
Evaluating the Support of MTC Applications
on Intel Xeon Phi Many-Core Accelerators

Karl Stough, Serapheim Dimitropoulos, Poornima Nookala
Illinois Institute of Technology

Abstract—As Many-Task Computing (MTC) is becoming
commonplace on clusters, grids, and supercomputers, research
that aims to take advantage of the new advances in hardware
for MTC workloads becomes more relevant. A good example
is the design of frameworks like GeMTC that incorporate
general purpose GPU hardware to improve the concurrency
of executing tasks. For this project we will attempt to support
MTC workloads on the Intel Xeon Phi. Our plan is to develop
two frameworks that will achieve that goal. One based on
OpenMP and the other one based on Intels Symmetric Commu-
nication Interface (SCIF) provided for Many-Integrated Core
(MIC) accelerators like the Xeon Phi. Both frameworks aim to
provide an identical interface to the one found in the GeMTCs
API. Ideally the two implementations will be suitable drop-
in replacements of the GeMTC framework for the Xeon Phi
coprocessor. Our end-goal is to present how programming
many-core computing processors can be made easier and more
productive using OpenMP or SCIF, and enable the execution
of MTC workloads on this relatively new coprocessor design.

Keywords-Many-task computing; Accelerators; Intel Xeon
Phi; Coprocessor; Programming models; Execution models.

I. BACKGROUND INFORMATION

The Intel Xeon Phi is a hardware coprocessor from Intel.
It is a PCI device with roughly 60 cores and over 240
hardware threads. Its design makes it ideal for application
that are performance critical and need large levels of par-
allelism. Moreover, the fact that it implements x86 for its
instruction set architecture, makes its integration with exist-
ing systems simpler than the integration of other accelerators
like General Purpose GPUs (GPGPUs). For these reasons,
it is worthwhile to note that the Xeon Phis are considered
valuable additions for clusters, grids and supercomputers.

Many-Task Computing (MTC) has been an emerging
paradigm and area of research for some years now. There-
fore, considering embedding the capabilities of the Xeon
Phi in systems that support MTC workloads is considered
a relatively new ground. That is the ground that this paper
attempts to cover. A MTC workload consists of task that
run uninterrupted from start to completion. Rather than
retaining state like MPI processes, they resemble the simple
input-process-output model of procedures. The task dura-
tion may be highly variable, ranging from subseconds to
minutes. Their dependency and data-passing characteristics
may range from many similar tasks to complex, and possibly
dynamically determined, dependency patterns. GeMTC is
a CUDA based GPU framework which allows Many-Task

Computing workloads to run efficiently on NVIDIA GPUs
[3].

GeMTC’s architecture involves queueing incoming jobs
that will be executed on the GPU and return their results
back to the host. The novelty in the design of this framework
is that the different jobs that are running in parallel, are also
isolated from each other and therefore the utilization of the
GPU is almost maximized. Moreover, the whole architecture
provides a relatively user-friendly and very high-level API
that abstracts many details but still allows the user to have
a lot of control over the GPU. For example, a user can call
gemtcMalloc() that behaves exactly like the conventional
malloc, while the GPU-related details are hidden by a sub-
allocator built on top of the GPU’s memory allocator. Unfor-
tunately, the framework’s implementation and architecture is
very closely-tied to the architecture and the conventions of
GPUs.

GPUs have a very restrictive programming model, but
provide at least an order of magnitude better throughput
for applications painstakingly coded to that model [5]. To
program GPUs, typically there is a need to learn another pro-
gramming language such as CUDA (NVIDIA) or OpenCL
(AMD). As a result, existing vendors must spend extra time
and effort to modify or rewrite parts of their codebase to
take advantage of the new capabilities provided by General
Purpose GPUs (GPGPUs). Besides that, barely rewriting an
application just to offload computations to a GPU rarely
works well. Because of the architecture of most GPUs out
there, applications must be tailored from the ground up to
follow the rules of the restrictive programming model of
GPUs, otherwise they may suffer from severe performance
penalties. Because of that, interested vendors cannot afford
to go through the effort involved. Finally, while GPUs
are great for massively parallel applications with thread-
switching that comes almost at no cost, their performance
can take a large hit when executing programs with complex
logic (like complicated branching and looping for example).
Therefore they may be unsuitable for certain applications of
MTC.



