
Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 1 / 44

The Fusion Distributed File System

Dongfang Zhao
February 2015

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 2 / 44

Outline

• Introduction

• FusionFS
– System Architecture

– Metadata Management

– Data Movement

– Implementation Details

– Unique Features: virtual chunks, cooperative
caching, distributed provenance

• Results

• Future Work

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 3 / 44

Outline

• Introduction

• FusionFS

• Results

• Future Work

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 4 / 44

Background

• State-of-the-art high-performance computing
(HPC) system architecture

– Decades old

– Has compute and storage resources separated

– Was originally designed for compute-intensive
workloads

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 5 / 44

I/O Bottleneck

• Would this architecture suffice in Big Data Era
at extreme scales? Concerns:

– Shared network infrastructure

– All I/Os are (eventually) remote

– More frequent checkpointing

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 6 / 44

Challenges at Exascales

• Let’s simulate, for example, checkpointing, at
extreme scales

More detail available at:
ACM/SCS HPC ’13 [6]

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 7 / 44

The Conventional Wisdom

• Recent study to address the I/O bottleneck
(without changing the current existing HPC
architecture)

– Ning Liu, et al. On the Role of Burst Buffers in
Leadership-Class Storage Systems, IEEE MSST’12

– Pillips Carns, et al. Small-file access in parallel file
systems, IEEE IPDPS’09

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 8 / 44

Proposed Work

• We address the issue by proposing a new
architecture: introducing node-local storage

ACM LSAP’11

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 9 / 44

Outline

• Introduction

• FusionFS

• Results

• Future Work

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 10 / 44

Overview

• Goal: a node-local distributed storage for HPC
systems

• Design principles

– Maximal metadata concurrency

• Distributed hash table

– Optimal write throughput

• Write local disk if possible

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 11 / 44

Architecture

• In IBM Blue Gene/P supercomputer:

Architectural change

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 12 / 44

Directory Tree
• Physical-logical mapping

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 13 / 44

Metadata Management

• Directories vs. regular files

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 14 / 44

File Manipulation

• File open

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 15 / 44

File Manipulation
• File close

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 16 / 44

FusionFS Implementation

• C/C++

• Building blocks
– FUSE (user-level POSIX interface)

– ZHT (distributed hash table for metadata)

– Protocol Buffer (data serialization)

– UDT (data transfer protocol)

• Open source:
https://bitbucket.org/dongfang/fusionfs-
zht/src

https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src
https://bitbucket.org/dongfang/fusionfs-zht/src

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 17 / 44

Virtual Chunks

• One of features in FusionFS

• Goal: support efficient random accesses to
large compressed scientific data

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 18 / 44

Background

• In Big Data Era, many data-intensive scientific
applications’ performance are bounded on I/O

• Two major solutions:

– Parallelize the file I/O by concurrently read or
write independent file chunks

– Compress the (big) file before writing it to the
disk, and decompress it before reading it

• Could be done efficiently at the file system layer
– transparent to end users

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 19 / 44

Conventional Wisdom

• File systems leverage data (de)compression in
a naïve manner:

– Apply the compressor when writing files

– Apply the decompressor when reading files

– Leave important metrics to the underlying
compressing algorithms

• Compression ratio

• Computational overhead

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 20 / 44

Limitations

• File-level compression: computation overhead of
read. E.g., read the latest temperature
– Step 1: compress the entire 1GB climate data to

500MB file
– Step 2: decompress the 500MB file to only retrieve

the last few bytes

• Chunk-level compression: space overhead of
write. E.g., write 64MB data with 4:1
compression ratio and 4KB metadata
– 64K-chunk: 16MB + 4KB * 1K = 20MB
– No chunk: 16MB + 4KB ≈ 16MB

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 21 / 44

Key Idea

• Virtually split the file into smaller chunks but
keep its physical entirety

– Small chunk: fine granularity for random accesses

• So to fix the computation overhead of file-level
compression

– Physical entirety: high compression ratio

• So to fix the space overhead of (physical)chunk-level
compression

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 22 / 44

Motivating Example
• A simple XOR-based delta compression

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 23 / 44

Reference Placement

• Need to consider different strategies

– In place

• Pro: save one jump

• Con: overhead for sequential read

– Coalition

• Beginning or end

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 24 / 44

Compression Procedure

• Turns to be very straightforward:

• Runs efficiently:

– Time complexity is O(n)

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 25 / 44

But… How Many Virtual Chunks?

