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Exascale Computing

http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.pdf

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
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Resource Manager

° Manages resources
— compute
— storage
— network

* Job scheduling/management
— resource allocation
— job launch

« Data management

— data movement
— caching
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User commands

ActiveBatch® Architecture

- The ActiveBatch Enterprise Job Scheduler provides a central point
lcllveﬂalﬂl of automation and scheduling that simplifies and manages the
integration of applications, platforms and databases into "end to end”
workflows across the enterprise.

GUI / Programmatic Interface
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ActiveBatch® Windows Web Server NET/
Mobile GUI Client

Command

COM API Line Client

ActiveBatch Job Scheduler

- [ActveBatch

Integration

Amazon EC2
1BM Cognos BI
IBM InfoSphere DataStage
IBM Netezza
Informatica PowerCenter
Microsoft Dynamics AX SAP NetWeaver & BW-SCH
Microsoft SharePoint Teradata
Microsoft System Center Suite  VMware

- Operations Manager Web Services / REST

- Orchestrator - Other 3rd Party Apps

- Service Manager

- Virtual Machine Manager

Microsoft Team Foundation Server
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Oracle E-Business Suite
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Execution Agents

Windows & 5 ¢ FOpenVMS

Resource Manager: Sub-components
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Motivation
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* Problem Statement
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Problem Staiement
Job Scheduling System Challenges

« Scalability
— System scale is increasing
— Workload size is increasing
— Processing capacity needs to increase

- Efficiency
— Allocating resources fast

— Making fast enough scheduling decisions
— Maintaining a high system utilization

* Reliability

— Still functioning well under failures
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* Proposed Work
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MTC
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MTC Distribuied Scheduling
Challenges
* Fine-grained Workloads

* Load Balancing
- Data-Aware Scheduling
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MTC application trace MTC application DAGs
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Load Balancing

Steal tasks

* Load hadgiiag

- Distribute workloads as evenly as possible
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Data-Aware Scheduling

- Big-data era
— data-intensive applications
— Data-flow driven programming models (MTC)
— Workflow, task execution framework

 Work Stealing

— Original work stealing is data locality-oblivious
— Migrating tasks randomly comprise data-locality
— Propose a Data-aware Work Stealing technique
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Locality-Oblivious Werk Stealing

Steal tasks

eal tasks \\

Task 1 Task 9 Task 10 Task 4

Task 2 JasKz Task 11 Task 5

Task 3 Send tasks. Egz 8 Task 12 Task 6

Task 4 lask 4

Task 5 Send tasks | Task 5

Task 6 Task 6
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Task
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Daia-Aware Work Stealing

typedef TaskMetaData
Wait Queue (WaitQ): holds tasks that
{ are waiting for parents to complete
int num_wait_parent; // NU {Reaa) rods ready s natcr 3 3 3 3
VCCtOI‘ <St1”lng> parel’lt llSt, / only be executed on local node
. PR Shared Work-Stealing Ready Queue
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} Bag of Tasks Fan-Out DAG

Py
[0
A
-<§
o
c L
(o)
=
D

ither ready queue according to the
lecision making algorithm

@ @ ’2: a program that updates the task

netadata for each child of a completed

Vo0 | Lin B
@ @ @ @ @ " to T4: executor has 4 (configurable)

xecuting threads that executes tasks in
1ne ready queues and move a task to
omplete queue when it is done

Fan-In DAG Pipeline DAG

ofolo 2

MATRIX: MAny-Task computing execution fabRIc at eXascale



Scheduling Policies

MLB
— Maximized Load Balancing

MDL

— Maximized Data-Locality

RLDS
— Rigid Load balancing and Data-locality Segregation

FLDS

— Flexible Load balancing and Data-locality Segregation
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SimMairibe: SiMulator vor MARY-Task
computing executiion rabRlc at eXascale

* A discrete event simulator
— Simulates MTC task execution framework
— 1M nodes, 1B cores, 100B tasks

* Explore the scalability
— fully distributed MTC-architecture

— work stealing technique
— data-aware work stealing technique
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Exploration of Work Stealing
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Simulations have shown that the distributed
architecture and the work stealing technique
are scalable, now we can do real
implementations

MATRIX: TASK EXECUTION
FRAMEWORK FOR MTC
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MATRIX: MARY-Task computing
execution rabRle at eXasecale
MATRIX components S %@ Q@

Client Client Client
' N

— Client (submit tasks, monitoring execution progress)

— Scheduler (scheduling tasks for executlon)
Y K 4 I A

— Executor (execute tasks) / Scheduler r_commumcaﬁon, Scheduler '

MATRIX code (https:/igithub.com. |\t 1l ‘
B 5K Ilnes Of C++ COde b S~ Compute Node Compute Node /’//
— 8K lines of ZHT code e Fewoomected
— 1Klines of auto-generated code from Google protocol buffer

MATRIX goal

— Scalable distributed scheduling system for MTC applications
— The prototype has been finished
— working on running real applications

Testbeds:

— IBM Blue Gene/P/Q supercomputers (4K cores)
— Probe Kodiak cluster (200 cores)
— Amazon EC2 (256 cores)
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Evaluation
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MATRIX running fine-grained tasks
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Throughput (task / sec)
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Time (ms) per stack per CPU

MATRIX running data-intensive
applications
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MATRIX vs. Hadeop YARN

mm MATRIX efficiency = YARN efficiency * Bio-l nfo rmatics
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« Conclusions
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Conclusions

System scale is approaching exascale
Applications are becoming fine-grained

Next-generation resource management

systems need to be highly scalable, efficient
and available

Fully distributed architectures are scalable

Data-aware work stealing technique is
scalable
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Future Weork

 Hadoop Integration of MATRIX

— Hadoop scheduler is centralized
- Replace the Hadoop scheduler with MATRIX

 Workflow integration of MATRIX

— Swift workflow system
— Will enable the execution of real scientific applications

* File System integration of MATRX
— FusionFS distributed file system

— Take care of the data storage and management
— Expose the data to MATRIX
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* More information:
— http://datasys.cs.iit.edu/~kewang/

 Contact:
— kwang22@hawk.iit.edu

e Questions?
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