
ZHT+ : Design and Implementation of a Graph 
Database Using ZHT 

Gagan Munisiddha Gowda 
Benjamin L. Miwa 
Anirudh Sunkineni 

Department of Computer Science 
Illinois Institute of Technology 

Chicago, IL 
 
 

Abstract— Graph databases use the concepts of nodes, edges, 
and properties to represent and store data. Graph databases 
provide index-free adjacency, with every element containing a 
direct pointer to its adjacent element, removing the need for index 
lookups. As they depend less on a rigid schema, they are more 
suitable to manage ad hoc and changing data with evolving 
schemas. 

ZHT is a zero-hop distributed hash table Key-Value Store 
(KVS). It is designed to handle the requirements of high-end 
computing systems, providing rapid, decentralized access to 
key/value pairs. 

In this project we built a limited implementation of a graph 
database - ZHT+, which leveraged the ZHT KVS. We then ran 
benchmarks including Depth First Search (DFS), Breadth First 
Search (BFS), and PageRank on a standard data set with ZHT+ 
and Neo4j, as well as limited testing on Giraph and GraphLab, to 
compare the performance of ZHT+ on various configurations of 
up to 50 virtual machines (VM) on Amazon EC2. 

At the scales we tested, ZHT+ handled up to 16 clients with no 
degradation in performance. With Neo4j there was some 
degradation in performance as the number of clients was 
increased. However, since both systems are meant for high-end 
computing systems with thousands of clients, further testing will 
be needed at much larger scales. 
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I. BACKGROUND INFORMATION 

Graph databases provide a different way of storing 
information when compared to the traditional relational database 
management systems (RDBMS) or even some NoSQL 
databases. These databases need to store the data in a distributed 
fashion while exposing a unified API to perform queries. 

Compared with relational databases, graph databases are 
often faster for associative data sets, and map more directly to 
the structure of object-oriented applications. They can scale 
more naturally to large data sets as they do not typically require 
expensive join operations.  

There are well known graph databases available like Neo4j, 
Giraph, GraphLab, Allegro, and GraphBase. All of them provide 
similar features with few distinctive features over others. All of 

these databases use their own underlying KVS which provides 
considerable performance benefits. 

It is clear in the performance evaluation of ZHT [1][2] that 
it fares better than other KVSs, especially at large scales. We 
have leveraged the advantages ZHT provides, like fault-
tolerance, high-performance, and optimization for high 
performance computing, to develop the ZHT+ graph database to 
provide a distributed graph database especially suited to high 
performance computing at very large scales. 

II. PROBLEM STATEMENT 

Graph databases generally use a KVS to store node and edge 
information. The performance of the graph database is therefore 
directly dependent on the speed of that KVS, especially at large 
scales. Currently, no graph database has been implemented to 
take advantage of ZHT’s performance advantages. 

The contributions of this paper are as follows: 

• Design and implementation of ZHT+, a graph database built 
on top of ZHT, a light-weight, high performance, fault 
tolerance, persistent, dynamic and highly scalable 
distributed hash table, optimized for high-end computing. 

• Support for graph specific operations like add and get for 
nodes, edges, node properties and edge properties. 

• Benchmarks using DFS, BFS, and PageRank on up to 49 
server nodes and up to 16 concurrent clients. 

• Evaluation and comparison with commercial graph 
databases like Neo4j, GraphLab and Giraph. 

III.  RELATED WORK 

There are several existing graph databases such as Neo4j, 
Giraph, GraphLab, Allegro, GraphBase and there have been 
previous experiments to benchmark such databases [3][4][5]. 
We leveraged this previous work in making design choices and 
attempted to re-use tools for the benchmarking experiments. 

However, the largest portion of related work is ZHT itself. 
We used this fully functional KVS system to implement our 
graph database system. As such, we did not implement any of 
the work related to the actual storage and retrieval of data.  



IV.  ZHT+ DESIGN AND IMPLEMENTATION 

We leveraged the work done previously with ZHT in order 
to build a graph based storage system on top of its distributed 
key-value store. Given that ZHT already handles the distributed 
storage and offers excellent availability and fault tolerance along 
with minimal latencies, we explored how to best represent a 
graph by using ZHT and take advantage of the design 
considerations made in ZHT. 

