MATRIX: MAny-Task computing
execution fabRlc at eXascale

Ke Wang
Data-Intensive Distributed Systems Laboratory

lllinois Institute of Technology

CS654: Data-Intensive Computing, IIT
February 4%, 2015

Outline

Introduction & Motivation
Problem Statement
Proposed Work
Evaluation

Conclusions

Future Work

MATRIX: MAny-Task computing execution fabRIc at eXascale

Introduction & Motivation

MATRIX: MAny-Task computing execution fabRIc at eXascale

Distributed Systems

A
Scale

Distributed Systems

Clouds

-
Application Services

Oriented Oriented

MATRIX: MAny-Task computing execution fabRIc at eXascale

Exascale Computing

http://s.top500.org/static/lists/2014/06/TOP500_201406_Poster.pdf

http://users.ece.gatech.edu/mrichard/ExascaleComputingStudyReports/ECSS%20report%20101909.pdf
MATRIX: MAny-Task computing execution fabRIc at eXascale

Resource Manager

° Manages resources
— compute
— storage
— network

* Job scheduling/management
— resource allocation
— job launch

« Data management

— data movement
— caching

MATRIX: MAny-Task computing execution fabRIc at eXascale

User commands

ActiveBatch® Architecture

- The ActiveBatch Enterprise Job Scheduler provides a central point
lcllveﬂalﬂl of automation and scheduling that simplifies and manages the
integration of applications, platforms and databases into "end to end”
workflows across the enterprise.

GUI / Programmatic Interface

™ .
vy § = N

ActiveBatch® Windows Web Server NET/
Mobile GUI Client

Command

COM API Line Client

ActiveBatch Job Scheduler

- [ActveBatch

Integration

Amazon EC2
1BM Cognos BI
IBM InfoSphere DataStage
IBM Netezza
Informatica PowerCenter
Microsoft Dynamics AX SAP NetWeaver & BW-SCH
Microsoft SharePoint Teradata
Microsoft System Center Suite VMware

- Operations Manager Web Services / REST

- Orchestrator - Other 3rd Party Apps

- Service Manager

- Virtual Machine Manager

Microsoft Team Foundation Server
Microsoft Windows Azure

Oracle E-Business Suite

Oracle PeopleSoft

SAP BusinessObjects

Execution Agents

Windows & 5 ¢ FOpenVMS

Resource Manager: Sub-components

Applications
Manager

Scheduler

Resource
Tracker

MapReduce Status ———»
Job Submission
Node Status

Resource Request

MATRIX:

MAny-Task computing execution fabRIc at eXascale

Motivation

DEMédical Image Processing: Functional Magnetic Resonance
19708 Ensemble simulations are important for
Chemist@ Domain: Mbibyig exascale platforms

198Molecular DYFARIES, HOCK. . o onee

Modeling and

OVVUG‘VO) Wlth vau'uuc bUIIIbI'IlatI.UIID Uf th!:' :nmulaluo? atthe
- im . = xascale for
Production RumrsirrBDrug Desigrrrace of EsoTRRTS
1990s parameters will be of high dimension, we will ksl
. ave tag addres enges of designing
Economic N&é ﬁgmm&g/p methods for highdi-
arge-scale Mtr@ﬁ@rf?%g? Heation methods,
200 N e such as sparse drids, offer new approaches to
valuation ;s problem. Furthermore, recent results in
approximation theory can be used to guide us in
sing exgscale compyting power to search for
AstTonomy Demalo;Montage
2010s
Jlal% Anal i§9“.’ 'GPES%?YEP' Waér (0793 eove
alyt imuI;%on at the xascage gr(zf;dlergy and the GA::::E

environment) Gauls-Allilanz

http://eIiA.dIr.de/64768/1 /[EnSIM_- Ensemble_Simulation_on HPC Computes EN.pdf

* Problem Statement

MATRIX: MAny-Task computing execution fabRIc at eXascale

Problem Staiement
Job Scheduling System Challenges

« Scalability
— System scale is increasing
— Workload size is increasing
— Processing capacity needs to increase

- Efficiency
— Allocating resources fast

— Making fast enough scheduling decisions
— Maintaining a high system utilization

* Reliability

— Still functioning well under failures

MATRIX: MAny-Task computing execution fabRIc at eXascale

* Proposed Work

MATRIX: MAny-Task computing execution fabRIc at eXascale

Clients

&

MTC Centraljzed Scheduling: | i C Distribui "
A]\\\ ’ Executor [|KVS SeM ATRI ZE“““”

