

•  Quiz #3 answers
•  Project Proposals
•  Feedback before Wednesday

– Some groups might get a 2nd chance to redo
proposals

•  Will post reading assignments today

2

•  Plan for rest of the semester
– MapReduce/Hadoop
– Swift
– Spark/Sparrow/Mesos
– Ceph
– Lustre/GPFS/PVFS
– More to come

3

•  Want to:
– Process lots of data (> 1 TB)
– Automatically parallelize across hundreds/

thousands of CPUs
– Have status and monitoring tools
– Provide clean abstraction for programmers
– Make this easy

4

•  “A simple and powerful interface that
enables automatic parallelization and
distribution of large-scale computations,
combined with an implementation of this
interface that achieves high performance
on large clusters of commodity PCs.”

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”,
Google Inc. 5

•  Iterate over a large number of records
•  Extract something of interest from each
•  Shuffle and sort intermediate results
•  Aggregate intermediate results
•  Generate final output

•  Key idea: provide an abstraction at the
point of these two operations

6

Map

•  Process data using special map() and reduce()
functions

•  The map() function is called on every item in the
input and emits a series of intermediate key/
value pairs

•  All values associated with a given key are
grouped together

•  The reduce() function is called on every unique
key, and its value list, and emits a value that is
added to the output

7

•  Borrows from functional programming
•  Users implement interface of two

functions:

–  map (in_key, in_value) ->
 (out_key, intermediate_value) list

–  reduce (out_key, intermediate_value list) ->
 out_value list

8

•  Records from the data source (lines out of
files, rows of a database, etc) are fed into
the map function as key*value pairs: e.g.,
(filename, line).

•  map() produces one or more intermediate
values along with an output key from the
input.

9

•  After the map phase is over, all the
intermediate values for a given output key
are combined together into a list

•  reduce() combines those intermediate
values into one or more final values for
that same output key

•  (in practice, usually only one final value
per key)

10

•  Word frequency

Map

doc

Reduce

<word,3>

<word,1>
<word,1>
<word,1>

Runtime
System

<word,1,1,1>

11

•  Distributed grep
–  Map function emits <word, line_number> if word

matches search criteria
–  Reduce function is the identity function

•  URL access frequency
–  Map function processes web logs, emits <url, 1>
–  Reduce function sums values and emits <url, total>

12

How now
Brown cow

How does
It work now

brown 1
cow 1
does 1
How 2

it 1
now 2
work 1

M

M

M

M

R

R

<How,1>
<now,1>
<brown,1>
<cow,1>
<How,1>
<does,1>
<it,1>
<work,1>
<now,1>

<How,1 1>
<now,1 1>
<brown,1>
<cow,1>
<does,1>
<it,1>
<work,1>

Input Output
Map

Reduce
MapReduce
Framework

13

1.  The user program, via the MapReduce
library, shards the input data

User
Program Input

Data

Shard 0
Shard 1
Shard 2
Shard 3
Shard 4
Shard 5
Shard 6

* Shards are typically 16-64mb in size

14

2.  The user program creates process
copies distributed on a machine cluster.
One copy will be the “Master” and the
others will be worker threads.

User
Program

Master

Workers
Workers

Workers
Workers

Workers

15

3.  The master distributes M map and R
reduce tasks to idle workers.

–  M == number of shards
–  R == the intermediate key space is divided

into R parts

Master Idle
Worker

Message(Do_map_task)

16

4.  Each map-task worker reads assigned
input shard and outputs intermediate
key/value pairs.

–  Output buffered in RAM.

Map
worker Shard 0 Key/value pairs

17

5.  Each worker flushes intermediate values,
partitioned into R regions, to disk and
notifies the Master process.

Master

Map
worker

Disk locations

Local
Storage

18

6.  Master process gives disk locations to an
available reduce-task worker who reads
all associated intermediate data.

Master

Reduce
worker

Disk locations

remote
Storage

19

7.  Each reduce-task worker sorts its
intermediate data. Calls the reduce
function, passing in unique keys and
associated key values. Reduce function
output appended to reduce-task’s
partition output file.

Reduce
worker

Sorts data Partition
Output file

20

8.  Master process wakes up user process
when all tasks have completed. Output
contained in R output files.

wakeup User
Program Master

Output
files

21

1.  Partitions input data
2.  Schedules execution across a set of

machines
3.  Handles machine failure
4.  Manages interprocess communication

22

•  map() functions run in parallel, creating
different intermediate values from different
input data sets

•  reduce() functions also run in parallel,
each working on a different output key

•  All values are processed independently
•  Bottleneck: reduce phase can’t start until

map phase is completely finished.

23

•  Master program divvies up tasks based on
location of data: tries to have map() tasks
on same machine as physical file data, or
at least same rack

•  map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks

24

•  Master detects worker failures
– Re-executes completed & in-progress map()

tasks
– Re-executes in-progress reduce() tasks

•  Master notices particular input key/values
cause crashes in map(), and skips those
values on re-execution.
– Effect: Can work around bugs in third-party

libraries!

25

•  No reduce can start until map is complete:
– A single slow disk controller can rate-limit the

whole process
•  Master redundantly executes “slow-

moving” map tasks; uses results of first
copy to finish

26

•  MapReduce has proven to be a useful abstraction
•  Greatly simplifies large-scale computations at Google
•  Functional programming paradigm can be applied to

large-scale applications
•  Fun to use: focus on problem, let library deal w/ messy

details
•  Greatly reduces parallel programming complexity

–  Reduces synchronization complexity
–  Automatically partitions data
–  Provides failure transparency
–  Handles load balancing

27

•  Open source MapReduce implementation
– http://hadoop.apache.org/core/index.html

•  Uses
– Hadoop Distributed Filesytem (HDFS)

•  http://hadoop.apache.org/core/docs/current/
hdfs_design.html

– Java
– ssh

28

29

?

