge of the configuration files necessary 
for the whole benchmark. One creates the configuration files of 
both the Frontend and Backend application and the other 
modifies the Sparrow nodemonitor configuration file -adds new 
nodes’ IP addresses to an existing configuration or sets a new 
configuration file-. 
One script is responsible of launching and terminating AWS 
instances and another allows to launch and kill Backend 
applications and nodemonitor applications locally on a node. 
We also coded a script that wraps all the SSH commands 
necessary to the benchmark -start/kill the processes on node, set 
the configuration files on a new node, update the configurations 
on an already working node and fetch the results on the nodes- 
Finally a script wraps all of the previous scripts to launch a 
series of benchmarks with different settings. 
 
5) HPX 
HPX is a general purpose C++ runtime system for parallel and 
distributed applications developed by the STE||AR Group at 
Louisiana State University. By a runtime system, we mean that 
any application that uses HPX will be directly linked to its 
libraries. This library adheres to the C++11 standard and uses 
the Boost C++ libraries. HPX is an open-source implementation 
of the ParalleX (Kaiser, Hartmut, Maciej Brodowicz, and 
Thomas Sterling. "Parallex an advanced parallel execution 
model for scaling-impaired applications." Parallel Processing 
Workshops, 2009. ICPPW'09. International Conference on. 
IEEE, 2009) theoretical execution model. 
Using the HPX runtime system, parallel applications use 
futures. A future can be described as a value that exists now or 
will be produced in the future.  In other terms, a future 
encapsulates a delayed computation. It acts as a proxy for a 
result initially not known, most of the time because the 
computation of the result has not completed yet. 
Typically a function is used to produce the value of a future. 
This producer function will be executed asynchronously in a 
new HPX thread. Once the action has finished executing, a 
write operation is performed on the future. When the result of a 
delayed computation is needed, the future is read, or the reader 
thread is suspended until the future is ready. 



 

Help and documentation for HPX can be obtained on the 
STE||AR Group website, on the IRC #ste||ar channel on 
freenode, or through the HPX users mailing list. 
    Benchmarks of HPX have been done by the STE||AR Group 
(Raj, Rekha. Performance Analysis with HPX. Diss. Louisiana 
State University, 2014) regarding rate of execution, thread idle-
rate and task length among others on up to 16 cores of one node. 
We have started by installing and running HPX on a local 
machine. The first step was to install all of the dependencies for 
HPX, and testing them to ensure that they were properly 
functioning. The dependencies are the Boost C++ libraries, the 
Portable Hardware Locality (HWLOC) library, CMake, the 
google-perftools development files, and libunwind, a 
dependency of google-perftools. To ensure a working Boost 
installation, we compiled Boost from sources ourselves. Some 
of the dependencies listed in the HPX documentation were 
ambiguous. For instance the documentation only indicates that 
google-perftools is needed, however, libgoogle-perftools-dev is 
also required. 
Furthermore, regarding the dependencies, not all compatible 
versions are compatible amongst themselves. For instance, 
Boost V1.49.0 and later are recommended, but Boost V1.56.0 
can't be used for HPX with gcc V4.6.x, so we had to double 
check the version numbers for all dependencies. 
Finally, the C++ HDF5 libraries must be compiled with enabled 
threadsafety support. This has to be explicitly specified while 
configuring the HDF5 libraries as it is not the default. 
The next step was to build HPX. HPX requires an out-of-tree 
build. In other terms, HPX must be built in a directory separate 
from the source directory. For this build, it was necessary to 
specify the location of the Boost installation previously 
mentioned. Once the build is complete, HPX is delivered with 
a testing utility. The following step was to run an elementary 
program on a local machine using HPX. The documentation for 
HPX states that compiling and linking HPX needs 
approximately 2GB of memory per parallel process to be 
available. However, to compile the hello_world example with a 
single parallel process, that was not enough and we had to use 
a 4GB swap file in order to double our amount of memory. The 
hello_world program prints out a hello world message on every 
OS-thread on every locality. 
The subsequent step is to write verbose sleep tasks. In order to 
write an application which uses services from the HPX  runtime 
system it is necessary to initialize the HPX library by inserting 
certain calls into the code of the application. This can be done 
by including the file hpx/hpx_main.hpp, in which case the 
main() function will be the HPX entry point, or by including the 
file hpx/hpx_init.hpp and providing an hpx_main function that 
will be invoked at the specified entry point for HPX. 
Writing these tasks has had its own set of difficulties. For 
instance, to build HPX components, the documentation states 
that the following command may be used to compile a sample 
hello world program.  

