
ZHT+ : Design and Implementation of a Graph
Database Using ZHT

Gagan Munisiddha Gowda
Benjamin L. Miwa
Anirudh Sunkineni

Department of Computer Science
Illinois Institute of Technology

Chicago, IL

Abstract— Graph databases use the concepts of nodes, edges,
and properties to represent and store data. Graph databases
provide index-free adjacency, with every element containing a
direct pointer to its adjacent element, removing the need for index
lookups. As they depend less on a rigid schema, they are more
suitable to manage ad hoc and changing data with evolving
schemas.

ZHT is a zero-hop distributed hash table Key-Value Store
(KVS). It is designed to handle the requirements of high-end
computing systems, providing rapid, decentralized access to
key/value pairs.

In this project we built a limited implementation of a graph
database - ZHT+, which leveraged the ZHT KVS. We then ran
benchmarks including Depth First Search (DFS), Breadth First
Search (BFS), and PageRank on a standard data set with ZHT+
and Neo4j, as well as limited testing on Giraph and GraphLab, to
compare the performance of ZHT+ on various configurations of
up to 50 virtual machines (VM) on Amazon EC2.

At the scales we tested, ZHT+ handled up to 16 clients with no
degradation in performance. With Neo4j there was some
degradation in performance as the number of clients was
increased. However, since both systems are meant for high-end
computing systems with thousands of clients, further testing will
be needed at much larger scales.

Keywords—ZHT; zero-hop; graph database

I. BACKGROUND INFORMATION

Graph databases provide a different way of storing
information when compared to the traditional relational database
management systems (RDBMS) or even some NoSQL
databases. These databases need to store the data in a distributed
fashion while exposing a unified API to perform queries.

Compared with relational databases, graph databases are
often faster for associative data sets, and map more directly to
the structure of object-oriented applications. They can scale
more naturally to large data sets as they do not typically require
expensive join operations.

There are well known graph databases available like Neo4j,
Giraph, GraphLab, Allegro, and GraphBase. All of them provide
similar features with few distinctive features over others. All of

these databases use their own underlying KVS which provides
considerable performance benefits.

It is clear in the performance evaluation of ZHT [1][2] that
it fares better than other KVSs, especially at large scales. We
have leveraged the advantages ZHT provides, like fault-
tolerance, high-performance, and optimization for high
performance computing, to develop the ZHT+ graph database to
provide a distributed graph database especially suited to high
performance computing at very large scales.

II. PROBLEM STATEMENT

Graph databases generally use a KVS to store node and edge
information. The performance of the graph database is therefore
directly dependent on the speed of that KVS, especially at large
scales. Currently, no graph database has been implemented to
take advantage of ZHT’s performance advantages.

The contributions of this paper are as follows:

• Design and implementation of ZHT+, a graph database built
on top of ZHT, a light-weight, high performance, fault
tolerance, persistent, dynamic and highly scalable
distributed hash table, optimized for high-end computing.

• Support for graph specific operations like add and get for
nodes, edges, node properties and edge properties.

• Benchmarks using DFS, BFS, and PageRank on up to 49
server nodes and up to 16 concurrent clients.

• Evaluation and comparison with commercial graph
databases like Neo4j, GraphLab and Giraph.

III. RELATED WORK

There are several existing graph databases such as Neo4j,
Giraph, GraphLab, Allegro, GraphBase and there have been
previous experiments to benchmark such databases [3][4][5].
We leveraged this previous work in making design choices and
attempted to re-use tools for the benchmarking experiments.

However, the largest portion of related work is ZHT itself.
We used this fully functional KVS system to implement our
graph database system. As such, we did not implement any of
the work related to the actual storage and retrieval of data.

IV. ZHT+ DESIGN AND IMPLEMENTATION

We leveraged the work done previously with ZHT in order
to build a graph based storage system on top of its distributed
key-value store. Given that ZHT already handles the distributed
storage and offers excellent availability and fault tolerance along
with minimal latencies, we explored how to best represent a
graph by using ZHT and take advantage of the design
considerations made in ZHT.

