CLOUDKON: A CLOUD ENABLELC
DISTRIBUTED TASK EXECUTION
FRAMEWORK

Iman Sadooghi

Dr. loan Raicu
Data Intensive Computing (DataSys) Laboratory

Introduction

- MTC: Many-Task Computing oo oxDremel Query

: Hive 2012: Impala quer
- Bridge the gap between HPC and HTC MapReduce 2 o) TP SEE

batch query 2010: In-

|ob | :In-memory
- Many resources over short time periods " Spark query

- Loosely coupled apps with HPC orientations —e % *— —o— b>

. Example MapReduce 10 min. 10 sec. 100 ms | ms

Image taken from: Sparrow: Scalable scheduling for sub-second parallel jobs.
Tech. Rep. UCB/EECS-2013-29, University of California, Berkeley,

- Data analytics moving towards

fine granular tasks

- Example: GAMESS(chemistry),
TPC-H(industry)

- Traditional Batch Schedulers Py N
- Heavy weight 323635y
- Cannot scale for the new workloads

Introduction
- Large Scale Task Execution
- Run on distributed resources 2iA
E = oY
- Workloads @g = N IR
- Tasks .

M=ex >
* More in number &m <

* Shorter in length p—
§ e

- Requirements for high performance
- Concurrency
- Load Balance
- System Utilization

AL
aal
Ll

Motivation

- Current resources

- Clusters & Super Computers
- Alternatives?!

- How about Clouds?
- Large resources
- Easier access than the other two
- Scale up as much as you want
- Customizable
- Pay-as-you go model, pay only when you use it
- Perfect for medium size projects with limited budget
- Use as long as you have budget

e/

)

=
>
g B
5 .
A

e

State-of-the-art job schedulers

- Centralized Master/Slaves architecture
- Scalability issues at petascale and beyond
- Single point of failure
- Example: SLURM, CONDOR, Falkon

- Distributed Architectures

- Hierarchical
- several dispatchers in a tree-based topology
- Example: Distributed Falkon

- Fully distributed
- each computing node maintains its own job execution
- Example: Sparrow
. Common issues
- Poor load balancing
- Poor system utilization

State-of-the-art job schedulers

- Centralized Master/Slaves architecture
- Scalability issues at petascale and beyond

- Single point of failure
- Example: SLURM, CONDOR, Falkon

State-of-the-art job schedulers

- Centralized Master/Slaves architecture
- Scalability issues at petascale and beyond
- Single point of failure
- Example: SLURM, CONDOR, Falkon

- Distributed Architectures

- Hierarchical
- several dispatchers in a tree-based topology
- Example: Distributed Falkon

- Fully distributed
- each computing node maintains its own job execution
- Example: Sparrow
. Common issues
- Poor load balancing
- Poor system utilization

State-of-the-art job schedulers

- Distributed Architectures

- Hierarchical
- several dispatchers in a tree-based topology
- Example: Distributed Falkon

- Fully distributed
- each computing node maintains its own job execution
- Example: Sparrow

. Common issues
- Poor load balancing
- Poor system utilization

L
Agenda

m Background
m Proposed Work

= CloudKon Architecture
= Task Consistency

= Dynamic Provisioning
= Communication Cost
= Implementation details

m Performance Evaluation
= Throughput
= Latency
= Consistency effect on throughput and latency
= Efficiency
= Consistency effect on efficiency

m Conclusion and Future work

Amazon Simple Queue Service (SQS)

- Distributed message delivery queue
- Highly scalable
- Messages sent and read simultaneously
- Messages sent to multiple servers

- Reliable

- Guarantees message delivery
« At least once delivery
* Multiple copies may be available and accessed
- Secure
- Through authentication

Amazon Dynamo DB

- No-SQL Key Value Store

- Fully distributed

- faster and more scalable than traditional DBs
- Simple query support

- Atomic operations support

- Atomic read
- Atomic write

L
Agenda

mIntro and Motivation (5min)
m Background (2min)
m Proposed Work (6min)

= CloudKon Architecture
Task Consistency
Dynamic Provisioning 15s
Monitoring15s
Communication Cost 15s
= Implementation details

m Performance Evaluation (5min)
= Throughput
= Consistency effect on throughput and latency
= Efficiency

= Consistency effect on efficiency
m Conclusion and Future work (2min)

L
Proposed Work

- Use SQS as a task delivery component
- Decouple Clients and Workers

- Pushing vs. Pulling approach
- Pushing
- Local/global manager node needs to predict/decide
* Randomness

+ Get system information periodically from workers
* Needs to know about the address of worker nodes.

- Pulling
- No need to know about workers
- Workers decide for themselves

- Load balancing
- System Ultilization

CloudKon Architecture

MS: Monitoring System
MT: Monitoring Thread
WT: Worker Thread
CT : Client Thread

DP: Dynamic Provisioning

DynamoDB

DP MS

- ———————]

—>

Global Request Queue

—OE—

Client Response Queues

Worker

Task consistency

- SQS only guarantees at least once delivery
- some workloads require exactly once execution of tasks!