A. Scope Limitations 

We did not develop a full-fledged graph database with 
features to support a query language, transactions, runtime 
failover, monitoring, etc. The main goal of this project was to 
implement a basic graph database that is able to store data in the 
form of a graph (nodes and relationships) by using ZHT and 
implement some basic algorithms like DFS, BFS and PageRank 
to see how well it fares in comparison to other graph databases, 
purely in terms of the execution time of these algorithms. 

ZHT is designed to target large distributed systems of 
thousands of nodes or more with similar numbers of clients. For 
our project we were limited to a total of 50 nodes, distributed in 
various ways between client and server nodes. This means that 
in many cases we were unable to load the system sufficiently to 
measure performance degradation. 

B. Design Considerations 

Graph databases need to store nodes, edges, and properties 
for them. We considered different ways to store these - separate 
ZHT KVS’s for each, separate entries in a single ZHT KVS, or 
as a compound object  with a single entry in one ZHT KVS. 
Since the goal was to maximize performance, we decided that 
minimizing the number of trips across the network would be the 
primary goal. A network transaction would be in the msec range 
while serialization/deserialization would be in the usec range. 

The second major design decision was how to store edges. 
And edge goes from node A to node B. This can be store in either 
node A, node B, or both. Depending on the usage of the graph 
database, any of the three options could be appropriate. For 
quickly traversing a graph, storing the edge in the source node 
A is important. For quickly determining what other nodes point 
to a node, storing the edge in the target node B is important. For 
easy removal of nodes and associated links, storing the edge in 
both nodes would be easiest. Since our benchmarks consisted of 
inserting nodes and edges and traversing the trees, storing the 
edges in only the source node A was sufficient. 

C. Protocol Buffer 

To store multiple elements in a single key/value pair, we 
decided to use Google’s Protocol Buffer [6] to serialize the data. 
Protocol buffers allow the developer to specify the structure in a 
way similar to C++, Java, and other structured languages. These 
structures - messages - are then compiled into language specific 
code that allows serialization/deserialization and simple access 
to the elements. Messages are composed of elements that are 
required, optional, or repeated and can be basic types or other 
messages types. 

We created three message types - Node, Edge, and Property. 
A Node consists of an optional nodeID of type string, an optional 
name of type string, a repeated edge_source of type Edge, a 

repeated edge_target of type Edge, and a repeated property of 
type Property. An Edge consists of an optional edgeID of type 
string, an optional name of type string, an optional source of type 
string, an optional target of type string, optional directed of type 
bool, and a repeated property of type Property. A Property 
consists of an optional propertyID of type string, an optional 
name of type string, an optional value of type string. 

Some of these elements were redundant or for possible future 
use. The node ID is the key for the ZHT KVS, but we also stored 
it in the Node nodeID. While we supported both a nodeID and a 
name, for testing we used the same string for both. We did the 
same thing with the edgeID and name and the propertyID and 
name. Since we were working exclusively with directed graphs, 
we always created nodes with Edge.directed set to true. As 
previously noted, we did not implement node removal, so the 
Node.edge_target element was not used. 

D. Private Methods 

Low level private methods were implemented to 
serialize/serialize the protocol buffers and to access the various 
elements of the structure using ZHT’s insert, lookup, append, 
and remove API’s and the methods supported by Google 
Protocol Buffers. These were then wrapped in the public APIs 
of the ZHTplusClient class. 

For repeated elements in protocol buffers, direct access to 
specific elements is only supported based on the order of 
insertion. Therefore to get the value of a specific element, the 
list of elements must be traversed until the desired element is 
found. While this may not be the most desirable method for 
random access, traversal of the entire graph consists of visiting 
every element in the list, so there is no performance cost for this 
method of access. 

Likewise, removal of only the last element in the list is 
supported. Thus removal of a random element could only be 
implemented by swapping the item to be removed with the last 
element and then removing it from the end of the list. This 
operation was not implemented as part of our project as the 
removal of nodes, edges, and properties was not required. 

E. Public APIs 

In addition to the constructor and destructor for the class, we 
implemented the following basic methods: addNode, 
addNodeProperty, addNodeEdge, addNodeEdgeProperty, 
getNodePropertyValue, getNodeEdgeTarget, and 
getNodeEdgePropertyValue. These allowed us to create the 
required benchmarks to insert and traverse a graph. They would 
also provide the basis for searching the graph based on node or 
edge properties. 