A. Scope Limitations

We did not develop a full-fledged graph database with
features to support a query language, transactions, runtime
failover, monitoring, etc. The main goal of this project was to
implement a basic graph database that is able to store data in the
form of a graph (nodes and relationships) by using ZHT and
implement some basic algorithms like DFS, BFS and PageRank
to see how well it fares in comparison to other graph databases,
purely in terms of the execution time of these algorithms.

ZHT is designed to target large distributed systems of
thousands of nodes or more with similar numbers of clients. For
our project we were limited to a total of 50 nodes, distributed in
various ways between client and server nodes. This means that
in many cases we were unable to load the system sufficiently to
measure performance degradation.

B. Design Considerations

Graph databases need to store nodes, edges, and properties
for them. We considered different ways to store these - separate
ZHT KVS’s for each, separate entries in a single ZHT KVS, or
as a compound object with a single entry in one ZHT KVS.
Since the goal was to maximize performance, we decided that
minimizing the number of trips across the network would be the
primary goal. A network transaction would be in the msec range
while serialization/deserialization would be in the usec range.

The second major design decision was how to store edges.
And edge goes from node A to node B. This can be store in either
node A, node B, or both. Depending on the usage of the graph
database, any of the three options could be appropriate. For
quickly traversing a graph, storing the edge in the source node
A is important. For quickly determining what other nodes point
to a node, storing the edge in the target node B is important. For
easy removal of nodes and associated links, storing the edge in
both nodes would be easiest. Since our benchmarks consisted of
inserting nodes and edges and traversing the trees, storing the
edges in only the source node A was sufficient.

C. Protocol Buffer

To store multiple elements in a single key/value pair, we
decided to use Google’s Protocol Buffer [6] to serialize the data.
Protocol buffers allow the developer to specify the structure in a
way similar to C++, Java, and other structured languages. These
structures - messages - are then compiled into language specific
code that allows serialization/deserialization and simple access
to the elements. Messages are composed of elements that are
required, optional, or repeated and can be basic types or other
messages types.

We created three message types - Node, Edge, and Property.
A Node consists of an optional nodeID of type string, an optional
name of type string, a repeated edge_source of type Edge, a

repeated edge_target of type Edge, and a repeated property of
type Property. An Edge consists of an optional edgeID of type
string, an optional name of type string, an optional source of type
string, an optional target of type string, optional directed of type
bool, and a repeated property of type Property. A Property
consists of an optional propertyID of type string, an optional
name of type string, an optional value of type string.

Some of these elements were redundant or for possible future
use. The node ID is the key for the ZHT KVS, but we also stored
it in the Node nodeID. While we supported both a nodeID and a
name, for testing we used the same string for both. We did the
same thing with the edgeID and name and the propertyID and
name. Since we were working exclusively with directed graphs,
we always created nodes with Edge.directed set to true. As
previously noted, we did not implement node removal, so the
Node.edge_target element was not used.

D. Private Methods

Low level private methods were implemented to
serialize/serialize the protocol buffers and to access the various
elements of the structure using ZHT’s insert, lookup, append,
and remove API’s and the methods supported by Google
Protocol Buffers. These were then wrapped in the public APIs
of the ZHTplusClient class.

For repeated elements in protocol buffers, direct access to
specific elements is only supported based on the order of
insertion. Therefore to get the value of a specific element, the
list of elements must be traversed until the desired element is
found. While this may not be the most desirable method for
random access, traversal of the entire graph consists of visiting
every element in the list, so there is no performance cost for this
method of access.

Likewise, removal of only the last element in the list is
supported. Thus removal of a random element could only be
implemented by swapping the item to be removed with the last
element and then removing it from the end of the list. This
operation was not implemented as part of our project as the
removal of nodes, edges, and properties was not required.

