FaBRIiQ:
Fast, Balanced and Reliable Queue

Outline

Kafka

SQS

Fabrig

— Motivation
— Design

— features

— Communication cost analysis

Performance evaluation

Kafka

Motivation

* Log Data
— Orders of Magnitude larger than the actual data
— Facebook 5TB daily
— China Mobile 5-8 TB daily

* Many types of events
e user activity events: impression, search, ads, etc
e operational events: call stack, service metrics, etc
e High volume: billions of events per day
e Both online and offline use case
e reporting, batch analysis
e security, news feeds, performance dashboard

Solution!

Traditional Messaging Systems
— JMS

* Acknowledge after msg consumption
* Weak distributed support
* No batching

— IBM WebSphere MQ

* Provides transactional support!

— ActiveMQ

Assuming msgs should be consumed real quick
No offline support

No focus on throughput

Log Aggregators

* Collect data and load into DWH or Hadoop

— Facebook Scribe
* Periodically dumps bunch to HDFS

— Cloudera Flume
* Uses push approach

— Yahoo Data Highway
* Problem

— All for offline data consumption
— No online consumption support

*Low throughput
*Secondary indexes

*Tuned for low
latency

Message queues

*ActiveMQ

*TIBCO

Log aggregators

*Focus on HDFS
*Push model

*No rewindable
consumption

Kafka

* Collect and deliver high volumes of large data
* Low latency
* Scalable

Design

ines!!

IN

point to po

t pipel

* Problem

I
I
I
I
|
|
I
I
I
|
I
I
= I
£ \
(20
o
[0 w_
n 9,
>
oo
D
20
<
c
3]
S Q1
o} =0
— (&)
2 ° |3
N
S o 8|
= s |
@M© fust
= O o !
§= |
)
o . |
gg |
Lo “
I
I
® |
WJ |
4 85 !
O ® !
o I
n 6 |
I
||||||||| 4
(o))
£ %)
¥ >
@ &2
= © ® O
- 05
? =
-]
o))
£
=
fova i L
c
s}
o =
(5]
©
e
(@)
<
g5
A - o
A , 0
T
o
=S n
(] I
3 |
o
>
/ a
A / S
°
o4
o I
1)
%)
)
o
S
)
L

/

\;

A

\
\

\
WA

Design

Operational

User Tracking Logs Metrics

i i
» N
» »
Espresso I Voldemort I

Data Pipeline
NC - - S—< - T e —— e
|
|
o Data | .
Hadoop Log Monitorin Warehous 1| Social Rec Search Security | ... Email
Search g e : Graph Engine
|
|
|

Pub-Sub

Producer publish(topic, msg)

Producer
msg

Design

Producer, Consumer

producer producer
Broker i E% ;
To PIC, Partition BROKER 1 BROKER 2 BROKER 3
topic1/partl topicl/partl topic1/partl
/part2 /part2 /part2
topic2/partl topic2/partl topic2/partl
Load balance
consumer consumer

Efficiency

No message IDs
— Logical offset

Consumer consumes msgs from a Partition
sequentially (starting on an offset)

Single partition in a topic
— Only used by single consumer

No Master
— Consumers and brokers coordinate via ZooKeeper

Stateless Broker

* Broker doesn’t keep track of consumption
e Each consumer maintains its own state

* Message deletion driven by retention policy,
not by tracking consumption

— rewindable consumer

/00Keeper

Create a path

Set value to path

Read value on path

Delete path

Get notifications on a path
Provides replication

Auto Consumer Load Balance

* brokers and consumers register in zookeeper
* consumers listen to broker and consumer changes
e each change triggers consumer rebalancing

~ N 7’ ”
\ = ~ |I N . ’ 4 '. P . % /
~
\- ~ f ~ - ’ '. e /
\ N | \ P \ 5 /
\ N | Y s e /
\ b | N e A /
\‘ '0 N s\ |'I
f
\ ’u
\ {
\ /
\ J

NS b 5 Hi \
". SO - \
\ f N ~ - gt ‘|
\ | N _ -
\ [~ S
\ " > -
\ / A
\ [zookeeper [y,
-\. 'C 7 N
\ | / b
\ f / N
\ | /
J /
[4
J 4

\i

1.' ’ll
S S '0 /
3% \ ."
f A ~ 4 ‘Il' ll“
\ :' g ’ N I‘. l‘:
'l\ ‘| 7 S - \ |,'
U ’ N e
consumer consumer

Guarantees

At least once delivery
In order delivery, inside a single partition
No guarantee on order from diff partitions