Remove methods were not implemented for this project for 
two reasons. At the low level, removing properties and edges 
from repeated elements in protocol buffers is not easy. But at a 
higher level, removing nodes requires one of two strategies. 

The first strategy is to simply remove the node and any edges 
that originate from it. This could be easily accomplished by 
simply deleting the node from the ZHT KVS. However, this 
would leave any edges that point to that node hanging. Without 
the Node.edge_target there would be no way to find these edges 
stored as part of the nodes pointing to it. Thus traversing an edge 



would require verifying that the target node still exists and 
optimally, removing the edge if it did not. Node removal, edge 
insertion, and edge removal would all be single node operations, 
but edge traversal would be slower. 

The second strategy is to store an edge in both the source and 
target nodes. This would require modifying two nodes when 
inserting an edge, doubling the time for edge insertion. Edge 
removal would also require modifying two nodes. Removing a 
node would require modifying all the nodes with edges pointing 
to the removed node. This would mean that all remaining edges 
would be valid, but there could be a significant performance 
penalty at node removal time. 

The choice between these two methods depends on the 
specific use case for a particular graph database instance. 

F. Traversal Algorithms 

Three algorithms were implemented - DFS, BFS, and 
PageRank. These were used to benchmark ZHT+ against other 
graph databases. Well documented designs exist for all three of 
these algorithms, so an appropriate design was selected based on 
our ZHT+ implementation. All three were implemented as 
single-threaded functions but using private methods for best 
performance. 

DFS was implemented as a recursive function with a start 
node specified. The result was the total number of nodes visited, 
the number of unique nodes visited, and the amount of time 
required to complete the traversal. The recursive function 
incremented the nodes visited count and returned immediately if 
the node had already been visited. Otherwise, the node was 
marked as visited using a hash table, the unique nodes visited 
count was incremented, the edges were retrieved, and the 
recursive function was called for each of the nodes pointed to by 
the edges. 

BFS was implemented using a queue with the start node push 
onto the queue. The result was the total number of nodes visited, 
the number of unique nodes visited, and the amount of time 
required to complete the traversal. While the queue was not 
empty, a node was popped from the queue, the nodes visited 
count was incremented, and if the node had already been visited, 
the queue was checked for another node. Otherwise, the node 
was marked as visited using a hash table, the unique nodes 
visited count was incremented, the edges were retrieved, and 
each of the nodes pointed to by the edges was pushed onto the 
queue. 

PageRank is an iterative algorithm requiring multiple passes 
through the graph beginning from a start node. While the same 
counts and time were produced, the result also included the top 
twenty pages ordered by pagerank. Usually the iterations would 
continue until the desired top number of results no longer 
change. However, since we did not know how many iterations 
this would take, we limited our passes to ten. The code could 
easily be modified to continue until the top results no longer 
changed. The algorithm consists of three parts: 1 - traversal and 
initialization, 2 - traversal and calculation, 3 - top pagerank 
selection and sorting. Part one, which was done only once, was 
a simple BFS with each node’s ID inserted into a map with its 
value initialized to 1.0. Part two, repeated each iteration, was a 
BFS with each node’s previous value distributed the the new 

value for each of the nodes pointed to by its edges. Part three 
iterated through the map collecting and sorting the top results. 
We chose twenty for our benchmark, but any number up to the 
total number of nodes could be sorted and displayed. Part three 
could either be included on every iteration to display the 
progressive calculation, or after all the part two iterations were 
completed to display only the final results. 

 

V. EVALUATION  

In this section, we will describe the performance of ZHT+ 
through latencies and throughput of general ZHT+ operations 
followed by latencies for DFS, BFS and PageRank algorithms. 
Firstly, we will introduce the testbed and benchmark 
configuration. Secondly a comprehensive performance 
evaluation will be presented. We will compare ZHT+ with 
Neo4j, a graph database offering similar features followed by 
GraphLab and Giraph, more advanced graph processing 
frameworks. 

A. Testbed, Metrics and Workload 

 We used Amazon AWS c3.large EC2 instances powered by 
2 vCPUs and 3.75 GB of memory. We have evaluated ZHT+ at 
different scales of server instances (upto 49) and also at different 
scales of concurrent clients (upto 16). 