E. Public APIs

In addition to the constructor and destructor for the class, we
implemented the following basic methods: addNode,
addNodeProperty, addNodeEdge, addNodeEdgeProperty,
getNodePropertyValue, getNodeEdgeTarget, and
getNodeEdgePropertyValue. These allowed us to create the
required benchmarks to insert and traverse a graph. They would
also provide the basis for searching the graph based on node or
edge properties.

Remove methods were not implemented for this project for
two reasons. At the low level, removing properties and edges
from repeated elements in protocol buffers is not easy. But at a
higher level, removing nodes requires one of two strategies.

The first strategy is to simply remove the node and any edges
that originate from it. This could be easily accomplished by
simply deleting the node from the ZHT KVS. However, this
would leave any edges that point to that node hanging. Without
the Node.edge_target there would be no way to find these edges
stored as part of the nodes pointing to it. Thus traversing an edge

would require verifying that the target node still exists and
optimally, removing the edge if it did not. Node removal, edge
insertion, and edge removal would all be single node operations,
but edge traversal would be slower.

The second strategy is to store an edge in both the source and
target nodes. This would require modifying two nodes when
inserting an edge, doubling the time for edge insertion. Edge
removal would also require modifying two nodes. Removing a
node would require modifying all the nodes with edges pointing
to the removed node. This would mean that all remaining edges
would be valid, but there could be a significant performance
penalty at node removal time.

The choice between these two methods depends on the
specific use case for a particular graph database instance.

F. Traversal Algorithms

Three algorithms were implemented - DFS, BFS, and
PageRank. These were used to benchmark ZHT+ against other
graph databases. Well documented designs exist for all three of
these algorithms, so an appropriate design was selected based on
our ZHT+ implementation. All three were implemented as
single-threaded functions but using private methods for best
performance.

DFS was implemented as a recursive function with a start
node specified. The result was the total number of nodes visited,
the number of unique nodes visited, and the amount of time
required to complete the traversal. The recursive function
incremented the nodes visited count and returned immediately if
the node had already been visited. Otherwise, the node was
marked as visited using a hash table, the unique nodes visited
count was incremented, the edges were retrieved, and the
recursive function was called for each of the nodes pointed to by
the edges.

BFS was implemented using a queue with the start node push
onto the queue. The result was the total number of nodes visited,
the number of unique nodes visited, and the amount of time
required to complete the traversal. While the queue was not
empty, a node was popped from the queue, the nodes visited
count was incremented, and if the node had already been visited,
the queue was checked for another node. Otherwise, the node
was marked as visited using a hash table, the unique nodes
visited count was incremented, the edges were retrieved, and
each of the nodes pointed to by the edges was pushed onto the
queue.

PageRank is an iterative algorithm requiring multiple passes
through the graph beginning from a start node. While the same
counts and time were produced, the result also included the top
twenty pages ordered by pagerank. Usually the iterations would
continue until the desired top number of results no longer
change. However, since we did not know how many iterations
this would take, we limited our passes to ten. The code could
easily be modified to continue until the top results no longer
changed. The algorithm consists of three parts: 1 - traversal and
initialization, 2 - traversal and calculation, 3 - top pagerank
selection and sorting. Part one, which was done only once, was
a simple BFS with each node’s ID inserted into a map with its
value initialized to 1.0. Part two, repeated each iteration, was a
BFS with each node’s previous value distributed the the new

value for each of the nodes pointed to by its edges. Part three
iterated through the map collecting and sorting the top results.
We chose twenty for our benchmark, but any number up to the
total number of nodes could be sorted and displayed. Part three
could either be included on every iteration to display the
progressive calculation, or after all the part two iterations were
completed to display only the final results.