II. PROPOSED WORK

The Intel Xeon Phi follows an alternative programming
model that, although may not provide the same level of
parallelism, provides more flexibility and therefore can be
more suitable for certain application of MTC that GPUs are
not suited for. The reason is that the Xeon Phi has x86 cores
that are more capable (can handle complex branching and
looping) than most GPU cores. Another advantage of having
x86 cores is that programming the coprocessor minimizes
the amount of work that needs to be done in order to
integrate a Xeon Phi to an existing system. That is because
the Phi does not require being programmed in any specific
framework and it can natively run applications written in C
with Pthreads or OpenMP.

All of the above facts were enough to motivate us to
work on this project. This project aims to implement two
frameworks, one based on OpenMP and one based on Intel’s
Symmetric Communication Interface (SCIF), that provide a
functionality to the Phi which is similar to the one provided
by GeMTC for GPUs. By doing that we believe that the
Xeon Phi will be ready to be integrated to existing systems
and ultimately be able to undertake MTC workloads in an
efficient manner.

The outline of our contributions for this project is the
following:

1) Design, analyze and implement two frameworks, one
in OpenMP and one in SCIF, to provide functionality
identical to GeMTC and to allow MTC workloads to
run on Intel Xeon Phi accelerators. The team shall
attempt to duplicate GeMTCs API for easy integration
with systems and software that already use GeMTC
like the Swift/T framework for example.

2) Evaluate the performance of running concurrent ho-
mogenous and heterogeneous tasks across the Phis 60-
core architecture (240 hardware threads).

III. RELATED WORK

The GeMTC framework and its API are limited exclu-
sively to NVIDIA GPUs since it is developed in CUDA.
Even though we will be working with OpenMP and SCIF
on the Xeon Phi, some ideas from the CUDA version of
GeMTC will still be applicable. For example using a buffer
in the hosts memory that will flush tasks periodically to the
device seems like a useful concept to reduce communication
overhead. The actual implementation of course will have to
be made from scratch since there are differences between
the architecture of the Xeon Phi and the GPUs that GeMTC
was initially designed for.

Moreover, there have been some preliminary results for
MTC workloads on the Xeon Phi [4]. In order for these
results to be acquired at that time a similar framework to
GeMTC was made that used SCIF. The issue with that

implementation is that it does not provide the whole feature
set of GeMTC and therefore is not suitable for MTC use.
Nevertheless, that initial implementation gave signs that
using SCIF for direct communication between the host and
the accelerator via the PCI Express bus minimized certain
overheads over a similar OpenMP implementation.

More specifically now for OpenMP applications on the
Xeon Phi, there have been results of performance compar-
isons[7]. The results show that the overhead of the standard
OpenMP constructs which use synchronization is smaller
than on big SMP machines, which makes the approach
very promising for many MTC applications using OpenMP.
The overhead of the offload pragma used in the language
extension (LEO) is also quite low, so that it will not limit
the scalability. This results alone compared to the easiness
of just specifying pragma directives to enable parallelism
motivated us to give OpenMP a try.

As for SCIF compared to OpenMP there exist results
that show high performance wins (80% in throughput)
for tasks with sizes equal or less than 4KBs when SCIF
uses its socket-like API [8]. Unfortunately 4KBs is not a
significant size and there are no results indicating what is the
performance win of SCIF using its Remote Memory Access
API over OpenMP if any.

