
CLOUDKON: A CLOUD ENABLED
DISTRIBUTED TASK EXECUTION
FRAMEWORK

 Iman Sadooghi
Dr. Ioan Raicu

Data Intensive Computing (DataSys) Laboratory

Introduction
• MTC: Many-Task Computing

•  Bridge the gap between HPC and HTC
•  Many resources over short time periods
•  Loosely coupled apps with HPC orientations
•  Example: MapReduce

• Data analytics moving towards
 fine granular tasks

•  Example: GAMESS(chemistry),
 TPC-H(industry)

•  Traditional Batch Schedulers
•  Heavy weight
•  Cannot scale for the new workloads

Image taken from: Sparrow: Scalable scheduling for sub-second parallel jobs.
Tech. Rep. UCB/EECS-2013-29, University of California, Berkeley,

Introduction
•  Large Scale Task Execution

•  Run on distributed resources

•  Workloads
•  Tasks

•  More in number
•  Shorter in length

•  Requirements for high performance
•  Concurrency
•  Load Balance
•  System Utilization

Motivation
• Current resources

•  Clusters & Super Computers
•  Alternatives?!

• How about Clouds?
•  Large resources
•  Easier access than the other two
•  Scale up as much as you want
•  Customizable
•  Pay-as-you go model, pay only when you use it
•  Perfect for medium size projects with limited budget

•  Use as long as you have budget

State-of-the-art job schedulers
−  Centralized Master/Slaves architecture

−  Scalability issues at petascale and beyond
−  Single point of failure
−  Example: SLURM, CONDOR, Falkon

−  Distributed Architectures
−  Hierarchical

−  several dispatchers in a tree-based topology
−  Example: Distributed Falkon

−  Fully distributed
−  each computing node maintains its own job execution
−  Example: Sparrow

§  Common issues
−  Poor load balancing
−  Poor system utilization

State-of-the-art job schedulers
−  Centralized Master/Slaves architecture

−  Scalability issues at petascale and beyond
−  Single point of failure
−  Example: SLURM, CONDOR, Falkon

State-of-the-art job schedulers
−  Centralized Master/Slaves architecture

−  Scalability issues at petascale and beyond
−  Single point of failure
−  Example: SLURM, CONDOR, Falkon

−  Distributed Architectures
−  Hierarchical

−  several dispatchers in a tree-based topology
−  Example: Distributed Falkon

−  Fully distributed
−  each computing node maintains its own job execution
−  Example: Sparrow

§  Common issues
−  Poor load balancing
−  Poor system utilization

State-of-the-art job schedulers

−  Distributed Architectures
−  Hierarchical

−  several dispatchers in a tree-based topology
−  Example: Distributed Falkon

−  Fully distributed
−  each computing node maintains its own job execution
−  Example: Sparrow

§  Common issues
−  Poor load balancing
−  Poor system utilization

Agenda
Background
Proposed Work
§  CloudKon Architecture
§  Task Consistency
§  Dynamic Provisioning
§  Communication Cost
§  Implementation details

Performance Evaluation
§  Throughput
§  Latency
§  Consistency effect on throughput and latency
§  Efficiency
§  Consistency effect on efficiency

Conclusion and Future work

Amazon Simple Queue Service (SQS)
• Distributed message delivery queue

•  Highly scalable
•  Messages sent and read simultaneously

•  Messages sent to multiple servers
•  Reliable

•  Guarantees message delivery
•  At least once delivery
•  Multiple copies may be available and accessed

•  Secure
•  Through authentication

Amazon Dynamo DB
• No-SQL Key Value Store
•  Fully distributed
•  faster and more scalable than traditional DBs
• Simple query support
• Atomic operations support

•  Atomic read
•  Atomic write

Agenda
Intro and Motivation (5min)
Background (2min)
Proposed Work (6min)
§  CloudKon Architecture
§  Task Consistency
§  Dynamic Provisioning 15s
§  Monitoring15s
§  Communication Cost 15s
§  Implementation details

Performance Evaluation (5min)
§  Throughput
§  Consistency effect on throughput and latency
§  Efficiency
§  Consistency effect on efficiency

Conclusion and Future work (2min)

Proposed Work
• Use SQS as a task delivery component
• Decouple Clients and Workers
• Pushing vs. Pulling approach

•  Pushing
•  Local/global manager node needs to predict/decide

•  Randomness
•  Get system information periodically from workers
•  Needs to know about the address of worker nodes.