No support for duplicated messages

Persistence
— |f broker goes down
* msgs temp unavailable

— If broker disk damaged

* Msgs lost permanently

Usage in Linkedln

Main site Analysis site

Frontend Frontend

Realtime Realtime
service service

Hadoop Data Load for Kafka

Live data center i Offline data center
I

Dev

’ Hadoop
- -»o
consumers

PROD
Hadoop

Performance Evaluation

2 Linux boxes

200 byte messages
10 million msgs in total
Batch size:

= 1: 50K msgs/sec

= 50: 400K msgs/sec

Producer performance

—activemq —Kafka (batch 50) Kafka (batch 1) ==rabbitmq
500000

400000 - (\’ ‘, \4’7
300000

200000

messages/sec

100000

10 500 990 1480 1970

accumulated produced messages in MB

Consumer performance

messages/sec

~==activemq —Kafka ~==rabbitmq
25000
20000
15000
10000
2000 Wm
0 - ‘
10 500 990 1480 1970

accumulated consumed messages in MB

Throughput in MB/s

400

350

300

250

200

150

100

50

(10 topics, broker flush interval 100K)

Scalability

381

293

190

AN
o

[TEY

1 broker

2 brokers

3 brokers

4 brokers

SQS

 Amazon Simple Queue Service (SQS)

— Distributed message delivery queue
* Highly scalable

* Messages sent and read simultaneously
* Reliable

— Guarantees message delivery
» At least once delivery

Outline

* Fabriq
— Motivation
— Design
— features
— Communication cost analysis

e Performance evaluation

Motivation

* More than 2.5 exabytes of data is generated
every day
— more than %70 of it is unstructured

* not possible for the traditional data processing
systems to handle needs in Big Data processing.

— There is a need to reinvent the wheel instead of using
the traditional systems

* Traditional data processing middleware being
replaced:
— SQL databases by No-SQL datastores
— file system by key-value storage systems

Motivation

A Distributed message queue

useful in various data movement and communication scenarios
* monitoring,
* workflow applications,
* big data analytics,
* log processing

Companies started using queues:

— Linkedin, Facebook, Cloudera and Yahoo have developed similar queuing
solutions

* to handle gathering and processing of terabytes of log data on their servers
— Kafka feeds hundreds of gigabytes of data into Hadoop clusters and other
servers every day
Queues can play an important role in Many Task Computing (MTC) and
High Performance Computing (HPC)

— handle data movement on HPC and MTC workloads in larger scales without
adding significant overhead to the execution process

— CloudKon

Challenges

* Traditional queue services
— usually have centralized architecture

— cannot scale well to handle today’s big data
requirements

— Providing transactional support

— Providing consumption acknowledgement
— Persistence: Many are in memory queues.
— Delivery guarantee!

Introducing FaBRiQ

e FaBRiQ (Fast, Balanced and Reliable Queue):

— a persistent message queue that aims to achieve
high throughput and

— low latency

— while keeping the near perfect load balance and
high utilization on large scales

— Uses ZHT as its building block

e Communications
» Storing data

Design

e Distributing queues among servers

Servers

er |“117] “13” |

o []

Consumer

Q4 ‘ “B” | “F” |”H”

Qs‘alblc

=3

[| e | “y”

w [& %

Publisher

~
=
N

Q4 | o | oy

(a1 [V "W [0

Q2 | “45" | “66” |"34"|

Consumer

Publisher

|
|
@] | |
|

LQS|f|h|I|

FaBRIQ Server

Ql

—— — — —— — —— — — — —— — — — — —

Q1

Qn

Metadata Lists

sarvwr-

server+

Messageld Queues

mid-i

ZHT Server
Key Value
mid-1 valuel
mlid-2 value2
mid-i valuei

mid-j

CreateQueue
Push

Pop

Remove

Operations

Push

a) Messageld Queue exists | b) Messageld Queue does not exist
(1) push(Qx,”msg-contents”) (1) push(Qx,”msg-contents”)

|
|
|
|
|
|
|
(2) push(Qx,mld-k,”msg”) : (2) push(Qx,mld-k,”msg”)
|
|
|
|
|
|
|
|
|
|

\ v
Server-s Server-s)

f Metadata Lists ZHT Server | . lMeltadalta U|St5 | ZHT Server
a fo] - | S Key | Value . Key | Value

mid-1 | valuel [G mid-1 | valuel

Messageld Queues
(3) create mld queue Qx

|

Qx

Messageld Queues
Qx Imld-jlmld-kl | |

*
(3) push message Id
(4) put(mld-k,“msg”) to | mid-k |“msg”
ZHT

mld-j | mld-k| | |

*
(4) push message Id
(5) put(mld-k,“msg”) to 5 mid-k |“msg”
ZHT

\ J

(6) updateMetalist(Qx,server-s)

\

Server-s
Metadata Lists ZHT Server

(7) update metadata list Qx

Key | Value

mid-1 | valuel

Qx l server | |server—s| l |

Messageld Queues

o1 |l i

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
i
[}
i (6) updateMetalist(Qx,server-s)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

POPp

* Keep the latency low

* steps to follow
— Local Access
— Random server
— Last known server

— Metadata list owner
* Redirect to a message keeper

Pop

Server
{ N
ZHT Server
Metadata Lists
Q1 |servert| ..,
Key | Value
1 (1) pop(Qx)
. pf-——————————— mid-1 | valuel
Client P Messageld Queues
) (4) Ilmsg”

ax | mid-j |mid-k

(2) dequeue message Id

(3) get(mld-k) from ZHT —|mld-k |“msg”

\

Load Balancing

* Load Balancing
— Using a uniformly distributed hash function.

