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Abstract— Graph databases use the concepts of nodes, edges,these databases use their own underlying KVS whiokides

and properties to represent and store data. Graph atabases
provide index-free adjacency, with every element cgaining a
direct pointer to its adjacent element, removing tle need for index
lookups. As they depend less on a rigid schema, thare more
suitable to manage ad hoc and changing data with elwing
schemas.

ZHT is a zero-hop distributed hash table Key-ValueStore
(KVS). It is designed to handle the requirements ohigh-end
computing systems, providing rapid, decentralized ecess to
key/value pairs.

In this project we built a limited implementation of a graph
database - ZHT+, which leveraged the ZHT KVS. We tan ran
benchmarks including Depth First Search (DFS), Bredth First
Search (BFS), and PageRank on a standard data settlwZHT+
and Neo4j, as well as limited testing on Giraph an&raphLab, to
compare the performance of ZHT+ on various configuations of
up to 50 virtual machines (VM) on Amazon EC2.

At the scales we tested, ZHT+ handled up to 16 clits with no
degradation in performance. With Neo4j there was soe
degradation in performance as the number of clientswas
increased. However, since both systems are meant foigh-end
computing systems with thousands of clients, furthretesting will
be needed at much larger scales.
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considerable performance benefits.

It is clear in the performance evaluation of ZHT[Z] that
it fares better than other KVSs, especially atdasgales. We
have leveraged the advantages ZHT provides, likgt-fa
tolerance, high-performance, and optimization foighh
performance computing, to develop the ZHT+ graphlukse to
provide a distributed graph database especialkedud high
performance computing at very large scales.

Il. PROBLEM STATEMENT

Graph databases generally use a KVS to store mutiedge
information. The performance of the graph datalmteerefore
directly dependent on the speed of that KVS, esfigdit large
scales. Currently, no graph database has beenrimapted to
take advantage of ZHT’s performance advantages.

The contributions of this paper are as follows:

« Design and implementation of ZHT+, a graph databadée
on top of ZHT, a light-weight, high performanceulfa
tolerance, persistent,
distributed hash table, optimized for high-end catimy.

« Support for graph specific operations like add get for
nodes, edges, node properties and edge properties.

¢ Benchmarks using DFS, BFS, and PageRank on up to 49

server nodes and up to 16 concurrent clients.

dynamic and highly scalable

|. BACKGROUNDINFORMATION . . . .
e Evaluation and comparison with commercial

~ Graph databases provide a different way of storing databases like Neo4j, GraphLab and Giraph.
information when compared to the traditional relatil database

graph

management systems (RDBMS) or even some NoSQL 1.

databases. These databases need to store the daliatributed
fashion while exposing a unified API to perform ges.

Compared with relational databases, graph databa®es

often faster for associative data sets, and mae mioectly to
the structure of object-oriented applications. Tlay scale
more naturally to large data sets as they do pi¢ayly require
expensive join operations.

There are well known graph databases availableNé@4j,
Giraph, GraphLab, Allegro, and GraphBase. All @ithprovide
similar features with few distinctive features oedners. All of

RELATED WORK

There are several existing graph databases suble@j,
Giraph, GraphLab, Allegro, GraphBase and there Haeen
previous experiments to benchmark such databagid[$R
We leveraged this previous work in making desigoicds and
attempted to re-use tools for the benchmarking rexeats.

However, the largest portion of related work is Zkelf.
We used this fully functional KVS system to implamheur
graph database system. As such, we did not impleeargnof
the work related to the actual storage and retrigivdata.



IV. ZHT+ DESIGN ANDIMPLEMENTATION

We leveraged the work done previously with ZHT ey
to build a graph based storage system on top afistsibuted
key-value store. Given that ZHT already handledikg&ibuted
storage and offers excellent availability and féolktrance along
with minimal latencies, we explored how to bestrespnt a

graph by using ZHT and take advantage of the desig

considerations made in ZHT.

A. Scope Limitations

We did not develop a full-fledged graph databasth wi
features to support a query language, transactiamgjme
failover, monitoring, etc. The main goal of thisject was to
implement a basic graph database that is ablete data in the
form of a graph (nodes and relationships) by ugiry and
implement some basic algorithms like DFS, BFS aagielRank
to see how well it fares in comparison to othepgrdatabases,
purely in terms of the execution time of these athms.