V. EVALUATION

In this section, we will describe the performance of ZHT+
through latencies and throughput of general ZHT+ operations
followed by latencies for DFS, BFS and PageRank algorithms.
Firstly, we will introduce the testbed and benchmark
configuration. Secondly a comprehensive performance
evaluation will be presented. We will compare ZHT+ with
Neo4j, a graph database offering similar features followed by
GraphLab and Giraph, more advanced graph processing
frameworks.

A. Testbed, Metrics and Workload

 We used Amazon AWS c3.large EC2 instances powered by
2 vCPUs and 3.75 GB of memory. We have evaluated ZHT+ at
different scales of server instances (upto 49) and also at different
scales of concurrent clients (upto 16).

 We have created cluster setup and execution scripts which
uses AWS API along with IAM profiles which can be used to
setup ZHT+ at different scales and collect evaluation results
from multiple clients.

 The basic operations ZHT+ supports include addNode,
addEdge, addNodeProperty, addEdgeProperty,
lookupNodeProperty and lookupEdgeProperty. One each node,
one of the ZHT server-client pairs are deployed, namely ZHT
instances. Clients sequentially send all the requests through a
ZHT+ Client API for the operations mentioned above.

 The dataset used for evaluation is LiveJournal Social
Network [12].

The metrics measured and reported are:

• Latency: The time taken for a request to be submitted from
a client and a response to be received by the client,
measured in milliseconds. Since the latencies of various
operations (insert/lookup/remove) are fairly close, we use
average of the three operations to simplify results
presentation. Note that the latency includes the round trip
network communication and storage access time.

• Throughput: The number of operations
(insert/lookup/remove) the system can handle over some
period of time, measured in Kilo Ops per second/s.

• Ideal Throughput: Measured throughput between two nodes
times the number of nodes.

• Efficiency: Ratio between measured throughput and ideal
throughput.

B. Latencies

Figure 1 – DFS Latency

We ran DFS algorithm multiple times starting from different
start nodes. DFS(1), DFS(3), DFS(4) and DFS(5) traversed
through 2729 nodes each whereas DFS(2) traversed through 98
nodes. Figure 1 shows that the latency is around 2.5s at 1-node
scale and drops down to 1.5s at 49-node scale. Looking at the
trend we should see very less latency at very large scales
indicating the high performance nature of underlying ZHT key-
value store.

Figure 2 – BFS Latency

Similarly, we also ran BFS algorithm multiple times starting
from different start nodes. Figure 2 shows that the latency is
around 2.5s at 1-node scale and drops down to 1.1s at 49-node
scale.

Figure 3 – PageRank Latency

We ran PageRank algorithm starting from node 5 which
would traverse around 2729 nodes. Our implementation of
PageRank internally uses DFS and performs 10 iterations in one
single run. Figure 3 shows a very similar trend as DFS but the
latency being 11 times (1 initialization plus 10 calculations).

C. Throughput

We have performed experiments on every basic operation
ZHT+ supports i.e. addNode, addEdge, addNodeProperty,
addEdgeProperty, lookupNodeProperty and
lookupEdgeProperty. The throughput increases increases near-
linearly with scale, reaching nearly 220 ops/sec at 49-node scale.
One thing to note here is addNode internally performs 2
different ZHT operations (lookup and add) and
addNodeProperty and addEdgeProperty internally performs 3
different ZHT operations (lookup, delete and add).

Figure 4 – Throughput (single client)

We have performed similar experiments on concurrent
client-server pairs ranging from 1 to 16 nodes. We observed that
there was no degradation in performance at 1 and 16 clients. We
see similar throughput trend when run with 1-client. Since all
add operations delivers around the same throughput, we have

considered average of all add operations. Therefore, we will see
only Read and Insert operations plotted in this graph.

