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Outline

* Introduction

* FusionFS
— System Architecture
— Metadata Management
— Data Movement
— Implementation Details
— Unique Features: virtual chunks,

e Results
e Future Work

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)



Slide3 /44

Outline

* Introduction
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Background

e State-of-the-art high-performance computing
(HPC) system architecture

— Decades old

— Has compute and storage resources separated
— Was originally designed for compute-intensive
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/O Bottleneck

* Would this architecture suffice in Big Data Era
at extreme scales? Concerns:
— Shared network infrastructure
— All I/Os are (eventually) remote
— More frequent checkpointing
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Challenges at Exascales

e Let’s simulate, for example, checkpointing, at

extreme scales
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More detail available at:
ACM/SCS HPC ’13 [6]
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The Conventional Wisdom

Recent study to address the 1/O bottleneck
(without changing the current existing HPC

architecture)

— Ning Liu, et al. On the Role of Burst Buffers in
Leadership-Class Storage Systems, |IEEE MSST’12

— Pillips Carns, et al. Small-file access in parallel file
systems, I[EEE IPDPS’09
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Proposed Work

 We address the issue by proposing a new
architecture: introducing node-local storage
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Outline

 FusionFS
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Overview

* Goal: a node-local distributed storage for HPC
systems

* Design principles

— Maximal metadata concurrency
 Distributed hash table

— Optimal write throughput
* Write local disk if possible

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Architecture

* In IBM Blue Gene/P supercomputer:

0(10)
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Nodes
Storage

Nodes (SN) L 0o Compute
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Local Storage

N

|
Metadata
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Architectural change
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Directory Tree
* Physical-logical mapping

> | Node1| | Node2 |<

Physical nodes (local)

Logical view (global)
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Metadata Management

Directories vs. regular files

Keys

~/public_html/ >—

~/public_html
/index.html

~/public_html
/download/

~/public_html
/download/cv.pdf

Distributed
Hash
Table

Values

drwxrwxr-x; 4.0K; public_html/

——=>

drwxrwxr-x; 4.0K; index.html, download/

-rw-rw-r--; 423K; Node 1

drwxrwxr-x; 4.0K; cv.pdf

-rw-rw-r--; 2M: Node 2
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File Manipulation
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* Fil
ile open
Fusion Protocol: fopen() Control Message——>»
) gta Transfe relgy
NOdE'i Node_j
Application ‘ Application ‘
‘ libfuse ‘
I ‘ / / / 7’
1. fopen() [ DHT ‘i | DHT |
9. File Handler | Server | | Client |
| l \ \

ibfuse 2. DHT_lookup(}——>/  DHT lﬁj73- Loopup request | | r . /

«——5._ File Location——— Client | 4. Valye return—| | [

- \ ‘l‘ Request Queue |\

DHT Server
8. open() File Transfer File Transfer
Server Client
6. Request File "> Thread Pool )
File Transf ~—
1= rans = 7. File Transfer
Client
File Transfer
Server
lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)



File Manipulation

* File close

Fusion Protocol: fclose()

Control Message—»>

D ata Transfe r ey

Note:
* Steps 4-9 are inapplicable to read-only files

* Steps 8-9 need to be blocked for synchronous replica updating

Application

A[ 1. fclose()
10. fclose() done l

Stream of the
opened file
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FusionFS Implementation

* C/C++
* Building blocks
— FUSE (user-level POSIX interface)
— ZHT (distributed hash table for metadata)
— Protocol Buffer (data serialization)
— UDT (data transfer protocol)
* Open source:

https://bitbucket.org/dongfang/fusionfs-
zht/src

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)


https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src

Slide 17 / 44

Virtual Chunks

* One of features in FusionFS

* Goal: support efficient random accesses to
large compressed scientific data
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Background

* |n Big Data Era, many data-intensive scientific
applications’ performance are bounded on I/0O

 Two major solutions:

— Parallelize the file I/O by concurrently read or
write independent file chunks

— Compress the (big) file before writing it to the
disk, and decompress it before reading it
* Could be done efficiently at the file system layer

— transparent to end users

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Conventional Wisdom

* File systems leverage data (de)compression in
a halve manner:
— Apply the compressor when writing files
— Apply the decompressor when reading files