ZHT is designed to target large distributed systesfis
thousands of nodes or more with similar numbeddiefts. For
our project we were limited to a total of 50 noddistributed in
various ways between client and server nodes. mbkans that
in many cases we were unable to load the systdimienfly to
measure performance degradation.

B. Design Considerations

Graph databases need to store nodes, edges, galtig®
for them. We considered different ways to stors¢heseparate
ZHT KVS's for each, separate entries in a singleTA4V/S, or
as a compound object with a single entry in ond Z4VS.
Since the goal was to maximize performance, wedaecthat
minimizing the number of trips across the netwoduld be the
primary goal. A network transaction would be in theec range
while serialization/deserialization would be in theec range.

The second major design decision was how to stigese
And edge goes from node A to node B. This candre &t either
node A, node B, or both. Depending on the usagheofiraph
database, any of the three options could be agptepiFor
quickly traversing a graph, storing the edge ingberce node
A is important. For quickly determining what othmrdes point
to a node, storing the edge in the target nodeil@psrtant. For
easy removal of nodes and associated links, stthiemgdge in
both nodes would be easiest. Since our benchmarisisted of
inserting nodes and edges and traversing the tseaing the
edges in only the source node A was sufficient.

C. Protocol Buffer

To store multiple elements in a single key/valué, pae
decided to use Google’s Protocol Buffer [6] to akze the data.
Protocol buffers allow the developer to specifygstrecture in a
way similar to C++, Java, and other structured laggs. These
structures - messages - are then compiled intabsgeyspecific
code that allows serialization/deserialization aimdple access
to the elements. Messages are composed of eleltiettare
required, optional, or repeated and can be bapiestpr other
messages types.

We created three message types - Node, Edge, apdrBr.
A Node consists of an optional nodelD of type sfygmn optional
name of type string, a repeated edge_source of Bgue, a

repeated edge_target of type Edge, and a repesipédrty of
type Property. An Edge consists of an optional Hogd type
string, an optional name of type string, an optigoarce of type
string, an optional target of type string, optiodiaécted of type
bool, and a repeated property of type Property. rApérty
consists of an optional propertylD of type strilag, optional
pame of type string, an optional value of typengtri

Some of these elements were redundant or for gegstire
use. The node ID is the key for the ZHT KVS, butals® stored
it in the Node nodelD. While we supported both dei® and a
name, for testing we used the same string for Bk did the
same thing with the edgelD and name and the prdpeend
name. Since we were working exclusively with diegcgraphs,
we always created nodes with Edge.directed setum tAs
previously noted, we did not implement node remosalthe
Node.edge_target element was not used.

D. Private Methods

Low level private methods were implemented
serialize/serialize the protocol buffers and toesscthe various
elements of the structure using ZHT’s insert, Iqokappend,
and remove API's and the methods supported by @oogl
Protocol Buffers. These were then wrapped in tHaipW\Pls
of the ZHTplusClient class.

to

For repeated elements in protocol buffers, direcess to
specific elements is only supported based on theroof
insertion. Therefore to get the value of a spe@fament, the
list of elements must be traversed until the ddsglement is
found. While this may not be the most desirablehwetfor
random access, traversal of the entire graph dsrsisisiting
every element in the list, so there is no perforceasost for this
method of access.

Likewise, removal of only the last element in tlet Is
supported. Thus removal of a random element couold be
implemented by swapping the item to be removed thithlast
element and then removing it from the end of tisé& [This
operation was not implemented as part of our ptogscthe
removal of nodes, edges, and properties was noireel

E. Public APIs
In addition to the constructor and destructor fier ¢tlass, we

implemented the following basic methods: addNode,
addNodeProperty, addNodeEdge, addNodeEdgeProperty,
getNodePropertyValue, getNodeEdgeTarget, and

getNodeEdgePropertyValue. These allowed us to erda
required benchmarks to insert and traverse a giidmy would
also provide the basis for searching the graphdasenode or
edge properties.

Remove methods were not implemented for this ptdgc
two reasons. At the low level, removing propertesl edges
from repeated elements in protocol buffers is meyeBut at a
higher level, removing nodes requires one of twatsgies.

