Slide1/44

The Fusion Distributed File System

Dongfang Zhao
February 2015

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide2 /44

Outline

* Introduction

* FusionFS
— System Architecture
— Metadata Management
— Data Movement
— Implementation Details
— Unique Features: virtual chunks,

e Results
e Future Work

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide3 /44

Outline

* Introduction

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 4 /44

Background

e State-of-the-art high-performance computing
(HPC) system architecture

— Decades old

— Has compute and storage resources separated
— Was originally designed for compute-intensive

Network

workloads Fabric

I
I
AT

I I
1 I
PENEEBEN

}444

I
i
AL AU

A
N
£

o O
T
c

=]

E
@
Wt

L] é ;f

NAS

]
= Network Link(s)

N
N
7 W e ff X

& &

o / \;}//Q/’r

i/
-/

PG A N < A

(&
N
/-1

A /AT
<//,

S = ff NG = f NG = A
=1

77 2 Ay
.
T o Ay
N
mmwf
W et
__4</ Y/

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 5/ 44

/O Bottleneck

* Would this architecture suffice in Big Data Era
at extreme scales? Concerns:
— Shared network infrastructure
— All I/Os are (eventually) remote
— More frequent checkpointing

Network
Fabric
|HEREE] III T IIIIIIIIII

| N REN| I |||| |
PP l-L. PP

T ornpute ' B \..] '\ 7 \-.. 2
I ﬁesoumes °[- J./ I
NAS PP ;# 157 w/ ~

le [_J - |--\ N R
> ﬂwﬂyﬂﬁf’jﬁ?

SF S “‘;r.l

S

WA G- 4

\..,

- \‘- L
.‘}555 i

I \&3_[/

x> -4 :.::

==
- -
'\—!\\‘k f\ ?‘—\

'fﬁ' “!.'r" ‘Q:rl"” o f;" ’G.ﬁ” - f
. {

R
3 \é
L

*-. '\-. &
L]

:)
II I|IIII II I I| || ||||||| | |II| |I

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 6 /44

Challenges at Exascales

e Let’s simulate, for example, checkpointing, at

extreme scales

1000 —0— MTITF
Check+Interval
- 100 o— ——=&—— (Check
; \\\‘\
= = <
) 10 ~
Y]
£
- 1
0.1 : '
5 N NS Al
<»)\ N ‘o’»\ ,,Lbn bfb\
© N W s S

System Scale (# of nodes)

More detail available at:
ACM/SCS HPC ’13 [6]

lllinois Institute of Technology Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

Slide 7 / 44

The Conventional Wisdom

Recent study to address the 1/O bottleneck
(without changing the current existing HPC

architecture)

— Ning Liu, et al. On the Role of Burst Buffers in
Leadership-Class Storage Systems, |IEEE MSST’12

— Pillips Carns, et al. Small-file access in parallel file
systems, I[EEE IPDPS’09

e e
[P P P TR

|- Compute s s \‘
-Tesour_ces [: :
ot e et

Sl g Sl ST
b
A e P

s M/ e

-y
]S ‘Q‘ 5
s »

~ ~ E
| %;L/.\i_:_: s __f."EEEEL = s
g g g

NIRRT N R R
T w L] o = B a o T

e ,Iz P

& i A elE 3 = - T
e e ol et i
L P
8 Y O O O

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 8 / 44

Proposed Work

 We address the issue by proposing a new
architecture: introducing node-local storage

Network Fabric

Y.

/

A 1

_NAS
TTTTj

Eﬁa 2llel J Network Link(s) it

gl

4

(i

1 - 4

N

g
ey

./f/"/({ L
_§ L\ 'Zﬁ

N/ A4

ACM LSAP’11

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 9/ 44

Outline

 FusionFS

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 10/ 44

Overview

* Goal: a node-local distributed storage for HPC
systems

* Design principles

— Maximal metadata concurrency
 Distributed hash table

— Optimal write throughput
* Write local disk if possible

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 11/ 44

Architecture

* In IBM Blue Gene/P supercomputer:

0(10)
Login
Login Login
Nodes
Storage

Nodes (SN) L 0o Compute
Nodes (CN)
yd 1
. [
/ComputeNode\{
n C e storane)

Local Storage

N

|
Metadata
1/0 Nodes <nfiniBand

Architectural change

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 12 / 44

Directory Tree
* Physical-logical mapping

> | Node1| | Node2 |<

Physical nodes (local)

Logical view (global)