— Leave important metrics to the underlying
compressing algorithms
* Compression ratio
* Computational overhead

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Limitations

* File-level compression: computation overhead of
read. E.g., read the latest temperature

— Step 1: compress the entire 1GB climate data to
500MB file

— Step 2: decompress the 500MB file to only retrieve
the last few bytes

* Chunk-level compression: space overhead of
write. E.g., write 64MB data with 4:1
compression ratio and 4KB metadata

— 64K-chunk: 16MB + 4KB * 1K = 20MB
— No chunk: 16MMB + 4KB = 16 MIB

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Key ldea

* Virtually split the file into smaller chunks but
keep its physical entirety

— Small chunk: fine granularity for random accesses

* So to fix the computation overhead of file-level
compression

— Physical entirety: high compression ratio

* So to fix the space overhead of (physical)chunk-level
compression

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Motivating Example

e Asimple XOR-based delta compression

Original File\ Encoded File\
- | need the latest
Data 0 data entry
E 2 oli > Deltal
= Data 1 %
-
ﬁ XOR > Delta 2 >
T Data 2
2 YOR
£ Delta 3
- Data 3 ——\
Restored File
XOR e
e >| Deltad (27 half only)
- Data4 g
YOR N Bamd =1,
— > Delta5 . XORw |
la e B 1
T >/ Delta 6 —— -
Data6_ :
__LXOR >[Deita 7_ !
“Data i I
~Data ¥ [
I
Ref 0 :
I
B R e - > Refl f-f---m-ommmmmmoo - !
- »
| Compression s-;} | Decompression _:}
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Reference Placement

* Need to consider different strategies

— In place
* Pro: save one jJump
e Con: overhead for sequential read

TR
1+1 S | need the latest
— Coalition )
% )ll Delta 1 I 5
5 2
* Beginning or end : —_—
£ o oeta3
} L
‘r‘ll Delta 4 I %}
5 — et Je - -,
: Lol
:E:f:: [ Deitas |
e
s Belta7.
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* Turns to be very straightforward:
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Compression Procedure

Algorithm 1 VC Compress

Input: The original data D = {(dy,--- ,d,)
Output: The encoded data X, and the reference list D’

l:

A

for int1=1;1 < n; 1++) do
Xi] + encode (dg_ d;aq)

end for

for (int j = 1;j) < k: j++) do
D'[j]+ D1+ (j —1) % L]

- end for

Runs efficiently:

— Time complexity is O(n)
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But... How Many Virtual Chunks?

e Extreme cases

— 1 virtual chunk

* Same as file-level compression

— N virtual chunks (suppose there are N physical
chunks in the file)

e Same as (physical)chunk-level compression

* Find a number for good tradeoff?

— Let’s assume the requested file is located at the
end of the virtual chunk

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)



Number of Virtual Chunks

° Va riables | Variable || Description |

B, Read Bandwidth

B, Write Bandwidth

Wi Weight of Input

W, Weight of Output

S Original File Size

R Compression Ratio

D Computational Time of Decompression

* Optimum for end-to-end I/O

- { k] if F([k]) > F([k])

(/] otherwise
where
- B, W, 1 D-B,.
e[y 2w 0 (2 2
\/” 3w, mT 5 ) ()
and
(z—1)-S- W, (z—=1)-D-W; (z—1)-5-W,
F(x) = —
() r-R-DB, - T n- By,

e Short version

k= v/n (under some assumptions, refer to the paper for detail)
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Decompression Procedure

e Algorithms omitted (refer to paper for detail)
* Key steps:
— Find the latest reference (r_last) before the
starting position of the request file

— Decompress the file from r_last, until the end of
the requested data

 For file write, we also need to update values after the
decompression, and re-compress the affected portion

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Outline

 Results
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Test Bed

* Intrepid (Argonne National Laboratory)

— 40K compute nodes, each has
e CPU: quad-core 850 MHz PowerPC
* RAM: 2 GB

— 128 storage nodes, 7.6 PB GPFS parallel file system

e Others not covered by this presentation

— Kodiak, 1,024-node cluster at Los Alamos National
Laboratory

— HEC, 64-node Linux cluster at SCS lab
— Amazon EC2

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Metadata Rate

 FusionFS vs. GPFS
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Metadata Rate