•  Pulling
•  No need to know about workers
•  Workers decide for themselves

•  Load balancing
• System Utilization

CloudKon Architecture

Task consistency
• SQS only guarantees at least once delivery
•  some workloads require exactly once execution of tasks!
• Use DynamoDB to verify
• Use conditional write

Ø Write if the task does not exist
Ø Throw exception if exists

•  Atomic operation

• Using a single operation, the checking is done
•  Minimize the communication overhead

Dynamic Provisioning
• Dynamically scale up and down the system
• Scale up

•  Scale down
•  If:

•  The worker goes idle (because of having no job to run!)
•  The rent time is closer than threshold to the rent unit value of time

•  Then:
•  Terminate the worker instance

•  Benefits:
•  No component needs to keep track of workers

Use Provisioner
component

Check request
queue length
(periodically)

Launch new worker if
it’s getting larger

Monitoring
• Monitor workers for:

•  System utilization
•  Debug

• Monitor Thread
•  Each worker thread has a monitor thread
•  Reports system utilization periodically
•  Able to report other details of each worker

• Monitoring System
•  Reads the aggregate utilization results from store

Communication Cost
• Communication overhead is high on Cloud

•  Need to minimize the communication

• Message batching
•  Bundle tasks together to send

• Number of communications
•  Minimum possible number

Implementation Details
• Written in Java
• Dependency

•  AWS Java SDK library
•  Apache Commons library
•  Google protocol buffer library

• Serialization
•  Used Google Protocol Buffer

§  More efficient protocol than JSON

• Simple and short code base
•  Only 1052 lines of code
•  Delivers 2X performance with less than 5% code base length

CloudKon Sparrow Falkon
Lines of code 1052 24500 33000

Agenda
Background
Proposed Work
§  CloudKon Architecture
§  Task Consistency
§  Dynamic Provisioning
§  Communication Cost
§  Implementation details

Performance Evaluation
§  Throughput
§  Consistency effect on throughput
§  Efficiency
§  Consistency effect on efficiency

Conclusion and Future work

Throughput

•  1 to 64 instances
•  16000 to 1024000 tasks
•  5735 msgs/sec on the largest scale (64)

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

instances

CloudKon
Sparrow
Falkon

Latency

•  24.6 ms latency on 64 scale

•  Compared to 49.9 ms and 125.5 ms

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60 70
Instances

Latency (ms)

CloudKon
Sparrow
Falkon

 Consistency effect on throughput

•  Duplicate task controller enabled/disabled
•  30% overhead on average
•  Overhead decreasing on larger scales

0.00%
5.00%
10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%
65.00%
70.00%
75.00%
80.00%
85.00%
90.00%
95.00%
100.00%

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 10 20 30 40 50 60 70

O
Ve

rh
ea

d

Th
ro

ug
hp

ut
 (t

as
ks

/s
ec

)

Instances

with Duplicate Controller

no Duplicate Controller

de-duplication overhead

 Consistency effect on latency

•  37% overhead on average

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70
Instances

Latency (ms)

with Duplicate
Controller
No Duplicate Controller

Efficiency

•  64 instances scale
•  High efficiency on 1 sec tasks (91.26%)
•  Moderate efficiency on tasks with 100s of ms length.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 4 16 64 256 1024

Ef
fic

ie
nc

y

Task length (ms)

CloudKon
Sparrow
Falkon

 Consistency effect on efficiency

•  Duplicate task controller enabled/disabled
•  Overhead decreasing on larger scales

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 4 16 64 256 1024

Ef
fic

ie
nc

y

Task length (ms)

With duplicate controller
no duplicate controller

Agenda
Background
Proposed Work
§  CloudKon Architecture
§  Task Consistency
§  Dynamic Provisioning
§  Communication Cost
§  Implementation details

Performance Evaluation
§  Throughput
§  Latency
§  Consistency effect on throughput and latency
§  Efficiency
§  Consistency effect on efficiency

Conclusion and Future work

Conclusion

• Design and implement simple yet effective distributed
task execution framework
•  Using cloud services like SQS, DynamoDB

• Run on Public Cloud environment as an alternate
resource
•  Optimum usage of cloud resources

• Outperforming other state of the art systems
•  Sparrow 2013
•  Falkon 2007

•  High throughput and efficiency

Future work
• On Cloud Environment

•  Extend the evaluation scale to 1024 instances
•  Run real applications on CloudKon

•  Industrial benchmarks: TPC-H
•  Data Analytics: MapReduce applications (Hadoop workloads)

•  Implement a SQS like service
•  Using ZHT distributed hash table as a building block
•  Make CloudKon infrastructure independent
•  Test CloudKon on private clouds (e. g. OpenStack)

• On HPC environment
•  Create a tightly coupled system using our own Distributed Queue

implementation
•  Deliver lower latency

•  Evaluate the performance on HPC Clusters and super computers
•  Run real applications

Thank you
• Questions?!