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Metadata Management

Directories vs. regular files

Keys

~/public_html/ >—

~/public_html
/index.html

~/public_html
/download/

~/public_html
/download/cv.pdf

Distributed
Hash
Table

Values

drwxrwxr-x; 4.0K; public_html/

——=>

drwxrwxr-x; 4.0K; index.html, download/

-rw-rw-r--; 423K; Node 1

drwxrwxr-x; 4.0K; cv.pdf

-rw-rw-r--; 2M: Node 2

Slide13 /44

lllinois Institute of Technology

Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

File Manipulation

Slide 14 / 44

* Fil
ile open
Fusion Protocol: fopen() Control Message——>»
) gta Transfe relgy
NOdE'i Node_j
Application ‘ Application ‘
‘ libfuse ‘
I ‘ / / / 7’
1. fopen() [DHT ‘i | DHT |
9. File Handler | Server | | Client |
| l \ \

ibfuse 2. DHT_lookup(}——>/ DHT lﬁj73- Loopup request | | r . /

«——5._ File Location——— Client | 4. Valye return—| | [

- \ ‘l‘ Request Queue |\

DHT Server
8. open() File Transfer File Transfer
Server Client
6. Request File "> Thread Pool)
File Transf ~—
1= rans = 7. File Transfer
Client
File Transfer
Server
lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

File Manipulation

* File close

Fusion Protocol: fclose()

Control Message—»>

D ata Transfe r ey

Note:
* Steps 4-9 are inapplicable to read-only files

* Steps 8-9 need to be blocked for synchronous replica updating

Application

A[1. fclose()
10. fclose() done l

Stream of the
opened file

~—

h 4

File Transfer
Client

Node-i

Node-j

Application ‘

libfuse]

/ /

‘«"‘ DHT |

| Client |
\ \

\ A

/
| | | ‘ ‘J

Request Queue \
\

DHT Server

4. DHT insert ~ / ,
libfuse - : ‘ DHT "/ 5. insert request / §
7. DHT _insert() OK— Client | | \ B
i | __ '«—6. insert OK——
8. Send File \
2. close() and flush() — \
3. flush() OK ‘ DHT “
| Server |

=)

File Transfer
Server

-
.

9. File Transfer il

File Transfer
Client
File Transfer
Server

Thread Pool\)-
~_ o

Slide 15 /44

lllinois Institute of Technology

Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

Slide 16 / 44

FusionFS Implementation

* C/C++
* Building blocks
— FUSE (user-level POSIX interface)
— ZHT (distributed hash table for metadata)
— Protocol Buffer (data serialization)
— UDT (data transfer protocol)
* Open source:

https://bitbucket.org/dongfang/fusionfs-
zht/src

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src

Slide 17 / 44

Virtual Chunks

* One of features in FusionFS

* Goal: support efficient random accesses to
large compressed scientific data

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 18 / 44

Background

* |n Big Data Era, many data-intensive scientific
applications’ performance are bounded on I/0O

 Two major solutions:

— Parallelize the file I/O by concurrently read or
write independent file chunks

— Compress the (big) file before writing it to the
disk, and decompress it before reading it
* Could be done efficiently at the file system layer

— transparent to end users

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide19 /44

Conventional Wisdom

* File systems leverage data (de)compression in
a halve manner:
— Apply the compressor when writing files
— Apply the decompressor when reading files

— Leave important metrics to the underlying
compressing algorithms
* Compression ratio
* Computational overhead

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 20/ 44

Limitations

* File-level compression: computation overhead of
read. E.g., read the latest temperature

— Step 1: compress the entire 1GB climate data to
500MB file

— Step 2: decompress the 500MB file to only retrieve
the last few bytes

* Chunk-level compression: space overhead of
write. E.g., write 64MB data with 4:1
compression ratio and 4KB metadata

— 64K-chunk: 16MB + 4KB * 1K = 20MB
— No chunk: 16MMB + 4KB = 16 MIB

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 21/ 44

Key ldea

* Virtually split the file into smaller chunks but
keep its physical entirety

— Small chunk: fine granularity for random accesses

* So to fix the computation overhead of file-level
compression

— Physical entirety: high compression ratio

* So to fix the space overhead of (physical)chunk-level
compression

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 22 / 44

Motivating Example

e Asimple XOR-based delta compression

Original File\ Encoded File\
- | need the latest
Data 0 data entry
E 2 oli > Deltal
= Data 1 %
-
ﬁ XOR > Delta 2 >
T Data 2
2 YOR
£ Delta 3
- Data 3 ——\
Restored File
XOR e
e >| Deltad (27 half only)
- Data4 g
YOR N Bamd =1,
— > Delta5 . XORw |
la e B 1
T >/ Delta 6 —— -
Data6_ :
__LXOR >[Deita 7_ !
“Data i I
~Data ¥ [
I
Ref 0 :
I
B R e - > Refl f-f---m-ommmmmmoo - !
- »
| Compression s-;} | Decompression _:}