. Compute Node Compute Node ,/’/

(partial list)

slurmctld
: (backup) : :

dbd ,(_, Other
clusters

Controller and Controller and ' Controller and
...... slurmd KVS server KVS Server KVS Server

Compute node daemons ‘/l\‘ m m

Figure 1. SLURM components g ! ! !

|slurmd”slurmd|

MATRIX: MAny-Task computing execution fabRIc at eXascale

MTC

S

Client

Scheduler '4

Executor KVS server

<S

Client
A

—communication

SR

| » Scheduler '

KVS server

Compute Node -~ g

MATRIX: MAny-Task computing execution fabRIc at eXascale

Scheduler Specification

Client Client

—_—

d K & ~

N
d AN

)/ Scheduler '<—communication R Scheduler ' \
/
| \
|
\ Executor KVS /
\\ Executor KVSserver| | server y

~._ Compute Node Compute Node _.-~
S~ Fully-Connected -

- —_
- —_
- -

MATRIX: MAny-Task computing execution fabRIc at eXascale

MTC Distribuied Scheduling
Challenges
* Fine-grained Workloads

* Load Balancing
- Data-Aware Scheduling

MATRIX: MAny-Task computing execution fabRIc at eXascale

MTC application trace MTC application DAGs

100% -

A IIAJILLL
7

o
Q
>

Percentage
)]
o
X

N
Q
>

= N W
o O o
X X X

el

OO o o
S8

0.01 0.1 1 10 100 1000
Task Execution Time (s)

MATRIX: MAny-Task computing execution fabRIc at eXascale

Load Balancing

Steal tasks

* Load hadgiiag

- Distribute workloads as evenly as possible

- bec Scheduler 2 VviewScheduler 3

tealing;%‘;%m
[ar taské arEas

buted

e

ory ma

ved proce

St

pal task

N SN
IOl UV

Scheduler 4

rloaded-eres—
y it at the node level in distributed enwronrmerr
jous parandetardasks

Task 6

Ianciméa—i&hnique
K5

hread Ie\vgls—

sk 4

wumber of tasks to steal

wumber of neighbors

Task 8= static vs dynamic neighbors (dynamic multi-random neighbor selection)

= polling interval (exponential back-off)

\ 4

Task 5

Task 6

MATRIX: MAny-Task computing execution fabRIc at eXascale

Data-Aware Scheduling

- Big-data era
— data-intensive applications
— Data-flow driven programming models (MTC)
— Workflow, task execution framework

 Work Stealing

— Original work stealing is data locality-oblivious
— Migrating tasks randomly comprise data-locality
— Propose a Data-aware Work Stealing technique

MATRIX: MAny-Task computing execution fabRIc at eXascale

Locality-Oblivious Werk Stealing

Steal tasks

eal tasks \\

Task 1 Task 9 Task 10 Task 4

Task 2 JasKz Task 11 Task 5

Task 3 Send tasks. Egz 8 Task 12 Task 6

Task 4 lask 4

Task 5 Send tasks | Task 5

Task 6 Task 6

L | I s Lo L7 o
Task

Tms 1ms Tms 1ms
30KB OB 20KB 1MB

MATRIX: MAny-Task computing execution fabRlc at eXascale

length 1ms TIms 1ms

Datasize 5GB 20KB 1MB

Daia-Aware Work Stealing

typedef TaskMetaData
Wait Queue (WaitQ): holds tasks that
{ are waiting for parents to complete
int num_wait_parent; // NU {Reaa) rods ready s natcr 3 3 3 3
VCCtOI‘ <St1”lng> parel’lt llSt, / only be executed on local node
. PR Shared Work-Stealing Ready Queue
VeCt0r<Strlng> data ObJ eCt; LSRiady((j)t)r:] holdts] reac||(yttasll(.s that can
-, e shared through work stealing
VeCt0r<10ng> data—SIZe’ // d; Complete Queue (CompleteQ): holds
long all data size; // all datg ' comeietes
vec tOI‘ <S trlng> Chll dren, / / C] P1: a program that checks if a task is

ready to run, and moves ready tasks to
} Bag of Tasks Fan-Out DAG

Py
[0
A
-<§
o
c L
(o)
=
D

ither ready queue according to the
lecision making algorithm

@ @ ’2: a program that updates the task

netadata for each child of a completed

Vo0 | Lin B
@ @ @ @ @ " to T4: executor has 4 (configurable)

xecuting threads that executes tasks in
1ne ready queues and move a task to
omplete queue when it is done