The first strategy is to simply remove the node amgedges
that originate from it. This could be easily accdisiped by
simply deleting the node from the ZHT KVS. Howevthis
would leave any edges that point to that node mandlithout
the Node.edge_target there would be no way totfinde edges
stored as part of the nodes pointing to it. Thagdrsing an edge



would require verifying that the target node stiftists and
optimally, removing the edge if it did not. Nodemaval, edge
insertion, and edge removal would all be singleengygerations,
but edge traversal would be slower.

The second strategy is to store an edge in botsoilnee and
target nodes. This would require modifying two redehen
inserting an edge, doubling the time for edge tiwer Edge
removal would also require modifying two nodes. Reimg a
node would require modifying all the nodes with eslgointing
to the removed node. This would mean that all ramgiedges
would be valid, but there could be a significantfgenance
penalty at node removal time.

The choice between these two methods depends on t

specific use case for a particular graph datatresterice.
F. Traversal Algorithms

value for each of the nodes pointed to by its edBest three
iterated through the map collecting and sortingttperesults.
We chose twenty for our benchmark, but any numpeouhe
total number of nodes could be sorted and displayad three
could either be included on every iteration to Higpthe
progressive calculation, or after all the part itevations were
completed to display only the final results.

V. EVALUATION

In this section, we will describe the performanéZHT+
through latencies and throughput of general ZHTeratons
lowed by latencies for DFS, BFS and PageRan@&réhgns.
irstly, we will introduce the testbed and bencHmar
configuration. Secondly a comprehensive performance
evaluation will be presented. We will compare ZHWith

Three algorithms were implemented - DFS, BFS, and\€04j, a graph database offering similar featuodiswed by

PageRank. These were used to benchmark ZHT+ agsirest
graph databases. Well documented designs existlftiree of

these algorithms, so an appropriate design wastsedlbased on
our ZHT+ implementation. All three were implementad

single-threaded functions but using private methfmtsbest

performance.

DFS was implemented as a recursive function wittaat
node specified. The result was the total numbeodgs visited,
the number of unique nodes visited, and the amotitime
required to complete the traversal. The recursiwvection
incremented the nodes visited count and returneakidiately if
the node had already been visited. Otherwise, tte rwas
marked as visited using a hash table, the uniqdeswisited
count was incremented, the edges were retrieved, the
recursive function was called for each of the nqa@sted to by
the edges.

BFS was implemented using a queue with the stae pash
onto the queue. The result was the total numbeodés visited,
the number of unique nodes visited, and the amotitime
required to complete the traversal. While the queas not
empty, a node was popped from the queue, the nasliésd
count was incremented, and if the node had alrbedw visited,
the queue was checked for another node. Otherthisapode
was marked as visited using a hash table, the animdes
visited count was incremented, the edges wereevet, and
each of the nodes pointed to by the edges was pustie the
queue.

PageRank is an iterative algorithm requiring midtjpasses
through the graph beginning from a start node. g/thie same
counts and time were produced, the result alsoded the top
twenty pages ordered by pagerank. Usually thetiterewould
continue until the desired top number of results loger
change. However, since we did not know how mamgtins
this would take, we limited our passes to ten. ¢beée could
easily be modified to continue until the top resuib longer
changed. The algorithm consists of three partdrdversal and
initialization, 2 - traversal and calculation, 3op pagerank
selection and sorting. Part one, which was dong onte, was
a simple BFS with each node’s ID inserted into g mwih its
value initialized to 1.0. Part two, repeated eaetation, was a
BFS with each node’s previous value distributed ttiee new

GraphLab and Giraph, more advanced graph processing
frameworks.

A. Testbed, Metrics and Workload

We used Amazon AWS c3.large EC2 instances powsred
2 vCPUs and 3.75 GB of memory. We have evaluate@+Zat
different scales of server instances (upto 49)asm at different
scales of concurrent clients (upto 16).

We have created cluster setup and execution sasipich
uses AWS API along with 1AM profiles which can bsed to
setup ZHT+ at different scales and collect evatumatiesults
from multiple clients.

The basic operations ZHT+ supports include addNode
addEdge, addNodeProperty, addEdgeProperty,
lookupNodeProperty and lookupEdgeProperty. One aade,
one of the ZHT server-client pairs are deployedneigt ZHT
instances. Clients sequentially send all the raquibsough a
ZHT+ Client API for the operations mentioned above.