c++ --o hello_world hello_world_component.cpp 
`pkg-config ---cflags ---libs -hpx_component` --
DHPX_COMPONENT_NAME=hello_world 
In fact, to compile the functions using HPX, I had to remove the 
excess '-'s and add the option -lboost_program_options to 
the command. 

 
6) STAPL 
STAPL (Standard Adaptive Parallel Library) is a parallel C++ 
library developed at Texas A&M University. There are a lot of 
publications concerning this project from 1998 to 2015 but 
unfortunately, the code is nowhere to be found on the internet. 
We tried to contact the developing team by emailing stapl-
support@tamu.edu and by directly emailing one of the creator 
of STAPL (Lawrence Rauchwerger) but we did not get any 
response from them. Therefore, we have not been able to make 
any progress on this part of the project. 
 
7) MATRIX 
MATRIX is a fully-distributed task execution framework for 
Many-Task Computing data intensive applications developed at 
the IIT. MATRIX delegates a scheduler on each compute node 
to manage local resources and schedule tasks. MATRIX is used 
on top of ZHT -Zero Hop distributed hashTable, also developed 
at the IIT- which manages task metadata. MATRIX implements 
a data-aware work stealing technique to optimize both load 
balancing and data-locality. Matrix is used to launch pre-
compile sleep programs, already existing on each node. 
Python scripts are used to launch instances, run benchmarks and 
grab the logs of every instance. The results are processed with 
the tools supplied in the dataproc folder. 
Minor issues were encountered during the deployment and 
running of MATRIX. First, slight errors in the configuration file 
-e.g. wrong folder in a path- entails segmentation fault at launch 
without any other information, which took some time to fix. 
The launching of a scheduler must be done after all ZHT have 
been started on all instances, which caused some trouble for 
higher scales. 

III.  EVALUATION  

To evaluate the performance for each of these projects, we will 
compute the throughput, the latency and the efficiency with 
workloads of varying sizes. We will also scale every evaluated 
system from 1 node to 128 nodes in order to evaluate the 
scalability. The latency of a system is defined as the average 
time period between the issue of a request and the beginning of 
the system’s response to this request. The lower the latency the 
better the performance of the system. We will measure the 
average latency by issuing a very large amount of small request) 
and by recording the latency time for each request. The 
throughput of a system is the number of request that it can 
handle per second of running time. It should be kept as high as 
possible. We will measure it by submitting several workloads 
of varying size to the evaluated systems and by computing the 
average number of requests executed per second. The efficiency 
of a system is defined as the ratio of the effective throughput 
over the theoretical throughput. 
 
1) Charm++ 
As previously said, the experiments has been performed on 
C3.large Amazon EC2 instances with an dedicated AMI for 
each runtime system. Python scripts are responsible for 
automating the launch of instances following the scaling from 
1 to 128 nodes. Other python scripts are responsible for 



 

automating the variation of experiments variables such as the 
sleep time and the number of tasks within the bag of tasks. 
We first compute the throughput which is a relevant metric for 
Sleep(0) tasks which do nothing on purpose. Here are the results 
we found for Charm++. 

Charm++ seems to give us satisfying results with an increasing 
throughput as the number of nodes increases. The maximal 
value reached for the throughput is about 63K tasks per second.  
Then we computed the throughput and efficiency for tasks from 
10ms to 1 second.  

First, we didn’t plot the throughput for 1ms tasks because we 
obtained wrong results for these measures since the total 
execution time was below the ideal execution time. Most likely 
some tasks have been dropped because the number of tasks to 
execute was too high (~12 billion tasks). For the other sleep 
tasks, we find an increasing throughput up to more than 10000 
tasks per second on 128 nodes which is a satisfying number. 