Figure 5 – Throughput (multiple clients)

D. Scalability and Efficiency

We have investigated the efficiency of ZHT+ when
compared to the performance with multiple server nodes.
Efficiency is measured throughput divided by ideal throughput.
Figure 6 considers the 1-node scale will perform at 100%
efficiency and eventual change in efficiency as we scale the
servers. We feel that the drop in efficiency we see is due to being
unable to fully load the servers. We can see that addNode
performs the worst as the time remains exactly the same even as
more server nodes are added. The lookupNodeProperty and
lookupEdgeProperty perform somewhat better as times drop
somewhat as server nodes are added, but this is not proportional.
We would need to evaluate our system at extreme scale to
understand the true impact on efficiency.

Figure 6 – Efficiency

E. Neo4j

Neo4j is a persistent graph database that can be used for
enterprise deployments. It features fully ACID transactions,
meaning that it enforces that all operations that modify data
occur within a transaction to guarantee that data is consistent. It

can scale to billions of node and relationships and work with
multiple instances of Neo4j to form a high availability cluster,
thus improving data availability and featuring data redundancy
through replication. A single instance can itself handle billions
of nodes and relationships however we can scale it to improve
throughputs with little impact on performance of the database.
The queries work through ‘traversals’ in the graph which are
analogous to ‘join’ operations in relational databases. Neo4J can
perform millions of traversals per second.

Neo4J can be setup in HA cluster mode, enabling replication
between nodes in the cluster. The configuration follows Master-
Slave architecture. When a new cluster is started each node is
configured on how to reach all the other nodes of the cluster and
after joining a master is elected. Any new nodes created and
joining past this point, join in as a slave. Slaves will
automatically synchronize with the master at a regular interval
which can be configured with ha.pull_interval. When a node
goes down or is unreachable, it is marked as “unavailable”. If
the master goes down, a new master is elected which will then
broadcast its availability.

The architecture is designed in master-slave format, the
master always needs to have a complete view of the database. In
order for the master to maintain a complete view, any writes that
are going through the slaves needs to be replicated to the master
before an acknowledgement is made. This means that locks will
be acquired on both master and slave. When the transaction
commits it will first be committed on the master and then, if
successful, on the slave, thus making the master a bottleneck for
writes. The slaves also need to update themselves with the maser
before attempting a write transaction and as such write
performance is much better if the writes happen at the master.
When updates are made on the master, by default it tries to
replicate to at least 1 node (this can be changed to 0 for better
performance / a higher number for higher data redundancy)
before completing the transaction. The rest of slaves are
optimistically updated i.e. even if some slaves fail to receive
updates (as long as at least one receives it) we still succeed the
transaction. HA configuration is usually complemented by a
load balancer which load balances between all nodes. The reads
in this configuration scale linearly but the writes are still
bottlenecked at the master.

We created a VPC and configured all the private interfaces
in the VPC (these interfaces were defined and used for all the
inter-cluster communication, there was no other traffic on this
subnet). We set the ha.pull_interval = 10s (defines how often the
slaves will sync up with the master). Replication was set to 1
node, i.e. master succeeds the transaction if at least one slave
receives the update. All benchmarks were run directly on the
master node for consistency.

The graph was loaded using a cypher query with periodic
commits. Being an ACID database, all transactions are
completely flushed down to the disk and when loading large
graphs this might cause an issue with performance so we can
instead force periodic commits where the transactions are held
in memory until a certain threshold and then flushed to the disk.
In this case we set the periodic commits to 1000. This can be
made much larger for large graphs with millions of entries, this
is only limited by JAVA heap space which can be changed. In

this case the graph load times for 3-32 nodes are slightly worse
than 1 node case but very close to each other, this is because in
HA mode, the updates are synced with at least one other node
on flush to disk [if the replication was set to 0, we would have
received near 1 node performance stats but lost out on data
redundancy]. For loading the graphs, we used periodic commits
with cypher queries, which means that the 'n' (configurable
parameter) transactions were held in memory before flushing
them down to the disk. This helped improve performance for
graph loading. For multiple node cases, we ran multiple
instances of the benchmark scripts from multiple clients and
then average the throughput performance to plot the scaling
trend.