The dataset used for evaluation is LiveJournaligboc
Network [12].

The metrics measured and reported are:

Latency: The time taken for a request to be subrhiftom

a client and a response to be received by thetgclien
measured in milliseconds. Since the latencies obuwa
operations (insert/lookup/remove) are fairly close, use
average of the three operations to simplify results
presentation. Note that the latency includes thwdarip
network communication and storage access time.

e Throughput: The number of operations
(insert/lookup/remove) the system can handle owvenes
period of time, measured in Kilo Ops per second/s.

Ideal Throughput: Measured throughput between todes
times the number of nodes.

Efficiency: Ratio between measured throughput atehli
throughput.



B. Latencies

DFS
3000

2500

N

000
\ ——DFs(1)

——DFS(2)

\ DFS(3)

—— DFS(4)

Latencyinms
v
(=]
o

—— DFS(5)

=

000

500

1 2 4 16 32 49

ZHT+§iodes
Figure 1 — DFS Latency

We ran DFS algorithm multiple times starting froiffedent
start nodes. DFS(1), DFS(3), DFS(4) and DFS(5)ensad
through 2729 nodes each whereas DFS(2) traversauaigtn 98
nodes. Figure 1 shows that the latency is aroubsl &. 1-node
scale and drops down to 1.5s at 49-node scale.ihgai the
trend we should see very less latency at very lacmes
indicating the high performance nature of undedyHT key-
value store.
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Figure 2 — BFS Latency

Similarly, we also ran BFS algorithm multiple timstarting
from different start nodes. Figure 2 shows thatlttiency is
around 2.5s at 1-node scale and drops down toat 48-node
scale.
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Figure 3 — PageRank Latency

We ran PageRank algorithm starting from node 5 whic
would traverse around 2729 nodes. Our implememtatib
PageRank internally uses DFS and performs 10ib@sain one
single run. Figure 3 shows a very similar trend&S but the
latency being 11 times (1 initialization plus 10ccdations).

C. Throughput

We have performed experiments on every basic dperat
ZHT+ supports i.e. addNode, addEdge, addNodePsgpert
addEdgeProperty, lookupNodeProperty and
lookupEdgeProperty. The throughput increases iseeaear-
linearly with scale, reaching nearly 220 ops/sef9ahode scale.
One thing to note here is addNode internally penfor2
different ZHT operations (lookup and add) and
addNodeProperty and addEdgeProperty internallyopag 3
different ZHT operations (lookup, delete and add).

Throughput

250

200

= Add-Node
s Add-Edge

I
]

+ Add-Node-Property
—— Add-Edge-Property

Lookup-Node-Property

= Ops/sec

8

«—Lookup-Edge-Property

1 2 4 16 32 49

zHT+Riodes
Figure 4 — Throughput (single client)

We have performed similar experiments on concurrent
client-server pairs ranging from 1 to 16 nodes.dl'gerved that
there was no degradation in performance at 1 arutidrts. We
see similar throughput trend when run with 1-cliedince all
add operations delivers around the same throughymitiave



considered average of all add operations. Thergfaevill see
only Read and Insert operations plotted in thiplgra
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Figure 5 — Throughput (multiple clients)

D. Scalability and Efficiency

We have investigated the efficiency of ZHT+ when
compared to the performance with multiple servedeso
Efficiency is measured throughput divided by idisabughput.
Figure 6 considers the 1-node scale will performl1@0%
efficiency and eventual change in efficiency as sgale the
servers. We feel that the drop in efficiency weisetkie to being
unable to fully load the servers. We can see tldatNade
performs the worst as the time remains exactlpéme even as
more server nodes are added. The lookupNodeProperdy
lookupEdgeProperty perform somewhat better as tidrep
somewhat as server nodes are added, but thispsoprtional.
We would need to evaluate our system at extremk goa
understand the true impact on efficiency.
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Figure 6 — Efficiency
E. Neo4j

Neo4j is a persistent graph database that can dx: fos
enterprise deployments. It features fully ACID sactions,
meaning that it enforces that all operations thatify data
occur within a transaction to guarantee that datansistent. It

can scale to billions of node and relationships aadk with
multiple instances of Neo4j to form a high availépicluster,
thus improving data availability and featuring degdundancy
through replication. A single instance can itselhdile billions
of nodes and relationships however we can scateifhprove
throughputs with little impact on performance of tiatabase.
The queries work through ‘traversals’ in the graphich are
analogous to ‘join’ operations in relational datsds Neo4J can
perform millions of traversals per second.