IV. ARCHITECTURE

Due to the foundations in Intel architecture, the copro-
cessor can be programmed in several different ways. For
the OpenMP we used offloading so the code run on the host
can offload the specific computation to the Phi. For the SCIF
implementation, on the other hand, we implemented to run
natively on the Phi while accepting jobs from clients running
on the host.

There are several advantages and disadvantages between
the two methods. The major advantage of native execution
coupled with SCIF over offloading is that the developer gets
more control overall in the configuration and the architecture
of their design in order to maximize performance. Compu-
tation does not necessarily have to be transferred back to to
the CPU. In addition, different MIC cards can communicate
dirrectly with each other basically making certain designs
more efficient. Finally, frameworks that use offloading mode,
do not necessarily take advantage of the DMA-features of
the hardware they run on while on SCIF you are guaranteed
that if you are using Remote Memory Access (RMA) [11]
[12].

That is not to say that OpenMP does not come with any
advantages over SCIF. Quite the opposite, the advantages
of offloading are pretty significant for the framework that
was implemented for this project. The low-level C code
needed for the SCIF implementation is relatively a lot more
complex when compared with pragma directives provided by
OpenMP. In addition, using SCIF implies that the framework
must have at least one of its parts running natively on the Phi



as the endpoint. In order to do that the developer needs to
set up an application to run natively on the Phi and involves
a lot of configuration. Using OpenMP with the offloading
capabilities provided by the MIC, all this configuration is
taken cared for you [9].

A. OpenMP Implementation
The OpenMP version of the framework mimics GeMTC

by utilizing OpenMP asynchronous offloading capabilities.
We have employed a Producer-Consumer architecture which
communicates using shared memory for IPC. The Consumer
side hosts the framework which runs as a single thread and
launches as many master processes on the Xeon Phi as
specified by the user. The master processes use the shared
memory space as a queue structure, continuously accepting
new tasks from producer processes. Likewise, the producer
acts as a client process which submits tasks to the queue via
this shared memory pool.

For testing this framework, we have implemented
two different types of applications: Sleep and Matrix
Multiplication. Both were developed and tested using the
OpenMP approach of offloading tasks on to Xeon Phi. The
master processes in our framework read the tasks from
shared memory location and based on the type of task,
offload the computation part to Xeon Phi. Asynchronous
offloading is used to allow the framework to continue
accepting tasks while other tasks are running. The Phi
sends a signal back to the master processes after job
execution has completed. At this point the output is sent
back to the Client. This approach was chosen to provide
the same feature set as GeMTC while taking advantage of
asynchronous offloading capabilities of OpenMP.

B. SCIF Implementation
The SCIF implementation is a complete port of the

GeMTC framework and the source code is available online
[1]. Of course it comes with some important differences
which are unavoidable since the underlying hardware is
different (GPGPU vs Xeon Phi architecture).

The core architecture of GeMTC is actually completely
rewritten in pure C from CUDA and abstracted out into a

shared library that we named libmtcq. The library includes
all the main functionality of GeMTC (handling queues,
pushing jobs, distribute tasks to workers, etc.) and can be
compiled against any application that wants to use it. It
is also completely parametrizable in terms of queue sizes,
worker threads, and application threads. In addition, other
applications can be easily compliled into the shared library,
so the library itself can provide the functionality of these
applications to external clients who want to use it.

Since the Xeon Phi does not have the hierarchical ar-
chitecture of SMXs and Warps nor the concept of applica-
tion kernels that you generally see in GPGPUs, everything
is implemented with stardard threading - Pthreads to be
more specific (note that Pthreads are also used internally
for OpenMP applications [13]). There is a parametrizable
number of master threads that dequeues tasks from the
incoming queue. If the task is a parallel application, which
is the case most of the time, then the master thread will
assign the task to the specified number of worker threads.
Else if it is sequential only one thread will be assigned and
the master thread will go back to dequeue more jobs. Each
queue is implemetented as a finite buffer from the Producer-
Consumer model which means that it uses a single mutex
and two semaphores[17] to ensure that no deadlocks or data-
races arise. This is an actual improvement over the GeMTC
framework which just uses a single mutex and only ensures
that no deadlocks occur.