Figure 7 – Neo4j Throughput

In Figure 7 the top 2 lines (lookups / read operations) are
much faster than write operations and that is expected, with the
difference being even more drastic in HA configurations
because writes are even slower.

The graph shows the expected trend where reads are pretty
much similar performing across different node configurations,
this is because all reads were from one node. Though we don’t
have a graph for multiple node , multiple client configurations,
that config with a load balancer would have yielded a close to
linear scale up [This was verified with 1,3 and 4 node
configuration]

For the bottom add/write operations we can clearly see the
performance dropping from 1 node and then staying relatively
constant. This was expected to due the addition of replication to
at least 1 slave and remains constant because, it is always at least
1 slave irrespective of the cluster size.

Figure 8 – Neo4j BFS

Figure 8 shows Breadth first search starting at different
nodes. The performance stays relatively the same because in this
case there are no writes and therefore there are no updates to the
slave nodes and since the benchmarks were run on the master
which has the complete view of the database, this is just like
running it on a single node.

Figure 9 – Neo4j DFS

Figure 9 shows very similar results for Depth first search.

Figure 10 – Neo4j PageRank

Pagerank shown in figure 10, unlike BFS and DFS involves
updating the edges of the nodes with new rank information and
therefore the performance for HA is not in-line with the 1-node
case. The time to run it increases from 1-node to 3-nodes and
then stays more or less the same.

Figure 11 – Neo4j Lookup (multiple clients)

In Figure 11 we see that for 1 node we see an improvement in
read performance when increasing the clients from 1 to 2, this
was surprising. This could be because, since the calls were over
REST, they weren’t fast enough to saturate the server. From 2
clients onwards, we see that there is not much performance gain.
For 3 node cluster size, we see that we keep getting performance
gains all the way until 3 nodes after that point it starts to level.
For 4 nodes and greater we see improvements all the way until
4 nodes, this shows that the reads are actually scaling linearly
with cluster size.

Figure 12 – Neo4j Add Node (multiple clients)

In Figure 12 we see that for write performance, the bottleneck is
the master. For 1 node we see that the write performance is the
fastest, this is because there is no replication overhead in the
background. It was surprising to see an improvement in
performance with writes with multiple clients, it is also worth
noting that all the clients were trying to run the same operations,
so not sure if there is some caching in play here. However the
improvement in performance is definitely not linear like in the
case of reads.

F. GraphLab

We set up graphlab and loaded the graph using an internal
API which loads the graph from csv format. We ran pagerank
on the graph with 10k edges and it took less than 3s. It seemed
to us that the whole computation was in memory and given that
it took so little time, we did not see much value in distributing
the load. We also experimented with an inbuilt API (in graphlab)
to spawn multiple ec2 instances and distribute the load. It is
vastly different from ZHT+ (not even a persistent database and
more of a processing framework).

Benchmarking throughput, reads and writes doesn’t make
sense. We can measure the execution times of various
algorithms. Unfortunately we couldn’t find much
documentation around for BFS / DFS (if it is inbuilt) but we did
run PageRank and saw that it was extremely fast (probably
because the computation was completely in memory). It took
less than 3s for the PageRank

It also has an execution framework to define an environment and
parallelize tasks. Has support for AWS where it can
automatically spawn instances and parallelize the work (this is
still needs to be experimented / benchmarked upon) however
given that it is so ridiculously fast [took less than 3s for the
PageRank], is not a persistent database and everything is in
memory, it doesn’t make sense to compare with ZHT+.

G. Apache Giraph

Giraph is a an iterative graph processing system built for
high scalability. The system is built based on Bulk Synchronous
Parallel (BSP) model of distributed computing. In Giraph,
graph-processing programs are expressed as a sequence of
iterations called supersteps. During a superstep, the framework
starts a user-defined function for each vertex, conceptually in
parallel. The user-defined function specifies the behaviour at a
single vertex V and a single superstep S. The function can read
messages that are sent to V in superstep S-1, send messages to
other vertices that are received at superstepS+1, and modify the
state of V and its outgoing edges. Messages are typically sent
along outgoing edges, but you can send a message to any vertex
with a known identifier. Each superstep represents atomic units
of parallel computation. Figure 13 illustrates the execution
mechanism of the BSP programming model.