 We have created cluster setup and execution scripts which 
uses AWS API along with IAM profiles which can be used to 
setup ZHT+ at different scales and collect evaluation results 
from multiple clients. 

 The basic operations ZHT+ supports include addNode, 
addEdge, addNodeProperty, addEdgeProperty, 
lookupNodeProperty and lookupEdgeProperty. One each node, 
one of the ZHT server-client pairs are deployed, namely ZHT 
instances. Clients sequentially send all the requests through a 
ZHT+ Client API for the operations mentioned above. 

 The dataset used for evaluation is LiveJournal Social 
Network [12]. 

The metrics measured and reported are: 

• Latency: The time taken for a request to be submitted from 
a client and a response to be received by the client, 
measured in milliseconds. Since the latencies of various 
operations (insert/lookup/remove) are fairly close, we use 
average of the three operations to simplify results 
presentation. Note that the latency includes the round trip 
network communication and storage access time. 

• Throughput: The number of operations 
(insert/lookup/remove) the system can handle over some 
period of time, measured in Kilo Ops per second/s. 

• Ideal Throughput: Measured throughput between two nodes 
times the number of nodes. 

• Efficiency: Ratio between measured throughput and ideal 
throughput. 



B. Latencies 

 

Figure 1 – DFS Latency 

We ran DFS algorithm multiple times starting from different 
start nodes. DFS(1), DFS(3), DFS(4) and DFS(5) traversed 
through 2729 nodes each whereas DFS(2) traversed through 98 
nodes. Figure 1 shows that the latency is around 2.5s at 1-node 
scale and drops down to 1.5s at 49-node scale. Looking at the 
trend we should see very less latency at very large scales 
indicating the high performance nature of underlying ZHT key-
value store. 

 

Figure 2 – BFS Latency 

Similarly, we also ran BFS algorithm multiple times starting 
from different start nodes. Figure 2 shows that the latency is 
around 2.5s at 1-node scale and drops down to 1.1s at 49-node 
scale. 

 

Figure 3 – PageRank Latency 

We ran PageRank algorithm starting from node 5 which 
would traverse around 2729 nodes. Our implementation of 
PageRank internally uses DFS and performs 10 iterations in one 
single run. Figure 3 shows a very similar trend as DFS but the 
latency being 11 times (1 initialization plus 10 calculations).  

C. Throughput 

We have performed experiments on every basic operation 
ZHT+ supports i.e. addNode, addEdge, addNodeProperty, 
addEdgeProperty, lookupNodeProperty and 
lookupEdgeProperty. The throughput increases increases near-
linearly with scale, reaching nearly 220 ops/sec at 49-node scale. 
One thing to note here is addNode internally performs 2 
different ZHT operations  (lookup and add) and 
addNodeProperty and addEdgeProperty internally performs 3 
different ZHT operations (lookup, delete and add). 

 

Figure 4 – Throughput (single client) 

We have performed similar experiments on concurrent 
client-server pairs ranging from 1 to 16 nodes. We observed that 
there was no degradation in performance at 1 and 16 clients. We 
see similar throughput trend when run with 1-client. Since all 
add operations delivers around the same throughput, we have 



considered average of all add operations. Therefore, we will see 
only Read and Insert operations plotted in this graph. 

 

Figure 5 – Throughput (multiple clients) 

D. Scalability and Efficiency 

We have investigated the efficiency of ZHT+ when 
compared to the performance with multiple server nodes. 
Efficiency is measured throughput divided by ideal throughput. 
Figure 6 considers the 1-node scale will perform at 100% 
efficiency and eventual change in efficiency as we scale the 
servers. We feel that the drop in efficiency we see is due to being 
unable to fully load the servers. We can see that addNode 
performs the worst as the time remains exactly the same even as 
more server nodes are added. The lookupNodeProperty and 
lookupEdgeProperty perform somewhat better as times drop 
somewhat as server nodes are added, but this is not proportional. 
We would need to evaluate our system at extreme scale to 
understand the true impact on efficiency. 

 

Figure 6 – Efficiency 

E. Neo4j 

Neo4j is a persistent graph database that can be used for 
enterprise deployments. It features fully ACID transactions, 
meaning that it enforces that all operations that modify data 
occur within a transaction to guarantee that data is consistent. It 

can scale to billions of node and relationships and work with 
multiple instances of Neo4j to form a high availability cluster, 
thus improving data availability and featuring data redundancy 
through replication. A single instance can itself handle billions 
of nodes and relationships however we can scale it to improve 
throughputs with little impact on performance of the database. 
The queries work through ‘traversals’ in the graph which are 
analogous to ‘join’ operations in relational databases. Neo4J can 
perform millions of traversals per second. 