Neo4J can be setup in HA cluster mode, enablingetjon
between nodes in the cluster. The configuratiolofed Master-
Slave architecture. When a new cluster is staréath @ode is
configured on how to reach all the other nodesiefduster and
after joining a master is elected. Any new nodesated and
joining past this point, join in as a slave. Slavedl
automatically synchronize with the master at a leggnterval
which can be configured with ha.pull_interval. Whemode
goes down or is unreachable, it is marked as “utedla”. If
the master goes down, a new master is elected whicthen
broadcast its availability.

The architecture is designed in master-slave fqrrihed
master always needs to have a complete view afdtabase. In
order for the master to maintain a complete view,\arites that
are going through the slaves needs to be replitatés: master
before an acknowledgement is made. This meansoitie will
be acquired on both master and slave. When thsaction
commits it will first be committed on the masterdathen, if
successful, on the slave, thus making the madiettieneck for
writes. The slaves also need to update themsefdeshe maser
before attempting a write transaction and as suchew
performance is much better if the writes happetih@tmaster.
When updates are made on the master, by defatrledt to
replicate to at least 1 node (this can be changdédfor better
performance / a higher number for higher data rddoay)
before completing the transaction. The rest of edaare
optimistically updated i.e. even if some slave$ taireceive
updates (as long as at least one receives it)ilvewstceed the
transaction. HA configuration is usually complensehby a
load balancer which load balances between all nddesreads
in this configuration scale linearly but the writese still
bottlenecked at the master.

We created a VPC and configured all the privaterfates
in the VPC (these interfaces were defined and tmedll the
inter-cluster communication, there was no othdfitran this
subnet). We set the ha.pull_interval = 10s (defir®s often the
slaves will sync up with the master). Replicatioaswset to 1
node, i.e. master succeeds the transaction ifaat lene slave
receives the update. All benchmarks were run dyremt the
master node for consistency.

The graph was loaded using a cypher query withogri
commits. Being an ACID database, all transactiomse a
completely flushed down to the disk and when logdarge
graphs this might cause an issue with performanceescan
instead force periodic commits where the transastire held
in memory until a certain threshold and then flusteethe disk.
In this case we set the periodic commits to 1000s €an be
made much larger for large graphs with millionenfries, this
is only limited by JAVA heap space which can bended. In



this case the graph load times for 3-32 nodesligtetly worse

than 1 node case but very close to each otheristhiscause in
HA mode, the updates are synced with at least tmer oode
on flush to disk [if the replication was set towke would have
received near 1 node performance stats but lostooutlata
redundancy]. For loading the graphs, we used piercmmmits

with cypher queries, which means that the 'n' (goméble

parameter) transactions were held in memory befashing

them down to the disk. This helped improve perforceafor

graph loading. For multiple node cases, we ran iplelt
instances of the benchmark scripts from multipients and
then average the throughput performance to plotstiaing

trend.
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Figure 7 — Neo4j Throughput

In Figure 7 the top 2 lines (lookups / read opered) are
much faster than write operations and that is ebepeaevith the
difference being even more drastic in HA configiomd
because writes are even slower.

The graph shows the expected trend where readseity
much similar performing across different node cgufations,
this is because all reads were from one node. Thawggdon't
have a graph for multiple node , multiple clienhfigurations,
that config with a load balancer would have yieldedose to
linear scale up [This was verified with 1,3 and d4de
configuration]

For the bottom add/write operations we can clesely the
performance dropping from 1 node and then stayitafively
constant. This was expected to due the additioaplfcation to
at least 1 slave and remains constant becausealitays at least
1 slave irrespective of the cluster size.
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Figure 8 — Neo4j BFS

Figure 8 shows Breadth first search starting atewifit
nodes. The performance stays relatively the samesse in this
case there are no writes and therefore there anpatetes to the
slave nodes and since the benchmarks were runeomaster
which has the complete view of the database, thjgsst like
running it on a single node.
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Figure 9 — Neo4j DFS
Figure 9 shows very similar results for Depth fgsarch.
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Figure 10 — Neo4j PageRank