Figure 13 – Bulk Synchronous Parallel model

Giraph jobs run on Hadoop infrastructure as it leverages the

map phase of mapreduce. Giraph does in-memory processing
which speeds up performance. This can also lead to a memory
bottleneck when dealing with very large dataset leading to a lot
of inter-vertex messages.

Giraph is a very different graph processing system
compared to a graph database like ZHT+ or Neo4j. [13]

H. ZHT+ vs Neo4j

We feel that Neo4j is the most direct comparison with
ZHT+. Therefore the following graphs compare the
performance of these two graph databases.

Figure 14 – Insert Operations

Figure 14 shows the insert operations per second per client
for various numbers of clients and servers. A horizontal line
would indicate that the server scales linearly with no degradation
as the number of clients increases. The ZHT+ lines are
horizontal with somewhat greater performance as the number of
servers increases. The Neo4j lines all slope downward with the
most dramatic fall in the single server configuration. However,
at the limited scales tested, Neo4j significantly outperforms
ZHT+.

Figure 15 – Read Operations

Figure 15 shows the read operations per second per client for
various numbers of clients and servers. A horizontal line would
indicate that the server scales linearly with no degradation as the
number of clients increases. The ZHT+ lines are horizontal with
four times greater performance per client as the number of
servers increased from 1 to 16. The Neo4j lines all slope
downward with the most dramatic fall in the single server
configuration. At the limited scales tested, Neo4j still
outperforms ZHT+, but the single server performance is rapidly
falling towards that of ZHT+.

Figure 16 – DFS Operations

Figure 16 shows the time in msec for one client to complete
the benchmark DFS for various numbers of servers. The DFS
for ZHT+ is being done on the client while the DFS for Neo4j is
an inbuilt function. The time for Neo4j is significantly faster
than ZHT+, though it does not improve with additional server
nodes while ZHT+ does improve somewhat.

Figure 17 – BFS Operations

Figure 17 shows the time in msec for one client to complete
the benchmark BFS for various numbers of servers. Again, the
BFS for ZHT+ is being done on the client while the BFS for
Neo4j is an inbuilt function. The time for Neo4j is significantly
faster than ZHT+ with a single server node, but ZHT+ improves
dramatically with additional server nodes while Neo4j remains
about the same.

Figure 18 – PageRank Operations

Figure 18 shows the time in seconds for one client to
complete the benchmark PageRank for various numbers of
servers. PageRank is not built into Neo4j, so PageRank is being
done on the client for both ZHT+ and Neo4j. The time for ZHT+

is exactly what is expected - the 11 BFS passes needed means
that PageRank for ZHT+ takes almost exactly 11 times as long
as BFS. However, when PageRank is run on a client through a
REST interface to Neo4j, it is significantly slower than ZHT+.

I. ZHT+ Performance Summary

In our testing, ZHT+ was slower than Neo4j in every test
except PageRank. We checked the underlying ZHT calls and
found that they also did not perform as well as expected. We
checked the benchmark included with ZHT and it showed
similar performance. We do not have a good explanation for
this.

ZHT+ did perform as expected regarding scalability. It
showed no decline in performance as additional clients were
added. The per client operations stayed the same meaning that
N times as many clients produced N times the number of total
operations. However, we do not feel that the loads on the server
nodes were anywhere near capacity so this is expected for lightly
loaded systems.