The rest of the framework implementation now lays on
top of that shared library. It is modeled after a client-server
architecture where the clients send their tasks to the Phi
from the host and the server, which runs natively on the
Phi, accepts the jobs. After submitting the job, the clients
can request the result and the server will deliver it to them
when the task has finished processing and is placed on the
results queue of the framework. The whole procedure is non-
blocking for the server who can handle multiple requests
and submissions at the same time. That functionality is
implemented with epoll() for handling connections that are
later passed to threads [14] that push or dequeue tasks
from the queues. The SCIF socket-like API is used for
communications between the server and the clients. It is
also worth noting that an optional mechanism for receiving
acknowledgements from the server exists when sending a
message for debugging and verification procedures, and it
can be enabled by applying the debugging flags during
compilation.

For this framework we made 5 sample applications that
will test not only how the actual implementation performs
but also how relevant optimization techniques for normal
CPUs are for the coprocessor. One of these test applica-
tion is a sleep-test application and the rest are different
implementation of matrix multiplications. One is naive, the
second one is optimized according to CS:APP2[16] to be
very cache-friendly, the third one is a blocking version [16]



(with a parametrizable block/cache-size that fits exactly on
a L1/L2 cache of a Xeon Phi core), and finally a parallel
version using Pthreads. So the goal in test would be to use
the sleep-test and parallel matrix multiplication applications
for preliminary throughput testing while using the naive,
optimized and blocked versions of matrix multiplication for
testing if really these extra optimizations that are considered
common for CPUs will have the same performance wins on
the Phi.

V. EVALUATION

All of our experiments were ran on the MidWay High-
Performance Computing Cluster at University of Chicago.
Our testing host is an Intel SandyBridge with 16 cores at 2.6
Ghz and 32 GB of RAM. It has 2 Xeon Phis attached to it.
Both of them are from the 5100 series of Intel coprocessors
and have 60 cores at 1.053 GHz each and 8 GB or RAM.

A. Preliminary Results for OpenMP

As we mentioned before, to compare the overhead of
OpenMP we have analysed two different types of programs:
sleep and matrix multiplication.

Synthetic Sleep Workloads

Sleep 0 jobs were used to measure the throughput of
offloading tasks on to Xeon Phi. Experiments were per-
formed by offloading sleep jobs individually and measuring
the effective time spent between offloading and receiving
a signal back from Xeon Phi. Our framework was able to
offload 20K Sleep 0 tasks per second to Xeon Phi using
OpenMP asynchronous offloading approach.

Experiments were also performed by offloading various
sleep length tasks. Execution time was computed effectively
by offloading 100 tasks and taking average of the time.
As seen in the below figure, efficiency is > 90% for
task lengths > 620 microseconds. This clearly shows the
granularity of tasks and level of parallelism to be employed
when utilizing OpenMP offloading capabilities.

Matrix Multiplication Results

In order to assess the real-world performance of the Xeon
Phi, the team developed a matrix multiplication application
to show how well it performed for various task sizes and
levels of concurrency. The team also compared the perfor-
mance of the Phi to CPU performance. It should be noted
that the work performed is exponentially greater than the
matrix size, since a naive matrix multiplication algorithm of
O(n3) was used.

The first test performed was to analyze the performance
penalty associated with offloading tasks to the Phi (see
Figure below). In this test, the test load was increased while
using only a single thread on the Phi. If the offloading
cost was non-existent, the plot of time taken to complete
the task would have been nearly linear with the amount
of work performed. In reality, the overhead only becomes
negligible when matrix sizes of 64x64 were tested. Before
that point, the task completion time remained fairly constant.
At larger matrix sizes, the time taken increases linearly with
the amount of work performed.