Fan-In DAG Pipeline DAG

ofolo 2

MATRIX: MAny-Task computing execution fabRIc at eXascale

Scheduling Policies

MLB
— Maximized Load Balancing

MDL

— Maximized Data-Locality

RLDS
— Rigid Load balancing and Data-locality Segregation

FLDS

— Flexible Load balancing and Data-locality Segregation

MATRIX: MAny-Task computing execution fabRIc at eXascale

SimMairibe: SiMulator vor MARY-Task
computing executiion rabRlc at eXascale

* A discrete event simulator
— Simulates MTC task execution framework
— 1M nodes, 1B cores, 100B tasks

* Explore the scalability
— fully distributed MTC-architecture

— work stealing technique
— data-aware work stealing technique

MATRIX: MAny-Task computing execution fabRIc at eXascale

Exploration of Work Stealing

100% 100%

90% 0% ey ———

80% f—::::i 80% =nb_2 F

70% Steal_log 70% +nb:|og No. of Static
g 60% ~steal_sart g b san neighbors
E °0% —-steal_half ;g 50% ~<nb_eighth
H40% ' 40% =-nb_quar

30% . of Task to Steal = -

20% 20% =

10% ion drawn about the simulation-b

0% -
N e ~°optlmasl parameters for the adaptlve‘bwwk stealingsis® &
Scale (No. of Nades) cale (No. of Nodes)
to steal half the number of tasks from their
100% 10000000

neighbors, and to use the square root number of

a—o—o—o—o

90% LD_H_C\D/

0% , dom neighbors. The data-aware work .

70% . s
_ew ™' Stealing technique is scalable“at extreme-scales Data-
S 5 10000 e aware
5 40% a—— 2 s :;0 = SimMatrix BOT

30% re-sar No. of D : R i Work

- E +-- SimMatrix Pipeline »
20% o : o- yn a m Ic 100 I o SimMatrix FanOut Steal I n g
10% N el g h bo rs 7 -« SimMatrix Fanin
0% 10
N I o Q)b‘ ‘]f;o \Q‘Lb‘ bg%‘-o \(b,b%b‘ b@@‘b‘b (f/gi\bxb‘ \ch‘gs\ro AG ‘};L 6& \7«% 166 6\'7, ,\Q'Lb‘ ’LQD‘% D.Qg% %\91\6'5%&% (ﬂs%%%brb?%\s\l
Scale (No. of Nodes) Scale (No. of cores)

MATRIX: MAny-Task computing execution fabRIc at eXascale

Simulations have shown that the distributed
architecture and the work stealing technique
are scalable, now we can do real
implementations

MATRIX: TASK EXECUTION
FRAMEWORK FOR MTC

MATRIX: MAny-Task computing execution fabRIc at eXascale

MATRIX: MARY-Task computing
execution rabRle at eXasecale
MATRIX components S %@ Q@

Client Client Client
' N

— Client (submit tasks, monitoring execution progress)

— Scheduler (scheduling tasks for executlon)
Y K 4 I A

— Executor (execute tasks) / Scheduler r_commumcaﬁon, Scheduler '

MATRIX code (https:/igithub.com. |\t 1l ‘
B 5K Ilnes Of C++ COde b S~ Compute Node Compute Node /’//
— 8K lines of ZHT code e Fewoomected
— 1Klines of auto-generated code from Google protocol buffer

MATRIX goal

— Scalable distributed scheduling system for MTC applications
— The prototype has been finished
— working on running real applications

Testbeds:

— IBM Blue Gene/P/Q supercomputers (4K cores)
— Probe Kodiak cluster (200 cores)
— Amazon EC2 (256 cores)