7000

M Fabriq

MW Kafka
6000

5000

4000

w
o
o
(@]

Number of Messages

2000

A

8 15 22 29 36 43 50 57
Servers

- HHHMHH
0 -
1

Features

Order of messages

Message delivery guarantee
Persistence

consistency and fault tolerance
Multithreading

Communication cost analysis

* Push: 1 hop
* Pop: 0—3 hops

64000 - —u - 100.00% __
X

56000 - 9;
48000 - mmm Frequency | 80.00% S
> - Cumulative % Q
£ 40000 - 60.00% §-
€ 32000 g
524000 . - 40.00% 9
bl .;
) £

o - 20.00% =
8000 - e

-

0 - - 0.00%

Feature

Persistence

Delivery Guarantee

Message Order

Replication

Shared Pool

Batching

Comparison

Fabriq Kafka
Yes Yes
Exactly Once At least Once
Inside Node Inside Node
Customizable Mirroring
Yes No
No (Future work) Yes

SQS

Yes

At least Once

3X

Yes

Yes

Performance Evaluation

 FaBRiQ, Kafka, SQS
— Latency
— Throughput

* Measuring:
— Push / produce
— Pop / consume

Latency (short messages)

32
Y it
IR S S —
16 ~____‘______________________%
8
)
3 4 —— Fabrig-push
> —m— kafka-push
[== .
o , - --Fabrig-pop
3 —-o—-kafka-pop
go —=—sqs-push
44 1 — - -
@ o ®--sqs-pop
< K ______________
0.5 _N—A ----- 7 ChEi A
0.25
0.125 * | | | [I | 1
0 20 40 60 80 100 120 140

instances

Percentage

1.0

0.8

0.6

0.4

0.2

0.0

Latency (CDF)

e |
« _|
o
— Fabrig-64 — Fabriq-64
— Fabrig-128 3 — Fabrig-128
— Kafka-64 ® — Kafka-64
— Kafka-128 & — Kafka-128
— SQS-64 B — SQs-64
— SQS-128 £ — SQS-128
<
o
N
o
=
o
T [I | I I I I |
10 20 30 40 0 10 20 30 40

Push Latency (ms)

Pop Latency (ms)

Throughput (short messages)

100000

90000

D ~
8 8
o o
o o

Throughput (msgs/sec)
B un
8 8
o o
o o

—e—Fabrig-push

~&--Fabrig-pop -

—4+—SQS-push -

! a“puolti ’,’
—o--Kafka-pop w /

60 80 100 120 140
Instances

5 8 8 8 8

Push throughput (MB/sec)
N
8

Throughput (large messages)

—+— Fabriq-256KB 2000
- == Fab”CI‘lMB ,/,‘ —31800 ,/’.
. $ 1600
—4— Kafka-256KB - 3 -
| et 21400 el X
—===Kafka-IMB— = % . -
o -~ 21200 -~ i at

—+—SQS-256KB ol

0 20 40 60 80 100 120 0 20 40 60 80 100
Instances # Instances

120

Duplicate messages

1-1000

0 0
2 -2000

0 1
4 - 4000

0 5
8 - 8000

1 5
16 - 16000

2 8-11
32 -32000

4 8-15
64 - 64000

4 20-25

Future work

* Batching

Introduction

* Large Scale Task Execution
— Run on distributed resc “"‘3(6 O

s@e= (&
— Workloads =Tz
* Tasks @ < N >

— More in number

— Shorter in length 6@

— Requirements for high performance
* Concurrency
* Load Balance
e System Utilization

L

State-of-the-art job schedulers

— Centralized Master/Slaves architecture

- Scalability issues at petascale and beyond
- Single point of failure
- Example: SLURM, CONDOR, Falkon

State-of-the-art job schedulers

& 3 5 ds s RSN 2

a. .8'5 .
— Distributed Architectures

— Hierarchical

- several dispatchers in a tree-based topology
- Example: Distributed Falkon, Dremel

- Fully distributed

- each computing node maintains its own job execution
— Example: Sparrow, Omega, MATRIX