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide23 /44

Reference Placement

* Need to consider different strategies

— In place
* Pro: save one jJump
e Con: overhead for sequential read

TR
1+1 S | need the latest
— Coalition)
%)ll Delta 1 I 5
5 2
* Beginning or end : —_—
£ o oeta3
} L
‘r‘ll Delta 4 I %}
5 — et Je - -,
: Lol
:E:f:: [Deitas |
e
s Belta7.

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

* Turns to be very straightforward:

Slide 24 / 44

Compression Procedure

Algorithm 1 VC Compress

Input: The original data D = {(dy,--- ,d,)
Output: The encoded data X, and the reference list D’

l:

A

for int1=1;1 < n; 1++) do
Xi] + encode (dg_ d;aq)

end for

for (int j = 1;j) < k: j++) do
D'[j]+ D1+ (j —1) % L]

- end for

Runs efficiently:

— Time complexity is O(n)

1
'
!
;
U'EUQDUUU'
o w1 o 19t 1 1o o 1oy o e 1 A e ER
~ 8] = 15w | (5] =[5 B8]~ 18] - 1Bl | =
= Rl =] K =] I = = S =
/
V[P
2 1zl (2] 2] 18] (2] (5] |2 |E
=11zl 1=} [&] 8] |g| || |=]| |&
Bl -Gl et = [(] -

‘ Virtual Chunk #1

lllinois Institute of Technology Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

Slide 25 /44

But... How Many Virtual Chunks?

e Extreme cases

— 1 virtual chunk

* Same as file-level compression

— N virtual chunks (suppose there are N physical
chunks in the file)

e Same as (physical)chunk-level compression

* Find a number for good tradeoff?

— Let’s assume the requested file is located at the
end of the virtual chunk

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Number of Virtual Chunks

° Va riables | Variable || Description |

B, Read Bandwidth

B, Write Bandwidth

Wi Weight of Input

W, Weight of Output

S Original File Size

R Compression Ratio

D Computational Time of Decompression

* Optimum for end-to-end I/O

- { k] if F([k]) > F([k])

(/] otherwise
where
- B, W, 1 D-B,.
e[y 2w 0 (2 2
\/” 3w, mT 5) ()
and
(z—1)-S- W, (z—=1)-D-W; (z—1)-5-W,
F(x) = —
() r-R-DB, - T n- By,

e Short version

k= v/n (under some assumptions, refer to the paper for detail)

Slide 26 / 44

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 27 / 44

Decompression Procedure

e Algorithms omitted (refer to paper for detail)
* Key steps:
— Find the latest reference (r_last) before the
starting position of the request file

— Decompress the file from r_last, until the end of
the requested data

 For file write, we also need to update values after the
decompression, and re-compress the affected portion

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 28 / 44

Outline

 Results

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide29 /44

Test Bed

* Intrepid (Argonne National Laboratory)

— 40K compute nodes, each has
e CPU: quad-core 850 MHz PowerPC
* RAM: 2 GB

— 128 storage nodes, 7.6 PB GPFS parallel file system

e Others not covered by this presentation

— Kodiak, 1,024-node cluster at Los Alamos National
Laboratory

— HEC, 64-node Linux cluster at SCS lab
— Amazon EC2

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide30/44

Metadata Rate

 FusionFS vs. GPFS

—4+—FusionF5s
1000000 —

=B-GPFS
& 100000 4
| .
5]
5]
@
=
T 10000
o
[
m
E
G 1000 —— = l..________'_______..-l— - =
un
s
[Fs]
o
O 100

10
1 2 4 8 16 32 64 128 256 512 1024

MNumber of Nodes

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide31/44

Metadata Rate

 FusionFS vs. PVFS

. a2
B FusionFS © r
P
10,000 & PVFS i
™~ ')
o O
: S
<r
2 1,000 oy ~ N 0 &
e o)) o o] N
T e~ o <t Q m
o o M ~
2 S
®
| =
L
o
o
10
1 2 4 8 16 32 64
Number of nodes
lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide32 /44

/O Throughput

 Write, FusionFS vs. GPFS

1000000 ~ —*—FusionFS Write
== GPFS Write

100000 =

10000

000 / A

10

Aggregate Throughput (MB /s)