VI. FUTURE WORK

Higher loads: At the scales that we tested, ZHT+ scaled
perfectly - access time per client node was not diminished as
additional client nodes were added. But with a limit of 50 nodes,
we feel that we were unable to sufficiently load the ZHT KVS.
Additional benchmark testing should be conducted at larger
scales so that the ZHT server nodes are being fully utilized and
performance begins to degrade.

Additional features: Support for node, edge, and property
removal should be added. Ideally, both scenarios should be
supported - full edge removal at node removal and dead edge
removal at edge traversal. This would allow optimization of the
specific ZHT+ instance by selecting the desired removal
method.

Query language: An interface should be added by which a
user could query ZHT+ for nodes and edges based on their
properties. The most useful results would probably be either an
iterator of all matches or sorted results based on pagerank value.

VII. CONCLUSION

ZHT+ is a limited scope implementation of a graph database
using ZHT. Due to its distributed nature, there is no central point
where performance bottlenecks will occur. There is no master
for reads or writes, no replication of data across all nodes, and
no load balancer. Each client goes directly to the server node
containing the desired data. We have shown that this model

scales extremely well as long as the distribution of access (either
reads or writes) is relatively uniform. However, if many clients
all require access to the same piece of data, the server node on
which that piece of data resides could become overloaded while
other server nodes are underutilized. In a general purpose graph
database, this may not be an issue. But, if used for a social
network type graph, this could be an issue with “trending”
nodes.

REFERENCES
[1] Li, Tonglin, Xiaobing Zhou, Kevin Brandstatter, Dongfang Zhao, Ke

Wang, Anupam Rajendran, Zhao Zhang, and Ioan Raicu. "ZHT: A light-
weight reliable persistent dynamic scalable zero-hop distributed hash
table." In Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, pp. 775-787. IEEE, 2013.

[2] Li, Tonglin, Antonio Perez de Tejada, Kevin Brandstatter, Zhao Zhang,
and Ioan Raicu. "ZHT: a Zero-hop DHT for High-End Computing
Environment." (2012).

[3] Angles, Renzo, and Claudio Gutierrez. "Survey of graph database
models." ACM Computing Surveys (CSUR) 40, no. 1 (2008): 1.

[4] Angles, Renzo. "A comparison of current graph database models." In
Data Engineering Workshops (ICDEW), 2012 IEEE 28th International
Conference on, pp. 171-177. IEEE, 2012.

[5] Dominguez-Sal, David, P. Urbón-Bayes, Aleix Giménez-Vañó, Sergio
Gómez-Villamor, Norbert Martínez-Bazan, and Josep-Lluis Larriba-Pey.
"Survey of graph database performance on the hpc scalable graph analysis
benchmark." In Web-Age Information Management, pp. 37-48. Springer
Berlin Heidelberg, 2010.

[6] Cogo, Vinicius Vielmo “Serializing Data with Protocol Buffers” In
Smalltalks, Universidade de Lisboa, February 12, 2014.

[7] Miller, Justin J. "Graph Database Applications and Concepts with Neo4j."
In Proceedings of the Southern Association for Information Systems
Conference, Atlanta, GA, USA March 23rd-24th. 2013.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 international conference on Management of
data, ser. SIGMOD ’10. New York, NY, USA: ACM, 2010, pp. 135–146.
[Online]. Available: http://doi.acm.org/10.1145/1807167.1807184

[9] Jouili, Salim, and Valentin Vansteenberghe. "An empirical comparison of
graph databases." In Social Computing (SocialCom), 2013 International
Conference on, pp. 708-715. IEEE, 2013.

[10] Neo4j. http://www.neo4j.org/.

[11] Redis Graph: https://github.com/tblobaum/redis-graph

[12] https://snap.stanford.edu/data/soc-LiveJournal1.html

[13] http://www.ibm.com/developerworks/library/os-giraph/

[14] Minyang Han, Khuzaima Daudjee, Khaled Ammar, M. Tamer Ozsu,
Xingfang Wang, Tianqi Jin. An Experimental Comparison of Pregel-like
Graph Processing Systems