The team also analyzed the performance gain from an
increase in the number of threads. The testing methodology
used is as follows: The number of threads was increased
from 1 to 480 as the workload also increased. Due to
the exponential growth of work generated by the matrix
multiplication procedure, task completion time was limited
to approximately 1 minute. If tasks couldn’t complete in that
time, they were discarded from the test. The plot in the two
figures below highlight this. Each point in the plot represents
the average of 5 tests using that combination of matrix size
and thread concurrency.

It was found that while the single-threaded tasks scaled
fairly linearly with the workload, the many-threaded tasks
didn’t achieve optimal scalability until much larger matrices
were tested. While this is shown to some extent in the figure
below, the speedup in figure after it better demonstrates this.



Speedup was calculated based on the task completion time
of the single-threaded matrix multiplication. Due to the task
duration for single-threaded multiplications, speedup for 8
or more threads at matrix sizes beyond 512x512 elements
was extrapolated from the single-threaded test assuming
a proportional time was taken. This gives actual speedup
which was very close to the ideal case where the maximum
speedup would have been equal to the number of threads
used.

The final test aimed to compare the performance of the Phi
vs. running the task natively on the CPU. In this test, tasks
bypassed the offloading procedure and were run directly on
the CPU. It should be noted that the team was only able to
run tasks using one thread on the CPU due to issues getting
OpenMP running natively on the CPU. Given more time,
the team would have liked to troubleshoot this issue to get
a better test.

The last figure of this subsection shows the runtime
comparison between 1 thread on the CPU compared to both
1 and 60 threads on the Xeon Phi. It is expected that 1
CPU thread wouldn’t equate to 1 thread on the Phi, but it is
surprising to see that a full 60 threads were required to match

the CPU’s performance. This is especially surprising con-
sidering that the CPU had 31 additional threads that could
have also been used to improve performance. It is likely
that there are performance improvements that could be made
to the framework. Offloading is likely not implemented in
the most efficient manner and further compiler optimizations
should also be investigated. Additionally, the test application
was written with the CPU in mind, so some operations may
be optimized or replaced with better methods if running in
offloaded mode. This is left as future work.

B. Preliminary Results for SCIF

Again as for the evaluation of OpenMP we implemented
two types of applications: sleep and matrix-multiplication
jobs. Unfortunately, the SCIF implementation started failing
after matrix sizes of 32 by 32 elements due to the fact that
our SCIF implementation used the socket-like API which
is not made for bulk I/O. Therefore, we do not have any
results on the performance of matrix multiplications nor
the comparison between the different implementations that
use different optimizations each. We could add support for
bulk I/O usign the RMA API but unfortunately we got our
hardware very late and as a result we don’t have enought
time to enable proper support for this case (see Appendix).
Thus we leave it as future work.

As for our results sending sleep jobs to the framework, we



have the figure above with some very preliminary data. The
Y-axis represents the number of seconds while the X-axis
represents the number of jobs. The complete cycle of submit-
execute-dequeue result for 60 ’sleep 0’ jobs took 0.013
seconds (lowest point in graph) while on the other end it
took 36.27 seconds for a complete cycle of 61440 ’sleep 0’
jobs. Even though on the graph it seems like the framework
scales very well the difference between the actual CPU time
and the ideal is getting larger after 15360 submitted jobs.

VI. CONCLUSION AND FUTURE WORK

Enabling MTC workloads on the Xeon Phi is relatively
new ground, and we were glad to have the opportunity to
learn about this new technology with this project. To achieve
this, we designed a framework that that not only sends and
executes tasks to the Xeon Phi but also ensures that these
tasks are isolated from each other and can run in parallel.
This way the Xeon Phi can be utilized in an efficient and
correct way. Our work built upon the existing functionality
of GeMTC and in the future would allow for an identical
interface which could be dropped into Swift/T. Based on
our research and analysis, we chose to implement both a
OpenMP framework as well as a SCIF-based framework and
were able to run applications on the Xeon Phi.