Pagerank shown in figure 10, unlike BFS and DF8lves
updating the edges of the nodes with new rank imédion and
therefore the performance for HA is not in-linetwibe 1-node
case. The time to run it increases from 1-node-tods and
then stays more or less the same.
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In Figure 11 we see that for 1 node we see an ingonent in
read performance when increasing the clients fraim 2, this
was surprising. This could be because, since teware over
REST, they weren't fast enough to saturate theeseRrom 2
clients onwards, we see that there is not muctopagnce gain.
For 3 node cluster size, we see that we keep ggidrformance
gains all the way until 3 nodes after that poirstérts to level.
For 4 nodes and greater we see improvements alvalyeuntil
4 nodes, this shows that the reads are actuallingdaearly
with cluster size.
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Figure 12 — Neo4j Add Node (multiple clients)

In Figure 12 we see that for write performance hbigleneck is
the master. For 1 node we see that the write paéoce is the
fastest, this is because there is no replicaticertmad in the
background. It was surprising to see an improvemant
performance with writes with multiple clients, & also worth
noting that all the clients were trying to run #ame operations,
so not sure if there is some caching in play hidmvever the
improvement in performance is definitely not lindige in the
case of reads.

F. GraphLab

We set up graphlab and loaded the graph usingtamai
API which loads the graph from csv format. We raggrank
on the graph with 10k edges and it took less ttgart3eemed
to us that the whole computation was in memoryginen that
it took so little time, we did not see much valaedistributing
the load. We also experimented with an inbuilt ARQraphlab)
to spawn multiple ec2 instances and distributeldiae. It is
vastly different from ZHT+ (not even a persisteatabase and
more of a processing framework).

Benchmarking throughput, reads and writes doesaken

sense. We can measure the execution times of sariou

algorithms.  Unfortunately we couldn’t find much
documentation around for BFS / DFS (if it is inljuidut we did
run PageRank and saw that it was extremely fastbginly
because the computation was completely in memdtrypok
less than 3s for the PageRank

It also has an execution framework to define arirenment and
parallelize tasks. Has support for AWS where it can
automatically spawn instances and parallelize thekwthis is
still needs to be experimented / benchmarked upomever
given that it is so ridiculously fast [ took lessah 3s for the
PageRank ], is not a persistent database and biregyis in
memory, it doesn’t make sense to compare with ZHT+.

G. Apache Giraph

Giraph is a an iterative graph processing systeiit fou
high scalability. The system is built based on Bsykchronous
Parallel (BSP) model of distributed computing. Iiraph,
graph-processing programs are expressed as a seqoén
iterations called supersteps. During a supershepframework
starts a user-defined function for each vertexceptually in
parallel. The user-defined function specifies tbbdviour at a
single vertex V and a single superstep S. The fomctan read
messages that are sent to V in superstep S-1,/sesshges to
other vertices that are received at superstep$wllyedify the
state of V and its outgoing edges. Messages afeatjjpsent
along outgoing edges, but you can send a messang te@rtex
with a known identifier. Each superstep represatamic units
of parallel computation. Figure 13 illustrates t&eecution
mechanism of the BSP programming model.

Processors
Local
Computation
Communication
Sarmer |

Synchronisation

Figure 13 — Bulk Synchronous Parallel model

Giraph jobs run on Hadoop infrastructure as it tages the
map phase of mapreduce. Giraph does in-memory gsoae
which speeds up performance. This can also leadtemory
bottleneck when dealing with very large datasedilegto a lot
of inter-vertex messages.

Giraph is a very different graph processing system
compared to a graph database like ZHT+ or Neo03j. [1



H. ZHT+ vs Neo4j e
We feel that Neo4j is the most direct comparisorthwi s

ZHT+. Therefore the following graphs compare the 200
performance of these two graph databases. - \\\
Insert Operations per Second 1500

Servers

——1xZHT+

Time in msec

1000
—e—2 X ZHT+ o
s 500

—8—8 X ZHT+ 0
1 2 B 8 16 32 49

) —e—16x2HT
150 \ ——ZHT+ ——Neodj Number of Server Nodes
1xNeod
0
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Figure 16 shows the time in msec for one cliemtamplete
the benchmark DFS for various numbers of serveng. DFS
for ZHT+ is being done on the client while the DiBENeo04j is
Figure 14 — Insert Operations an inbuilt function. The time for Neo4j is signiictly faster
than ZHT+, though it does not improve with addidbeerver
nodes while ZHT+ does improve somewhat.