MATRIX: MAny-Task computing execution fabRIc at eXascale

Evaluation

MATRIX: MAny-Task computing execution fabRIc at eXascale

MATRIX running fine-grained tasks

100%

90%

80%

70%

60%

40%

Efficien

30%

20%

10%

0%

50%

0.1

—_—— .
0.09

pls

100%

90%

70%

——
For syb—sgﬁpnd tasks (64ms), MATRIX

achieves eesﬁlmencyoas hdgh as ﬁ ot a eif

scales of 1024 nodes ("4?96 cores), meamng

sleep 256ms (leep 512ms (

throughput as hlghOOaS““t@K tasks/sec

0.02

............. = 0.01
&ttt 4

MATRIX: MAny-Task computing execu

20%

10%

0%

64 128 256 512
Scale (No. of nodes)

tion fabRlIc at eXascale

1024

0.1
0.09
0.08
0.07
0.06 &
0.05
0.04
003 §
0.02

0.01

100% o .
-
90%
80% [TN L | []
70%
T B eeereetttttttiiiiiitiiireeereeeeaeaas Brreeteeiiiiiiiiiiiiiinenaaa.. "
T A SR TS
E 60% ~®-sleep 1 (Falkon) —*=sleep 1 (MATRIX)
8 509 ~+-sleep 2 (Falkon) —*—sleep 2 (MATRIX)
' ~+sleep 4 (Falkon) —sleep 4 (MATRIX)
E 40% --®--sleep 8 (Falkon) —*—sleep 8 (MATRIX)
30(y E T PP PP PP @ceeettctiiiitttitiiitttettitinaaaes @ cccectitiittittittttttttttititiinnnns *
()
20% - » | AR T T]
10%
0% : ' '
256 512 1024 2048

Scale (No. of Cores)

70000

60000

50000

40000

30000

20000

Throughput (tasks / sec)

10000

-+ MATRIX /

-+CloudKon /

-o-Sparrow /

e

4’—f T 1
4 No. of Instances 16

MATRIX: MAny-Task computing execution fabRIc at eXascale

Throughput (task / sec)

4000

3500

3000

2500

2000

1500

1000

500

-=-BOT
-+Pipeline DAG

-o-Fan-Out DAG
——Fan-In DAG

T T T T T

40 60 80 100 120 140

No. of Cores

MATRIX: MAny-Task computing execution fabRIc at eXascale

180 20

Time (ms) per stack per CPU

MATRIX running data-intensive
applications

oo Enn R
w b e E fl g

Astroportal: Bigmetrics:
Image Stacking Allpairs

~«-Data Diffusion §GZ)

2000 ~e—Data Diffusion (FIT) 100% - MBest Case (active storage) m Falkon (data diffusion)
-=»-GPFS (GZ) m Best Case (parallel file system) mDAWS

1800 --GPFSS (FIT) . 90%
-&-DAW. .

1600 \\ -— - —— 32 ;o

1400 °

AN 5 60% -

1200
1000 \

Efficienc
B O
22
X R

800 30% -
600 - Nttt E— 20%
400 " 10% -
200 i 0% -
500x500
0 ‘ L L — 200 CPUs
1 138 2 3 4 5 10 20 30 Ideal 0.1 sec
Locality Experiment

MATRIX: MAny-Task computing execution fabRIc at eXascale

MATRIX vs. Hadeop YARN

mm MATRIX efficiency = YARN efficiency * Bio-l nfo rmatics
——Average task length Application
100% - - Protein-ligand
= :
500 § Clustering
= * 5 Phases of
360% g MapReduce Jobs
-l
S = + 256MB data per
i 40% e node
20% § « First phase has
2 the majority of
0% -

tasks

Scale (No. of cores)

MATRIX: MAny-Task computing execution fabRIc at eXascale

« Conclusions

MATRIX: MAny-Task computing execution fabRIc at eXascale

Conclusions

System scale is approaching exascale
Applications are becoming fine-grained

Next-generation resource management

systems need to be highly scalable, efficient
and available

Fully distributed architectures are scalable

Data-aware work stealing technique is
scalable

MATRIX: MAny-Task computing execution fabRIc at eXascale

 Future Work

MATRIX: MAny-Task computing execution fabRIc at eXascale

Future Weork

 Hadoop Integration of MATRIX

— Hadoop scheduler is centralized
- Replace the Hadoop scheduler with MATRIX

 Workflow integration of MATRIX

— Swift workflow system
— Will enable the execution of real scientific applications

* File System integration of MATRX
— FusionFS distributed file system

— Take care of the data storage and management
— Expose the data to MATRIX

MATRIX: MAny-Task computing execution fabRIc at eXascale

* More information:
— http://datasys.cs.iit.edu/~kewang/

 Contact:
— kwang22@hawk.iit.edu

e Questions?

MATRIX: MAny-Task computing execution fabRIc at eXascale