Neo4J can be setup in HA cluster mode, enabling replication 
between nodes in the cluster. The configuration follows Master-
Slave architecture. When a new cluster is started each node is 
configured on how to reach all the other nodes of the cluster and 
after joining a master is elected. Any new nodes created and 
joining past this point, join in as a slave. Slaves will 
automatically synchronize with the master at a regular interval 
which can be configured with ha.pull_interval. When a node 
goes down or is unreachable, it is marked as “unavailable”. If 
the master goes down, a new master is elected which will then 
broadcast its availability. 

The architecture is designed in master-slave format, the 
master always needs to have a complete view of the database. In 
order for the master to maintain a complete view, any writes that 
are going through the slaves needs to be replicated to the master 
before an acknowledgement is made. This means that locks will 
be acquired on both master and slave. When the transaction 
commits it will first be committed on the master and then, if 
successful, on the slave, thus making the master a bottleneck for 
writes. The slaves also need to update themselves with the maser 
before attempting a write transaction and as such write 
performance is much better if the writes happen at the master. 
When updates are made on the master, by default it tries to 
replicate to at least 1 node (this can be changed to 0 for better 
performance / a higher number for higher data redundancy) 
before completing the transaction. The rest of slaves are 
optimistically updated i.e. even if some slaves fail to receive 
updates (as long as at least one receives it) we still succeed the 
transaction. HA configuration is usually complemented by a 
load balancer which load balances between all nodes. The reads 
in this configuration scale linearly but the writes are still 
bottlenecked at the master. 

We created a VPC and configured all the private interfaces 
in the VPC (these interfaces were defined and used for all the 
inter-cluster communication, there was no other traffic on this 
subnet). We set the ha.pull_interval = 10s (defines how often the 
slaves will sync up with the master). Replication was set to 1 
node, i.e. master succeeds the transaction if at least one slave 
receives the update. All benchmarks were run directly on the 
master node for consistency. 

The graph was loaded using a cypher query with periodic 
commits. Being an ACID database, all transactions are 
completely flushed down to the disk and when loading large 
graphs this might cause an issue with performance so we can 
instead force periodic commits where the transactions are held 
in memory until a certain threshold and then flushed to the disk. 
In this case we set the periodic commits to 1000. This can be 
made much larger for large graphs with millions of entries, this 
is only limited by JAVA heap space which can be changed. In 



this case the graph load times for 3-32 nodes are slightly worse 
than 1 node case but very close to each other, this is because in 
HA mode, the updates are synced with at least one other node 
on flush to disk [if the replication was set to 0, we would have 
received near 1 node performance stats but lost out on data 
redundancy]. For loading the graphs, we used periodic commits 
with cypher queries, which means that the 'n' (configurable 
parameter) transactions were held in memory before flushing 
them down to the disk. This helped improve performance for 
graph loading. For multiple node cases, we ran multiple 
instances of the benchmark scripts from multiple clients and 
then average the throughput performance to plot the scaling 
trend. 

 

Figure 7 – Neo4j Throughput 

In Figure 7 the top 2 lines (lookups / read operations) are 
much faster than write operations and that is expected, with the 
difference being even more drastic in HA configurations 
because writes are even slower. 

The graph shows the expected trend where reads are pretty 
much similar performing across different node configurations, 
this is because all reads were from one node. Though we don’t 
have a graph for multiple node , multiple client configurations, 
that config with a load balancer would have yielded a close to 
linear scale up [This was verified with 1,3 and 4 node 
configuration] 

For the bottom add/write operations we can clearly see the 
performance dropping from 1 node and then staying relatively 
constant. This was expected to due the addition of replication to 
at least 1 slave and remains constant because, it is always at least 
1 slave irrespective of the cluster size. 

 

Figure 8 – Neo4j BFS 

Figure 8 shows Breadth first search starting at different 
nodes. The performance stays relatively the same because in this 
case there are no writes and therefore there are no updates to the 
slave nodes and since the benchmarks were run on the master 
which has the complete view of the database, this is just like 
running it on a single node. 