Concerning the efficiency, it is almost 100% efficient for both 
sleep(10) ms and sleep(100) ms. Then it falls nearly blow 99% 
efficiency for sleep(1) sec which shows that Charm++ gives 
excellent results and good scaling for this benchmark. 
 Finally we plotted the task latency for all kind of non-null sleep 
for all number of nodes: 

As expected, the task latency is steady as we increase the 
number of nodes on which we run the application, except for 
fine grain tasks.  
 
2) Legion 
We launched the same workload with the same kind of 
application with Legion runtime system. Unfortunately, the 
legion system is not built to run on heavy clusters. As a 
consequence, the implementation of the runtime system limits 
the number of machines on which to run applications to 32. 
Thus we performed our benchmark up to this limit but weren’t 
able to scale up to 128 nodes. 

We found that the throughput for sleep(0) tasks is increasing 
which indicates that the system scales for 32 nodes. On the other 
hand the throughput for 32 nodes is about 10000 tasks par 
seconds which is way below the performance of charm++ but 
above other systems performance. 
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As expected the throughput is increasing with the scale. The 
maximum throughput is reached for sleep(1) ms for 128 nodes 
with about 10000 tasks per second. We also found that bigger 
task have a doubling throughput with the number of nodes, but 
sleep(1) ms tasks tend to reach an upper bound when the scale 
increases. 

As for Charm++, we found that coarse grained tasks show very 
good efficiency and are also scaling. On the other hand smaller 
tasks such as sleep(10ms) or sleep(1ms) show poorer 
efficiency, with a lower bound of 28% for sleep(1ms) for 32 
nodes. That means that the scheduling and communication 
overhead introduced for fine grained tasks is slower that the 
task duration itself. Thus the cost of scheduling is higher for 
such tasks which might not worth such deployment. 

As for Charm++, the task latency is steady with the scale but 
not for sleep(1) ms tasks.  
 
3) Swift/T 
The benchmark results for Swift/T are far from being what is 
expected from this system. We started by running sleep(0) tasks 

in order to benchmark the system throughput and realized that 
the system simply does not scale for these tasks. 
Instead of being multiply by two when multiplying the number 
of nodes by two, the throughput is actually divided by two. This 
is clearly a configuration problem but discussions with two 
Swift developers - Justin Wozniak and Timothy Armstrong – 
did not change this situation. To convince ourselves that this 
was not due to an error from our side, we ran different types of 
tasks (1ms to 1000ms) and looked at the throughput, efficiency, 
and task latency metrics. 

For the throughput, we notice that the sleep(1000) tasks are the 
tasks that scale the best as the computed throughput (solid line) 
is close to the ideal throughput (dashed line) up to 32 nodes. 
Once we reach the scale of 32 nodes, then the throughput 
stabilizes and the decreases when benchmarking on a cluster of 
128 nodes. We observe the same trend for sub-second tasks 
except that the smaller the task length, the faster the computed 
throughput moves away from the ideal throughput when scaling 
up. One bottleneck could be the load balancing server as only 
one load balancing server is used in this benchmark. We have 
tried scaling up dynamically the number of load balancing 
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servers and it did not seem to affect the results. However, we 
think this possible solution should be evaluated again and this 
could a part of the future work on this project. 
In a similar fashion, we observe that the computed efficiency 
and task latency get very poor very fast (starting at 2 nodes) for 
sub-second tasks. However, the efficiency stays correct up to 
32 nodes for the one second tasks with a value of 92%. 
 
4) Sparrow 
We ran the benchmarks with a single Frontend and up to 64 
nodes. Unfortunately, high number of tasks submissions from a 
single point started to cause troubles when the benchmarks 
required more than 10,000 tasks. After this point, we noticed 
inconsistency in task identification and task duplications –more 
tasks would be registered as finished than the number of tasks 
submitted-. This situation would continue up to a certain point, 
then with the number of submission still increasing, we blocked 
on runtime errors. We realized that a single submission point 
causes a bottleneck as the rest of the system is scaling. 