- Use DynamoDB to verify

- Use conditional write
> Write if the task does not exist
> Throw exception if exists

- Atomic operation

- Using a single operation, the checking is done
- Minimize the communication overhead

Dynamic Provisioning

- Dynamically scale up and down the system
- Scale up

Check request :
queue length Launch new worker if

Use Provisioner

component

it's getting larger
(periodically) < < IS

- Scale down
- |If:
{- The worker goes idle (because of having no job to run!)
* The rent time is closer than threshold to the rent unit value of time
- Then:
* Terminate the worker instance

- Benefits:
* No component needs to keep track of workers

Monitoring

- Monitor workers for:
- System utilization
- Debug

- Monitor Thread

DynamoDB

Monitoring
System

- Each worker thread has a monitor thread
- Reports system utilization periodically
- Able to report other details of each worker

- Monitoring System

- Reads the aggregate utilization results from store

Worker

Worker

Wo'rker

Communication Cost

- Communication overhead is high on Cloud
- Need to minimize the communication 1

- Message batching
- Bundle tasks together to send

Request Queue

) —

— - —

Response Queue E
1

- Number of communications .10

- Minimum possible number -

4

Global Request Queue

1—p -2, 3
Client Response Queues
67—] Je :

Implementation Details

- Written in Java

- Dependency
- AWS Java SDK library
- Apache Commons library
- Google protocol buffer library
- Serialization
- Used Google Protocol Buffer
= More efficient protocol than JSON
- Simple and short code base
- Only 1052 lines of code
- Delivers 2X performance with less than 5% code base length

| CloudKon | Sparrow __|Falkon ___

Lines of code 1052 24500 33000

L
Agenda

m Background
m Proposed Work

= CloudKon Architecture

= Task Consistency

= Dynamic Provisioning

= Communication Cost

= Implementation details
m Performance Evaluation

= Throughput

= Consistency effect on throughput

= Efficiency

= Consistency effect on efficiency
m Conclusion and Future work

e
Throughput

7000

——CloudKon

6000 — —™=Sparrow

~*~Falkon /
5000

Throughput (tasks/sec)
w A
o o
o o
o o

1000
—ah
0] T T T T T T 1
0 10 20 30 40 50 60 70
- 1 to 64 instances # instances

- 16000 to 1024000 tasks
- 5735 msgs/sec on the largest scale (64)

Latency

Latency (ms)

140
120 - e -
100 - —~—CloudKon
80 . -®Sparrow
~*~Falkon
60
—u
® .
20 — —
O T T T T T T 1
0 10 20 30 40 50 60 70
Instances

- 24.6 ms latency on 64 scale
- Compared to 49.9 ms and 125.5 ms

Consistency effect on throughput

9000

8000 ——with Duplicate Controller
. —#—no Duplicate Controller /
§ 7000 de-duplication overhead /
@ 6000
X /
n
< 5000 //
2 4000
£
3 3000 y
£ 2000 //

1000

O T T T T T T
0 10 20 30 40 50 60 70
Instances

- Duplicate task controller enabled/disabled
- 30% overhead on average
- Overhead decreasing on larger scales

- 60.00%
- 55.00%
- 50.00%
- 45.00%
- 40.00%
- 35.00%
- 30.00%
- 25.00%
- 20.00%
- 15.00%
- 10.00%

100.00%

- 95.00%
- 90.00%
- 85.00%
- 80.00%
- 75.00%
- 70.00%
- 65.00%

OVerhead

5.00%
0.00%

Consistency effect on latency

Latency (ms)

30
20 ——=
N —
10
—¢=with Duplicate
5 Controller
=#-No Duplicate Controller
O T T T T T T 1
0 10 20 30 40 50 60 70

Instances

- 37% overhead on average

e
Efficiency

100.00%
-
90.00% CloudKon
—=-Sparrow
80.00%

A
o000, ~*~Falkon / /

////
60.00%

50.00% 7//
40.00% A

30.00%

20.00%

10.00% pyad

0.00% .ZV .

1 4 16 64 256 1024
Task length (ms)

Efficiency

- 64 instances scale
- High efficiency on 1 sec tasks (91.26%)
- Moderate efficiency on tasks with 100s of ms length.

Consistency effect on efficiency

100.00%
90.00% —3

80.00% ///.///
70.00% / /
60.00%

>
(8)
g o / /
£ 50.00% —
E 40.00% / /
30.00%
20.00% / / —+—With duplicate controller
. 0
10.00% //’/ -#-no duplicate controller
. 0
0.00% ,V
1 4 16 64 256 1024

Task length (ms)

- Duplicate task controller enabled/disabled
- Overhead decreasing on larger scales

L
Agenda

m Background
m Proposed Work

= CloudKon Architecture
= Task Consistency

= Dynamic Provisioning
= Communication Cost
= Implementation details

m Performance Evaluation
= Throughput
= Latency
= Consistency effect on throughput and latency
= Efficiency
= Consistency effect on efficiency

m Conclusion and Future work

Conclusion

- Design and implement simple yet effective distributed
task execution framework
- Using cloud services like SQS, DynamoDB
- Run on Public Cloud environment as an alternate
resource
- Optimum usage of cloud resources
- Qutperforming other state of the art systems
- Sparrow 2013

- Falkon 2007
 High throughput and efficiency

Future work

- On Cloud Environment
- Extend the evaluation scale to 1024 instances

- Run real applications on CloudKon

- Industrial benchmarks: TPC-H

- Data Analytics: MapReduce applications (Hadoop workloads)
- Implement a SQS like service

« Using ZHT distributed hash table as a building block
- Make CloudKon infrastructure independent
- Test CloudKon on private clouds (e. g. OpenStack)

- On HPC environment

- Create a tightly coupled system using our own Distributed Queue
implementation
- Deliver lower latency

- Evaluate the performance on HPC Clusters and super computers
- Run real applications

L
Thank you

- Questions?!