 

Figure 9 – Neo4j DFS 

Figure 9 shows very similar results for Depth first search. 

 

Figure 10 – Neo4j PageRank 

Pagerank shown in figure 10, unlike BFS and DFS involves 
updating the edges of the nodes with new rank information and 
therefore the performance for HA is not in-line with the 1-node 
case. The time to run it increases from 1-node to 3-nodes and 
then stays more or less the same. 



 
Figure 11 – Neo4j Lookup (multiple clients) 

In Figure 11 we see that for 1 node we see an improvement in 
read performance when increasing the clients from 1 to 2, this 
was surprising. This could be because, since the calls were over 
REST, they weren’t fast enough to saturate the server. From 2 
clients onwards, we see that there is not much performance gain. 
For 3 node cluster size, we see that we keep getting performance 
gains all the way until 3 nodes after that point it starts to level. 
For 4 nodes and greater we see improvements all the way until 
4 nodes, this shows that the reads are actually scaling linearly 
with cluster size. 

 

Figure 12 – Neo4j Add Node (multiple clients) 

In Figure 12 we see that for write performance, the bottleneck is 
the master. For 1 node we see that the write performance is the 
fastest, this is because there is no replication overhead in the 
background. It was surprising to see an improvement in 
performance with writes with multiple clients, it is also worth 
noting that all the clients were trying to run the same operations, 
so not sure if there is some caching in play here. However the 
improvement in performance is definitely not linear like in the 
case of reads. 

F. GraphLab 

We set up graphlab and loaded the graph using an internal 
API which loads the graph from csv format. We ran pagerank 
on the graph with 10k edges and it took less than 3s. It seemed 
to us that the whole computation was in memory and given that 
it took so little time, we did not see much value in distributing 
the load. We also experimented with an inbuilt API (in graphlab) 
to spawn multiple ec2 instances and distribute the load. It is 
vastly different from ZHT+ (not even a persistent database and 
more of a processing framework). 

Benchmarking throughput, reads and writes doesn’t make 
sense. We can measure the execution times of various 
algorithms. Unfortunately we couldn’t find much 
documentation around for BFS / DFS (if it is inbuilt) but we did 
run PageRank and saw that it was extremely fast (probably 
because the computation was completely in memory). It took 
less than 3s for the PageRank 

It also has an execution framework to define an environment and 
parallelize tasks. Has support for AWS where it can 
automatically spawn instances and parallelize the work (this is 
still needs to be experimented / benchmarked upon) however 
given that it is so ridiculously fast [ took less than 3s for the 
PageRank ], is not a persistent database and everything is in 
memory, it doesn’t make sense to compare with ZHT+. 

G. Apache Giraph 

Giraph is a an iterative graph processing system built for 
high scalability. The system is built based on Bulk Synchronous 
Parallel (BSP) model of distributed computing. In Giraph, 
graph-processing programs are expressed as a sequence of 
iterations called supersteps. During a superstep, the framework 
starts a user-defined function for each vertex, conceptually in 
parallel. The user-defined function specifies the behaviour at a 
single vertex V and a single superstep S. The function can read 
messages that are sent to V in superstep S-1, send messages to 
other vertices that are received at superstepS+1, and modify the 
state of V and its outgoing edges. Messages are typically sent 
along outgoing edges, but you can send a message to any vertex 
with a known identifier. Each superstep represents atomic units 
of parallel computation. Figure 13 illustrates the execution 
mechanism of the BSP programming model. 

 
Figure 13 – Bulk Synchronous Parallel model 

 
Giraph jobs run on Hadoop infrastructure as it leverages the 

map phase of mapreduce. Giraph does in-memory processing 
which speeds up performance. This can also lead to a memory 
bottleneck when dealing with very large dataset leading to a lot 
of inter-vertex messages. 

Giraph is a very different graph processing system 
compared to a graph database like ZHT+ or Neo4j. [13] 



H. ZHT+ vs Neo4j 

We feel that Neo4j is the most direct comparison with 
ZHT+. Therefore the following graphs compare the 
performance of these two graph databases. 