• Extreme cases

– 1 virtual chunk

• Same as file-level compression

– N virtual chunks (suppose there are N physical
chunks in the file)

• Same as (physical)chunk-level compression

• Find a number for good tradeoff?

– Let’s assume the requested file is located at the
end of the virtual chunk

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 26 / 44

Number of Virtual Chunks
• Variables

• Optimum for end-to-end I/O

• Short version
 (under some assumptions, refer to the paper for detail)

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 27 / 44

Decompression Procedure

• Algorithms omitted (refer to paper for detail)

• Key steps:

– Find the latest reference (r_last) before the
starting position of the request file

– Decompress the file from r_last, until the end of
the requested data

• For file write, we also need to update values after the
decompression, and re-compress the affected portion

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 28 / 44

Outline

• Introduction

• FusionFS

• Results

• Future Work

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 29 / 44

Test Bed

• Intrepid (Argonne National Laboratory)
– 40K compute nodes, each has

• CPU: quad-core 850 MHz PowerPC

• RAM: 2 GB

– 128 storage nodes, 7.6 PB GPFS parallel file system

• Others not covered by this presentation
– Kodiak, 1,024-node cluster at Los Alamos National

Laboratory

– HEC, 64-node Linux cluster at SCS lab

– Amazon EC2

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 30 / 44

Metadata Rate

• FusionFS vs. GPFS

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 31 / 44

Metadata Rate

• FusionFS vs. PVFS

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 32 / 44

I/O Throughput

• Write, FusionFS vs. GPFS

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 33 / 44

I/O Throughput

• Read, FusionFS vs. GPFS

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 34 / 44

I/O Throughput at Extreme Scale

• Peak: 2.5 TB/s on 16K nodes:

GPFS theoretical upper-
bound throughput: 88 GB/s

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 35 / 44

The BLAST Application

• BLAST: Basic Local Alignment Search Tool

• A Bioinformatics application that

– Searches one or more protein sequences against a
sequence database

– Calculates similarities

• Main idea: divide and conquer

– Split the database and store chunks on different nodes

– Each node searches the matching for assigned chunks

– All searches are merged into the final results

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 36 / 44

Execution Time

• FusionFS 30X faster on 1,024 nodes

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 37 / 44

System Efficiency

• FusionFS’s sustainable efficiency:

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 38 / 44

Data Throughput

• FusionFS is orders of magnitude higher

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 39 / 44

Virtual Chunks in FusionFS

• Setup

– 64-node Linux cluster

• each node has a FUSE mount point for POSIX and
Virtual Chunk module

• Data set

– GCRM: Global Cloud Resolving Model

• 3.2 million data entries; each entry has 80 single-
precision floats

– SDSS: Sloan Digital Sky Survey

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 40 / 44

Result

• Number of virtual chunks: sqrt(n)

• Compression ratio

– GCRM 1.49 vs. 2.28 SDSS

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 41 / 44

Outline

• Introduction

• FusionFS

• Results

• Future Work

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 42 / 44

Simulation of FusionFS at Exascales

• Approach

– Leverage CODES framework to develop a
simulator (FusionSim) to simulate FusionFS at

– Validate FusionSim with FusionFS traces

– Predict FusionFS performance at Exascales with
the Darshan logs

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 43 / 44

Integrate FusionFS with Swift

• Approach

– Expose/develop the FusionFS API for Swift

– Test FusionFS with the Swift applications

– Ultimately an ecosystem from data management
to the underlying filesystem as an analogy of
Hadoop stack:

• MapReduce <-> Swift

• HDFS <-> FusionFS

Illinois Institute of Technology Department of Computer Science Dongfang Zhao (dzhao8@iit.edu)

Slide 44 / 44

Questions