= Common challenges \ |
— Complex Design and Implementat - &
— Load balancing
— System utilization

‘55/55/J5b~os’5"b~o\\a PR

ldea: Scheduling with Message Queues

* |dea: leverage Distributed Message Queues!
— Mapping between Job Schedulers and Message

Queues
Clients Workers
Clients Distributed Message Workers
> Queue

L
Amazon AWS Cloud

- Amazon EC2

- laaS Cloud Service
- Launch VMs and access remotely

- Ability to launch more than 1000 instances

- Amazon Simple Queue Service (SQS)

- Distributed message delivery queue
- Highly scalable
- Messages sent and read simultaneously

- Reliable

* Guarantees message delivery
* At least once delivery

L
Proposed Work

- Use SQS as a task delivery component / task pool
- Decouple Clients and Workers

- Pushing vs. Pulling approach
- Pushing
- Local/global manager node needs to predict/decide

* About the address of worker nodes
* Underlying network topology

- Pulling
- No need to know about workers
- Workers decide for themselves
- Load balancing

- System Ultilization

CloudKon Architecture

- MTC - HPC

DynamoDB WT: Worker Thread
CT : Client Thread

SW: Sub Worker

WM: Worker Manager

DP: Dynamic Provisioning
MS: Monitoring System
MT: Monitoring Thread DP MS
WT: Worker Thread
CT : Client Thread

Client Glob

al Request Queue Client Global Request Queue

— [[1 Ik L]
Client Response Queues
Client Resionse Queues _-
' Client : Worker . @] @
- (WT | Sub Workers :
[Sw] [sw]

- General format, running MTC tasks - Running HPC jobs with multiple
- Benefits: tasks

- Dynamic workforce

- Non-blocking task submission

Task consistency

- SQS only guarantees at least once delivery
- Some workloads require exactly once execution of tasks!
- Use DynamoDB to verify

- Use conditional write

> Write if the task does not exist
> Throw exception if exists

- Atomic operation

- Using a single operation, the checking is done
- Minimize the communication overhead

Communication Cost

- Communication overhead is high on Cloud

.10

- Need to minimize the communication

Request Queue

- Message batching
- Bundle tasks together to send

- Number of communications .10
- Minimum possible number

Global Request Queue

1— T2
Client Response Queues
e T T

) —

— - —

Response Queue E
1

3

“

Throughput (MTC)

100000 et

)

Q

w

S,

L

o 10000

= / —4—CloudKon
=)

3 ~=—Sparrow
<=

0 —4—MATRIX
© 1000
= /

[

100 , ! l | !
1 4 16 64 256 1024
Instances

- 1 to 1024 instances,16K to 16.38M tasks
- MATRIX and Sparrow crashing on 256 instances

- Too many sockets open on TCP connection

Latency
120

100 ,___4__4——0—-4=-o——4~¢—4‘_‘_’

2 80
S 60
o
E 40
20
0 | | | | |
1 4 16 64 256 1024
Instances

- Stable latency on different scales
- Ranging from 90 ms to 104 ms

Efficiency — Homogenous Tasks

100% _]/, s Y/ Bgh 00— —— 4
A

90% oo C L LT -\ —o—CLK-SL1
’ -L""ﬁ":—:f: g L\ == =
80% —S~< \\ N --4#--CLK-SL16
70% v\: -\... —= CLK-5L128
X 0 N\)
= 60% X —+—MTR-SL1
S 50% \ = -MTR-5L16
2 - "7 RARD DS
£ 40% W-eeoo___ - WSsso == MTR-SL128
L &
30% \\ —+—SPR-SL1
20% \ -4 -SPR-SL16
10% — ~ v ~= SPR-SL128
0% : : ! T
1 4 16 64 256

Instances

- MATRIX achieved better efficiency on shorter tasks
- Efficiency of MATRIX drops lower than CloudKon on 64 instances
- CloudKon is stable and scalable

Efficiency — Heterogenous Tasks

- Trace of a real MTC workload

- 2.07M tasks at the largest scale

- 1 milliseconds to 1 second tasks

100%

-~ :-\\—:\ N\
90%

80%

§

—)

E 75(y \- \ +C|oudKon
(+]

g -o-MATRIX

& 70%

& ° —#-Sparrow

65%
60%
55%
50%

1 Lll 1|6 6;4 2g6
Instances
- CloudKon is more stable and scalable compared to the other two.
- Efficiency of MATRIX and Sparrow drop lower than CloudKon on 64 instances

Conclusion

- Design and implement simple yet effective distributed
task execution framework

- Using cloud services like SQS, DynamoDB

- Run on Public Cloud environment as an alternate
resource
- Optimum usage of cloud resources

- Qutperforming other state of the art systems on larger
scales

- Sparrow 2013
- MATRIX 2013