1 4 16 64 256 1024
Number of Nodes

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide33 /44

/O Throughput

e Read, FusionFS vs. GPFS

1000 . =*=FusionFS Read (local)
=#-FusionFS Read (Remote)
) GPFS Read
= —
E /
o 100
=]
0
Z
@
o
= —n
£ 10 - ——
[+Ts]
3
2
=
|—
1
1 MB 4 MB 16 MB 64 MB 256 MB
File Size

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide34 /44

/0 Throughput at Extreme Scale

* Peak: 2.5 TB/s on 16K nodes:

512-nodes

1K-nodes 2K-nodes
-==4K-nodes —8K-nodes e+« 16K-nodes
3,000
16K-nodes
(=] . .
g N '.
5 2,000 : .
2"~ . . GPFS theoretical upper-
o : 8K-nodes bound throughput: 88 GB/s
® 1,500 . nodes s
< ‘ A
= WW\MWMMNWW-»\ .
1,000 J 4K-nodes \:
500 [/ ”““““—"“““—““"“‘. .
. 1 .
0 -_.) I I I I I I I I
0

T T |“"l_1"“‘
10 20 30 40 50 60 70 80 90 100 110 120

Time (second)
lllinois Institute of Technology

Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

Slide35/44

The BLAST Application

* BLAST: Basic Local Alignment Search Tool
* A Bioinformatics application that

— Searches one or more protein sequences against a
sequence database

— Calculates similarities
* Main idea: divide and conquer
— Split the database and store chunks on different nodes

— Each node searches the matching for assigned chunks
— All searches are merged into the final results

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide36 /44

Execution Time

 FusionFS 30X faster on 1,024 nodes

35,000 MWBLAST (GPFS) 35
32.3 30.2
B BLAST (FusionFS) 30
30,000 | speedup
)
T - 25
§ 25,000 201
0 - 20
o 20,000 2
£ 1;1}/ - 15 ©
- v
E 15,000 &
5 - 10
0
g 10,000 .
Ll
-1.4
5,000 / - 0
0 - | - .5
1 64 128 256 512 1024

Number of Nodes

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

System Efficiency

* FusionFS’s sustainable efficiency:

100% \lﬂﬂ% ~—BLAST (GPFS) -
90% \ -#-BLAST (FusionFS) -
0,
80% 71%\ 71% 70% 71% 69%
70% [— Pk — . 0
> 0 \ N4%
60%
g \
O 50%
£ \
= 40% \
30% \
20%
0, -
e e - S R,
0%
1 64 128 256 512 1024

Number of Nodes

Slide37 /44

lllinois Institute of Technology

Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

Slide 38 /44

Data Throughput

* FusionFS is orders of magnitude higher

9 — —+BLAST (GPFS) 8 0c

'.:.-ﬂ.. .

@ 8 — —=-BLAST (FusionFS) /

-

26 /

=

5 /

2 1

=

v 3 222 e

® 2

x11]

o 1 0.56

o 0.01 7 0.06 0.10 0.13 0.27
1 b4 128 256 512 1024

Number of Nodes

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide39/44

Virtual Chunks in FusionFS

* Setup

— 64-node Linux cluster

* each node has a FUSE mount point for POSIX and
Virtual Chunk module

e Data set

— GCRM: Global Cloud Resolving Model

* 3.2 million data entries; each entry has 80 single-
precision floats

— SDSS: Sloan Digital Sky Survey

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Result

 Number of virtual chunks: sqrt(n)

* Compression ratio
— GCRM 1.49 vs. 2.28 SDSS

Slide 40 / 44

6011 o

i
o

.

A

g 10,000

-E- 8,000 e

% 6,000 2706 %

¢ 4101 i S

g " — . %

Eﬂ 2,000

'% 0 = —
No VC | VConGCRM VCon SDSS No VC

Write

VC on GCRIM VC on SDSS
Read

lllinois Institute of Technology Department of Computer Science

Dongfang Zhao (dzhao8@iit.edu)

Slide41 /44

Outline

 Future Work

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 42 /44

Simulation of FusionFS at Exascales

* Approach

— Leverage CODES framework to develop a
simulator (FusionSim) to simulate FusionFS at

— Validate FusionSim with FusionFS traces

— Predict FusionFS performance at Exascales with
the Darshan logs

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 43 /44

Integrate FusionFS with Swift

* Approach
— Expose/develop the FusionFS API for Swift
— Test FusionFS with the Swift applications

— Ultimately an ecosystem from data management
to the underlying filesystem as an analogy of
Hadoop stack:

* MapReduce <-> Swift
e HDFS <-> FusionFS

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 44 / 44

Questions

lllinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