 FusionFS vs. PVFS
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/O Throughput

 Write, FusionFS vs. GPFS

1000000 ~ —*—FusionFS Write
== GPFS Write

100000 =

10000

000 / A

10

Aggregate Throughput (MB /s)

1 4 16 64 256 1024
Number of Nodes
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/O Throughput

e Read, FusionFS vs. GPFS

1000 . =*=FusionFS Read (local)
=#-FusionFS Read (Remote)
) GPFS Read
= —
E /
o 100
=]
0
Z
@
o
= —n
£ 10 - ——
[+Ts]
3
2
=
|—
1
1 MB 4 MB 16 MB 64 MB 256 MB
File Size
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/0 Throughput at Extreme Scale

* Peak: 2.5 TB/s on 16K nodes:

512-nodes

1K-nodes 2K-nodes
-==4K-nodes —8K-nodes e+« 16K-nodes
3,000
16K-nodes
(=] . .
g N '.
5 2,000 : .
2"~ . . GPFS theoretical upper-
o : 8K-nodes bound throughput: 88 GB/s
® 1,500 . nodes s
< ‘ A
= WW\MWMMNWW-»\ .
1,000 J 4K-nodes \:
500 [/ ”““““—"“““—““"“‘. .
. 1 .
0 -_. ) I I I I I I I I
0

T T |“"l_1"“‘
10 20 30 40 50 60 70 80 90 100 110 120

Time (second)
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The BLAST Application

* BLAST: Basic Local Alignment Search Tool
* A Bioinformatics application that

— Searches one or more protein sequences against a
sequence database

— Calculates similarities
* Main idea: divide and conquer
— Split the database and store chunks on different nodes

— Each node searches the matching for assigned chunks
— All searches are merged into the final results

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Execution Time

 FusionFS 30X faster on 1,024 nodes

35,000  MWBLAST (GPFS) 35
32.3 30.2
B BLAST (FusionFS) 30
30,000 | speedup
)
T - 25
§ 25,000 201
0 - 20
o 20,000 2
£ 1;1}/ - 15 ©
- v
E 15,000 &
5 - 10
0
g 10,000 .
Ll
-1.4
5,000 / - 0
0 - | - .5
1 64 128 256 512 1024

Number of Nodes
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System Efficiency

* FusionFS’s sustainable efficiency:

100% \lﬂﬂ% ~—BLAST (GPFS) -
90% \ -#-BLAST (FusionFS) -
0,
80% 71%\  71% 70% 71% 69%
70% [— Pk — . 0
> 0 \ N4%
60%
g \
O 50%
£ \
= 40% \
30% \
20%
0, -
e e - S R,
0%
1 64 128 256 512 1024

Number of Nodes
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Data Throughput

* FusionFS is orders of magnitude higher

9 — —+BLAST (GPFS) 8 0c

'.:.-ﬂ.. .

@ 8 — —=-BLAST (FusionFS) /

-

26 /

=

5 /

2 1

=

v 3 222 e

® 2

x11]

o 1 0.56

o 0.01 7 0.06 0.10 0.13 0.27
1 b4 128 256 512 1024

Number of Nodes
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Virtual Chunks in FusionFS

* Setup

— 64-node Linux cluster

* each node has a FUSE mount point for POSIX and
Virtual Chunk module

e Data set

— GCRM: Global Cloud Resolving Model

* 3.2 million data entries; each entry has 80 single-
precision floats

— SDSS: Sloan Digital Sky Survey

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)



Result

 Number of virtual chunks: sqrt(n)

* Compression ratio
— GCRM 1.49 vs. 2.28 SDSS
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Outline

 Future Work
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Simulation of FusionFS at Exascales

* Approach

— Leverage CODES framework to develop a
simulator (FusionSim) to simulate FusionFS at

— Validate FusionSim with FusionFS traces

— Predict FusionFS performance at Exascales with
the Darshan logs

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Integrate FusionFS with Swift

* Approach
— Expose/develop the FusionFS API for Swift
— Test FusionFS with the Swift applications

— Ultimately an ecosystem from data management
to the underlying filesystem as an analogy of
Hadoop stack:

* MapReduce <-> Swift
e HDFS <-> FusionFS

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)
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Questions

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)