For the configurations which we were able to benchmark show 
good scalability. While coarser tasks scale linearly finer task 
seem to reach an upper bound but this bound could due to the 
single-Frontend bottleneck. 

Sparrow latency is extremely low. A close look to the number 
shows that it actually increases at higher scales, but that 
increased delay could again be attributed to the Frontend 
bottleneck. This is easier to see on the Efficiency graph below. 
 
5) MATRIX 
MATRIX was configured to create a DAG of type bag of tasks. 

MATRIX throughput is scaling up to 64 nodes, after which 
throughput for all sleeps except sleep(1000) drops. As for 
Sparrow, this might be due to the client bottleneck.  
As for the throughput, latency shows anomalies for the 128 

nodes scale. We can also notice that MATRIX has a low bound 
for its latency of 10-20ms. This can be explained by the 
dependency checking for each task when it is not needed for the 
benchmarks we ran. 
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The efficiency graph shows that MATRIX has more trouble 
with the finer grain workloads while having good efficiency for 
coarser grain workloads. 
 
6) Summary 
We chose to use the sleep(100) benchmark as a comparison 
point as it was the one for which we had the more data. 

 
Charm++, Legion and Sparrow have near perfect efficiency 
even at the higher scales of our benchmark. MATRIX has a 
good efficiency, and stay constant over the benchmark. Its 
lower results could be due to systematic task dependency 
checking. Swift efficiency crashes after 2 nodes. 
 

 
All system benchmarked except Swift show scaling throughput. 
Indeed, each system throughput roughly doubles when the scale 
is doubled. Nevertheless two groups seem to emerge: the 10 
tasks per sec per node-Charm ++ and Legion- and the 20 tasks 
per sec per node -MATRIX and Sparrow-. 
 
 
 
 
 
 

Here is a table which sums up the workloads for every runtime 
system: 
 

System Per task duration (ms) Expected time (s) 
Swift/T 1 3 

 10 3 
 100 30 
 1000 100 

Charm++ 1/10/100/1000 100 
Legion 1/10/100/1000 10 
Sparrow 1/10/100/1000 25 
MATRIX  1/10/100/1000 25 

 

IV. RELATED WORK 

MATRIX is a many-task computing job scheduling 
system [3]. There are many resource managing systems 
aimed towards data-intensive applications. Furthermore, 
distributed task scheduling in many-task computing is a 
problem that has been considered by many research 
teams. In particular, Charm++ [4], Legion [5], Swift [6], 
Hadoop YARN [7], Spark [1][2], HPX [9], STAPL [10] 
and MATRIX [8] offer solutions to this problem and have 
each separately been benchmarked with various metrics. 
 
 

V. CONCLUSION 

Many research teams tackled the distributed task-scheduling 
subject recently. Each team has come up with their own system 
and compared it to the systems the industry is currently using.  
Unfortunately the results each of them separately presented 
does not give as is an overall view of the different systems 
performance against each other. The testing environment, 
workload, and worker’s specification they used were different, 
making a direct comparison of all systems difficult. This project 
aims to use a single testing environment, test these systems on 
the same workload, and use the same metrics each one of them 
to provide a fair comparison of the systems studied. 

As a future work, we would like to run workloads 
decomposed in different kind of direct acyclic graphs in order 
to test a large variety of possible application performance. 
Those DAGs could be for instance set in fan-in, fan-out of 
parallel architecture which simulates different application 
workloads. Finally to simulate intensive applications with a lot 
of dependencies we could look at the traces of such applications 
and simulate the corresponding programs of our own. 
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APPENDIX 

As this project is a benchmarking of several systems, 
distributing the work between team members has been easy:  

- Thomas Dubucq benchmarked the systems MATRIX 
and Sparrow; 

- Tony Forlini benchmarked the systems Charm++ and 
Legion; 

- Virgile Landeiro Dos Reis benchmarked Swift/T; 
- Isabelle Santos benchmarked HPX. 