 

Figure 14 – Insert Operations 

Figure 14 shows the insert operations per second per client 
for various numbers of clients and servers. A horizontal line 
would indicate that the server scales linearly with no degradation 
as the number of clients increases. The ZHT+ lines are 
horizontal with somewhat greater performance as the number of 
servers increases. The Neo4j lines all slope downward with the 
most dramatic fall in the single server configuration. However, 
at the limited scales tested, Neo4j significantly outperforms 
ZHT+. 

 

Figure 15 – Read Operations 

Figure 15 shows the read operations per second per client for 
various numbers of clients and servers. A horizontal line would 
indicate that the server scales linearly with no degradation as the 
number of clients increases. The ZHT+ lines are horizontal with 
four times greater performance per client as the number of 
servers increased from 1 to 16. The Neo4j lines all slope 
downward with the most dramatic fall in the single server 
configuration. At the limited scales tested, Neo4j still 
outperforms ZHT+, but the single server performance is rapidly 
falling towards that of ZHT+. 

 

Figure 16 – DFS Operations 

Figure 16 shows the time in msec for one client to complete 
the benchmark DFS for various numbers of servers. The DFS 
for ZHT+ is being done on the client while the DFS for Neo4j is 
an inbuilt function. The time for Neo4j is significantly faster 
than ZHT+, though it does not improve with additional server 
nodes while ZHT+ does improve somewhat. 

 

Figure 17 – BFS Operations 

Figure 17 shows the time in msec for one client to complete 
the benchmark BFS for various numbers of servers. Again, the 
BFS for ZHT+ is being done on the client while the BFS for 
Neo4j is an inbuilt function. The time for Neo4j is significantly 
faster than ZHT+ with a single server node, but ZHT+ improves 
dramatically with additional server nodes while Neo4j remains 
about the same. 

 

Figure 18 – PageRank Operations 

Figure 18 shows the time in seconds for one client to 
complete the benchmark PageRank for various numbers of 
servers. PageRank is not built into Neo4j, so PageRank is being 
done on the client for both ZHT+ and Neo4j. The time for ZHT+ 



is exactly what is expected - the 11 BFS passes needed means 
that PageRank for ZHT+ takes almost exactly 11 times as long 
as BFS. However, when PageRank is run on a client through a 
REST interface to Neo4j, it is significantly slower than ZHT+. 

I. ZHT+ Performance Summary 

In our testing, ZHT+ was slower than Neo4j in every test 
except PageRank. We checked the underlying ZHT calls and 
found that they also did not perform as well as expected. We 
checked the benchmark included with ZHT and it showed 
similar performance. We do not have a good explanation for 
this. 

ZHT+ did perform as expected regarding scalability. It 
showed no decline in performance as additional clients were 
added. The per client operations stayed the same meaning that 
N times as many clients produced N times the number of total 
operations. However, we do not feel that the loads on the server 
nodes were anywhere near capacity so this is expected for lightly 
loaded systems. 

  

VI. FUTURE WORK 

Higher loads: At the scales that we tested, ZHT+ scaled 
perfectly - access time per client node was not diminished as 
additional client nodes were added. But with a limit of 50 nodes, 
we feel that we were unable to sufficiently load the ZHT KVS. 
Additional benchmark testing should be conducted at larger 
scales so that the ZHT server nodes are being fully utilized and 
performance begins to degrade. 

Additional features: Support for node, edge, and property 
removal should be added. Ideally, both scenarios should be 
supported - full edge removal at node removal and dead edge 
removal at edge traversal. This would allow optimization of the 
specific ZHT+ instance by selecting the desired removal 
method. 

Query language: An interface should be added by which a 
user could query ZHT+ for nodes and edges based on their 
properties. The most useful results would probably be either an 
iterator of all matches or sorted results based on pagerank value. 

VII.  CONCLUSION 

ZHT+ is a limited scope implementation of a graph database 
using ZHT. Due to its distributed nature, there is no central point 
where performance bottlenecks will occur. There is no master 
for reads or writes, no replication of data across all nodes, and 
no load balancer. Each client goes directly to the server node 
containing the desired data. We have shown that this model 

scales extremely well as long as the distribution of access (either 
reads or writes) is relatively uniform. However, if many clients 
all require access to the same piece of data, the server node on 
which that piece of data resides could become overloaded while 
other server nodes are underutilized. In a general purpose graph 
database, this may not be an issue. But, if used for a social 
network type graph, this could be an issue with “trending” 
nodes. 
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