Number of Clients

Figure 14 shows the insert operations per secondligat
for various numbers of clients and servers. A fuial line
would indicate that the server scales linearly wittdegradation BES
as the number of clients increases. The ZHT+ liaes 3000
horizontal with somewhat greater performance asitimeber of
servers increases. The Neo4j lines all slope dowehwith the

2500

most dramatic fall in the single server configuratiHowever, 2000
at the limited scales tested, Neo4j significantlytperforms 1500
ZHT+.
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Figure 17 — BFS Operations
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Figure 17 shows the time in msec for one cliemaimplete
: the benchmark BFS for various numbers of servegsird the
BFS for ZHT+ is being done on the client while BES for
Neo4j is an inbuilt function. The time for Neodjsignificantly
s faster than ZHT+ with a single server node, but ZHtfiproves
dramatically with additional server nodes while Mieemains
Figure 15 — Read Operations about the same.
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Figure 15 shows the read operations per secondipet for
various numbers of clients and servers. A horiZdima would
indicate that the server scales linearly with ngrddation as the

number of clients increases. The ZHT+ lines arézbatal with 5
four times greater performance per client as thebar of 10

PageRank

servers increased from 1 to 16. The Neo4j linessklpe I
downward with the most dramatic fall in the singlerver 2 e
configuration. At the limited scales tested, Necgljll .
outperforms ZHT+, but the single server performaaaeapidly DL S
falling towards that of ZHT+. 0
1 2 4 8 16 32 49
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Figure 18 — PageRank Operations

Figure 18 shows the time in seconds for one client
complete the benchmark PageRank for various numbkers
servers. PageRank is not built into Neo4j, so Pagkhs being
done on the client for both ZHT+ and Neo4j. Thestifor ZHT+



is exactly what is expected - the 11 BFS passedegemeans
that PageRank for ZHT+ takes almost exactly 11 diamlong
as BFS. However, when PageRank is run on a cleatugh a
REST interface to Neo4j, it is significantly slowtean ZHT+.

I. ZHT+ Performance Summary

In our testing, ZHT+ was slower than Neo4j in eveagt
except PageRank. We checked the underlying ZHE @adtl
found that they also did not perform as well aseexgd. We
checked the benchmark included with ZHT and it sbw
similar performance. We do not have a good expilamebr
this.

ZHT+ did perform as expected regarding scalability.
showed no decline in performance as additionahtdiavere
added. The per client operations stayed the sanamingethat
N times as many clients produced N times the nurobéstal
operations. However, we do not feel that the laadthe server
nodes were anywhere near capacity so this is eagbémt lightly
loaded systems.

VI. FUTUREWORK

Higher loads: At the scales that we tested, ZHTalest
perfectly - access time per client node was notirdghed as
additional client nodes were added. But with atliohi50 nodes,
we feel that we were unable to sufficiently load ZHT KVS.
Additional benchmark testing should be conductedasjer
scales so that the ZHT server nodes are beingditillged and
performance begins to degrade.

Additional features: Support for node, edge, ambperty
removal should be added. Ideally, both scenariasildhbe
supported - full edge removal at node removal agaticedge
removal at edge traversal. This would allow optatian of the
specific ZHT+ instance by selecting the desired awsh
method.

Query language: An interface should be added byhvhi
user could query ZHT+ for nodes and edges basethe&in
properties. The most useful results would probakelyeither an
iterator of all matches or sorted results basepamerank value.

VIl. CONCLUSION

ZHT+ is a limited scope implementation of a grapkathase
using ZHT. Due to its distributed nature, thenedentral point
where performance bottlenecks will occur. Theradsmaster
for reads or writes, no replication of data acraésodes, and
no load balancer. Each client goes directly togbever node
containing the desired data. We have shown that rtiodel

scales extremely well as long as the distributiicacsess (either
reads or writes) is relatively uniform. Howevermfny clients
all require access to the same piece of dataettversnode on
which that piece of data resides could become oaddd while
other server nodes are underutilized. In a gemperglose graph
database, this may not be an issue. But, if usea fsocial
network type graph, this could be an issue witleritiing”
nodes.
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