Our preliminary evaluation data are encouraging and
should provide enough motivation for future. The evaluation
data from the OpenMP-based framework show some inter-
esting results that emphasize some of the Phi’s strengths. For
the SCIF implementation unfortunately the preliminary data
only show us that it still scales pretty well but we haven’t
pushed it to the point that scalability degrades. Also, we
due to the lack of time towards our deadline we couldn’t
enable its support for bulk I/O that would allow us to
compare our matrix mutliplication benchmarks between the
two frameworks.

Our future work includes:

1) Run more evaluation experiments with the OpenMP
framework and explore the interesting parts pointed
out (See evaluation section)

2) Enable support for bulk I/O in the SCIF implementa-
tion through the use of RMA

3) Evaluate our designs and compare them to one another
4) Compare our designs to the actual GeMTC framework

to draw a clear line between the types of tasks that are
more suitable for GPGPUs and the tasks that are more
suitable for the Xeon Phi.

Besides the clear goals for our future work above there
are also further improvements that are more tied to the
implementation of our designs. For example, a possible
performance improvement would be the use of spinlocks
instead of traditional mutexes that are in use in the shared
library. Another improvement that could be a ”killer-feature”
in the framework would be the dynamic loading of external

applications by the framework. The point is that now, since
the prototypes exist and they are functional, more features
can be added allowing future work of any direction.

Finally, there is future work that involves the integration
of our designs into bigger systems. For example, someone
could build on top of our work for the Phi and the GeMTC
work for GPUs and combine them in a transparent manner.
This way when a task is submitted the system will decide
whether to execute the task on the CPU, the Phi or the
GPU, based on the task’s type and system load in order
to maximize performance. Another example would be to
integrate our prototypes with the Swift/T framework and
improving the performance of MTC workloads by spliting
work to multiple nodes.

VII. ACKNOWLEDGEMENTS

We would like to express that we are very thankful to
Professor Ioan Raicu (Illinois Institute of Technology) for
suggesting such an interesting project and for his feedback
on our progress. We are also very grateful to Michael Wilde
(Argonne National Laboratory) for letting us the MidWay
cluster at University of Chicago to run our experiments.
Finally we would also like to thank Andy Wettstein and
Devon Compton from University of Chicago that gave
us resources and helped us troubleshoot problems on the
MidWay cluster.

VIII. APPENDIX

Individual Contributions

Poornima Nookala designed and implemented a frame-
work similar to GeMTC using OpenMP. She implemented
her OpenMP framework in offloading mode and native
mode. After that she ran some preliminary tests to decide
which approach is the best and it turned out to be offloading
mode. Her work also includes merging the shared memory
implementation and the matrix multiplication code with
the rest of the OpenMP framework. She evaluated the
performance of sleep tasks and their throughput on the Xeon
Phi.

Serapheim Dimitropoulos designed and implemented the
shared library libmtcq from the groundup. The shared
library was used as the basis for both frameworks. The
OpenMP framework by Poornima and Karl added OpenMP
directives to libmtcq to implement their framework. Ser-
apheimalso implemented the SCIF framework on top of
libmtcq by adding the client-server part. He implemented
5 clients for the SCIF framework and did the evaluation
part for the SCIF framework.

Karl Stough assisted in the design and implementation of
the OpenMP offloading framework. He also implemented
the shared memory interface for IPC and the matrix
multiplication test application for that same framework.
His contributions also include debugging and testing



the offloading procedures that used OpenMP and finally
the performance analysis of the matrix multiplication
application.

