


•  Quiz #3 answers 
•  Project Proposals  
•  Feedback before Wednesday 

– Some groups might get a 2nd chance to redo 
proposals 

•  Will post reading assignments today 
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•  Plan for rest of the semester 
– MapReduce/Hadoop 
– Swift 
– Spark/Sparrow/Mesos 
– Ceph 
– Lustre/GPFS/PVFS 
– More to come 
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•  Want to: 
– Process lots of data ( > 1 TB) 
– Automatically parallelize across hundreds/

thousands of CPUs 
– Have status and monitoring tools 
– Provide clean abstraction for programmers 
– Make this easy 
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•  “A simple and powerful interface that 
enables automatic parallelization and 
distribution of large-scale computations, 
combined with an implementation of this 
interface that achieves high performance 
on large clusters of commodity PCs.” 

 

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”,  
Google Inc. 5 



•  Iterate over a large number of records 
•  Extract something of interest from each 
•  Shuffle and sort intermediate results 
•  Aggregate intermediate results 
•  Generate final output 

•  Key idea: provide an abstraction at the 
point of these two operations 
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•  Process data using special map() and reduce() 
functions 

•  The map() function is called on every item in the 
input and emits a series of intermediate key/
value pairs 

•  All values associated with a given key are 
grouped together 

•  The reduce() function is called on every unique 
key, and its value list, and emits a value that is 
added to the output 
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•  Borrows from functional programming 
•  Users implement interface of two 

functions: 
 

–  map  (in_key, in_value) ->  
  (out_key, intermediate_value) list 
 
–  reduce (out_key, intermediate_value list) -> 
  out_value list 
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•  Records from the data source (lines out of 
files, rows of a database, etc) are fed into 
the map function as key*value pairs: e.g., 
(filename, line). 

•  map() produces one or more intermediate 
values along with an output key from the 
input. 
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•  After the map phase is over, all the 
intermediate values for a given output key 
are combined together into a list 

•  reduce() combines those intermediate 
values into one or more final values for 
that same output key  

•  (in practice, usually only one final value 
per key) 
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•  Word frequency 
 

Map 

doc 

Reduce 

<word,3> 

<word,1> 
<word,1> 
<word,1> 

Runtime 
System 

<word,1,1,1> 
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•  Distributed grep 
–  Map function emits <word, line_number> if word 

matches search criteria 
–  Reduce function is the identity function 

•  URL access frequency 
–  Map function processes web logs, emits <url, 1> 
–  Reduce function sums values and emits <url, total> 
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How now 
Brown cow 

How does 
It work now 

brown 1 
cow 1 
does 1 
How 2 

it 1 
now 2 
work 1 

M 

M 

M 

M 

R 

R 

<How,1> 
<now,1> 
<brown,1> 
<cow,1> 
<How,1> 
<does,1> 
<it,1> 
<work,1> 
<now,1> 

<How,1 1> 
<now,1 1> 
<brown,1> 
<cow,1> 
<does,1> 
<it,1> 
<work,1> 

Input Output 
Map 

Reduce 
MapReduce 
Framework 

13 



1.  The user program, via the MapReduce 
library, shards the input data 

User 
Program Input 

Data 

Shard 0 
Shard 1 
Shard 2 
Shard 3 
Shard 4 
Shard 5 
Shard 6 

* Shards are typically 16-64mb in size 
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2.  The user program creates process 
copies distributed on a machine cluster. 
One copy will be the “Master” and the 
others will be worker threads. 

User 
Program 

Master 

Workers 
Workers 

Workers 
Workers 

Workers 
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3.  The master distributes M map and  R 
reduce tasks to idle workers. 

–  M == number of shards 
–  R == the intermediate key space is divided 

into R parts 

Master Idle 
Worker 

Message(Do_map_task) 
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4.  Each map-task worker reads assigned 
input shard and outputs intermediate 
key/value pairs. 

–  Output buffered in RAM. 

Map 
worker Shard 0 Key/value pairs 
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5.  Each worker flushes intermediate values, 
partitioned into R regions, to disk and 
notifies the Master process.  

Master 

Map 
worker 

Disk locations 

Local 
Storage 
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6.  Master process gives disk locations to an 
available reduce-task worker who reads 
all associated intermediate data.  

Master 

Reduce 
worker 

Disk locations 

remote 
Storage 
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7.  Each reduce-task worker sorts its 
intermediate data. Calls the reduce 
function, passing in unique keys and 
associated key values. Reduce function 
output appended to reduce-task’s 
partition output file. 

Reduce 
worker 

Sorts data Partition 
Output file 
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8.  Master process wakes up user process 
when all tasks have completed.  Output 
contained in R output files. 

wakeup User 
Program Master 

Output 
files 
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1.  Partitions input data 
2.  Schedules execution across a set of 

machines 
3.  Handles machine failure 
4.  Manages interprocess communication 
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•  map() functions run in parallel, creating 
different intermediate values from different 
input data sets 

•  reduce() functions also run in parallel, 
each working on a different output key 

•  All values are processed independently 
•  Bottleneck: reduce phase can’t start until 

map phase is completely finished. 
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•  Master program divvies up tasks based on 
location of data: tries to have map() tasks 
on same machine as physical file data, or 
at least same rack 

•  map() task inputs are divided into 64 MB 
blocks: same size as Google File System 
chunks 
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•  Master detects worker failures 
– Re-executes completed & in-progress map() 

tasks 
– Re-executes in-progress reduce() tasks 

•  Master notices particular input key/values 
cause crashes in map(), and skips those 
values on re-execution. 
– Effect: Can work around bugs in third-party 

libraries! 
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•  No reduce can start until map is complete: 
– A single slow disk controller can rate-limit the 

whole process 
•  Master redundantly executes “slow-

moving” map tasks; uses results of first 
copy to finish 
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•  MapReduce has proven to be a useful abstraction  
•  Greatly simplifies large-scale computations at Google  
•  Functional programming paradigm can be applied to 

large-scale applications 
•  Fun to use: focus on problem, let library deal w/ messy 

details  
•  Greatly reduces parallel programming complexity 

–  Reduces synchronization complexity 
–  Automatically partitions data 
–  Provides failure transparency 
–  Handles load balancing 
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•  Open source MapReduce implementation 
– http://hadoop.apache.org/core/index.html 

•  Uses  
– Hadoop Distributed Filesytem (HDFS) 

•  http://hadoop.apache.org/core/docs/current/
hdfs_design.html 

– Java 
– ssh 
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