A Final Note of our Work

Our work may seem as incomplete from some aspects but
that is with reason. We got our hardware 3 weeks before
our deadline and therefore we did not have enough time
to test our prototypes and evaluate them. Before we got
our hardware we tried our best to implement as much as
possible from our local machines. Poornima and Karl were
experimenting with OpenMP while Serapheim implemented
his shared library and the framework on top of it with
traditional UNIX sockets. All three of us wanted to have
something ready before we get our hardware so we don’t
waste any time. When we eventually got the hardware, 3
weeks before our deadline, Poornima and Karl put their MIC
offloading directives in use while Serapheim switched all the
code from sockets to SCIF. Of course the transition was not
easy and many errors had to be fixed leaving us with less
time to do our evaluations. Thus, even if we got some very
valuable feedback and suggestions during our presentation,
we were not able to apply all of them in our final submission.

REFERENCES

[1] Serapheim Dimitropoulos, ”GeMTC-SCIF Source Code
Repository”, https://github.com/sdimitro/scif-modules/tree/
master/scif-sc.

[2] Poornima Nookala, Karl Stough, ”GeMTC-OpenMP
Source Code Repository”, https://github.com/pnookala/
MIC OpenMP GeMTC.

[3] S. Krieder, J. Wozniak, T. Armstrong, M. Wilde, D. Katz,
B. Grimmer, I. Foster and I. Raicu, ”Design and Evaluation
of the GeMTC Framework for GPU-enabled Many-Task Com-
puting”, ACM HPDC, 2014.

[4] J. Johnson, S. Krieder, B. Grimmer, J. Wozniak, M. Wilde and
I. Raicu, ”Understanding the Costs of Many-Task Computing
Workloads on Intel Xeon Phi Coprocessors”, GCASR, 2013.

[5] NVIDIA Inc. , ”CUDA C Programming Guide v6.5, Section
5.1-5.4, Performance Guidelines”, 2014.

[6] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, A. Varbanescu,
”Test-Driving Intel Xeon Phi”, ACM Digital Library, 2014.

[7] T. Cramer, D. Schmidl, M. Klemm, D. Mey, ”OpenMP Pro-
gramming on Intel Xeon Phi Coprocessors: An Early Perfor-
mance Comparison”, 2013.

[8] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu and
Y. Wang, ”High-Performance Computing on the Intel Xeon
Phi: How to Fully Exploit MIC Architectures”, Springer, 2014,
pp. 3-30.

[9] Rezaur Rahman, ”Intel Xeon Phi Coprocessor Architecture and
Tools”, Apress, 2013.

[10] Jim Jeffers, James Reinders, ”Intel Xeon Phi Coprocessor
High Performance Programming”, Apress, 2013.

[11] Intel, ”Intel Xeon Phi Coprocessor System Software Devel-
opers Guide”, 2014.

[12] Intel, ”Intel Many Integrated Core Symmetric Communica-
tions Interface (SCIF) User Guide”, 2012.

[13] David R. Butenhof, ”Programming with POSIX Threads”,
1997.

[14] Robert Love, ”Linux System Programming”, 2013.

[15] Bryant, O’Hallaron, ”Computer Systems: A Programmer’s
Perspective”, 2011.

[16] Bryant, O’Hallaron, ”Using Blocking to Increase Temporal
Locality”, http://csapp.cs.cmu.edu/2e/waside/waside-blocking.
pdf.

[17] Allen B. Downey, ”The Little Book of Semaphores”, http:
//greenteapress.com/semaphores/.

https://github.com/sdimitro/scif-modules/tree/master/scif-sc
https://github.com/sdimitro/scif-modules/tree/master/scif-sc
https://github.com/pnookala/MIC_OpenMP_GeMTC
https://github.com/pnookala/MIC_OpenMP_GeMTC
http://csapp.cs.cmu.edu/2e/waside/waside-blocking.pdf
http://csapp.cs.cmu.edu/2e/waside/waside-blocking.pdf
http://greenteapress.com/semaphores/
http://greenteapress.com/semaphores/

	Background Information
	Proposed Work
	Related Work
	Architecture
	OpenMP Implementation
	SCIF Implementation

	Evaluation
	Preliminary Results for OpenMP
	Preliminary Results for SCIF

	Conclusion and Future Work
	Acknowledgements
	Appendix
	References

