
Query Prediction in Large Scale Data Intensive Event
Stream Analysis Systems

Song Huaiming1,2 Wang Yang1,2 An Mingyuan1,2
Wang Weiping1 Sun Ninghui1

1. Key Laboratory of Computer System and Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2. Graduate University of Chinese Academy of Sciences

Beijing, China
{shm,aaron,anmingyuan,wpwang,snh}@ncic.ac.cn

Abstract—Hot-spot events accessing has recently received
considerable attentions in the event stream historical analysis
systems. Noting that predicates in SQL(Structured Query
Language) requests usually have similarity features in a short
time in event stream systems, that means events frequently
queried recently might be queried again in the near future. This
paper proposes a prediction model to forecast query predicates
and then to choose them for speculative execution. We propose an
adaptive two-level scoring (TLS) prediction algorithm, which can
adjust parameters according to the system resource usage
conditions. We introduce two metrics accuracy rate and
efficiency rate, for query prediction evaluation, and make a
detailed analysis of system costs. Our experimental results in
DBroker system demonstrate the TLS algorithm and local
speculative execution method can significantly reduce query
response time.

Keywords-query prediction; event stream; stream database;
DBroker; TLS

I. INTRODUCTION
Data stream management systems [1,5,10,11,14] are widely

used in a range of domains like financial data processing,
network monitoring, communication data records management
and sensor networks. Event stream system is a special kind of
data streaming systems in which event is a basic element of the
stream. An event is a piece of data that means something
happened or had some status at some time in the real world.
Event e is always represented as e={p, t}, in which t is a time
stamp of event e and p is a set of attributes values. Event
stream can be looked as a totally ordered set of time serials
{…,et-1,et,et+1,…}. Events are continuously generating and
arriving at the system, so the stream is an endless series. Now it
is always to store historical data of the series in database
systems for rich semantic off-line analysis [5,12,33], as is
called event streaming database. Compared to traditional
databases, event streaming database has much difference, and
the difference between them is showed in Table I.

Unlike continuous queries for real-time stream query
processing, an event streaming database system uses SQL for
historical data analyzing. An example of query request is that:

SELECT select_clause FROM event_base

WHERE event_attributeX= value
AND event_time BETWEEN (t1,t2)

[GROUP BY group_by_clause]
[ORDER BY order_by_clause];

TABLE I. DIFFERENCE BETWEEN TRADITIONAL AND STREAMING
DATABASES

 Traditional database Streaming database
Stored records relatively complex relations simple event serial

Data period only current state aging problem
DML operation insert, update, delete batch insert and delete
Insertion rate relatively low very high
Query results precise query precise and

approximate
Coarse-grained locality is common in event stream

historical analysis systems: some events with certain attributes
values would be frequently accessed in a short period, we call
these events hot-spot events. Hot-spot events are dynamically
drifting as time elapsing. In an event stream system, coarse-
grained locality mainly behaves as time conditions locality and
attribute values locality.

Time conditions locality: user requests always focuses on
events data in a small range of time interval. In the above
instance, time interval (t1,t2) is always a recent period of time,
that's because the newest data is always the most important in
event stream systems.

Attribute value locality: data accessing in event steaming
database focuses on some specific events in a small period of
time, eg. “event_attributeX = value”. Events with certain
attribute values frequently queried recently might be queried
again soon in near future. We call events with these attributes
values hot-spot events. Hot-spot events would be changed
when user's interests change, that is called hot-spot drifting.

According to the two kinds of locality, query prediction
could be carried out from following two aspects:(i)query time
conditions prediction, e.g. to predict t1 and t2 values in later
queries, fortunately, time interval seems to be equal length and
mostly in a recent period in the same query pattern. (ii) hot-spot
events prediction, to predict attribute name and values in later
queries, a common idea is that the events with same attribute
values will be queried again soon in the future if they are
frequently queried in a short time.

2008 Seventh International Conference on Grid and Cooperative Computing

978-0-7695-3449-7/08 $25.00 © 2008 IEEE

DOI 10.1109/GCC.2008.115

301

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

This paper analyzes the real query workloads of DBroker
system, a large scale data intensive system based on event
stream application, and then introduces a system design of
query prediction model. We also propose a two-level
scoring(TLS) prediction algorithm and carried out a set of
detailed experiments in DBroker systems, our experimental
result shows that our prediction approach makes a significantly
reduce of query response time.

We have made following contributions in this paper: (1)
We make a detailed analysis of DBroker system, an event
stream analysis system on Dawning 4000L Cluster platform, to
illustrate the hot-spot events accessing problems. (2) We
propose a query prediction model, including query request
analyzing, an adaptive TLS prediction algorithm, and query
cost evaluation. (3) We propose two speculative execution
methods, global and local methods, and make a comparison of
them.

The rest of this paper is organized as follows. Section 2
presents an overview of related work. Section 3 introduces a
real event stream management system DBroker, and then
makes a query workload analysis. In Section 4 we present the
query prediction model and the two-level scoring (TLS)
algorithm as well as speculative execution methods, while
Section 5 gives a system costs analysis of the prediction model,
and the adaptive improvement of TLS method. Section 6
presents experimental results. Section 7 discusses the
challenges of cluster environment and the limitations, and
Section 8 summarizes the prediction model and points out our
future improvements.

II. RELATED WORK

A. Event Streaming Database
New applications that must deal with vast numbers of event

streams are becoming common in recent years. Most
researchers have focused on streaming online continuous query
processing [6,13,24,31], especially on streaming aggregation
and join[4,16,18,20,29]. However, streaming online processing
can't meet all the requirements of applied systems, they need
further offline analysis with much richer semantic. A class of
large scale data intensive applications, like sensor data
processing and network intrusion detecting systems, employ
databases to store and analyze those historical data, and it is
always called streaming database[33]. Comparing with
traditional database systems, streaming databases pose new
challenges in data management and query processing.

Data management: including data organizing, placement,
partitioning and indexing. Because of infinite nature of event
streaming, but system storage size is limited, event stream
database can not store all the historical data. Old data would be
deleted from database or be compressed, replacing with
statistical data [32] or sample data. Data writes to system in an
append-only pattern, once written, it will not be modified.
Indexing is also a difficult problem, because streaming
insertion rate is very high, and also there is data aging problem
[3].

Query processing: including data accessing pattern and
query answering. Data accessing frequency is not unified in

event stream database, as all data have its life cycle: the newest
data is the most important and then most often to be queried in
the system[3,5,13]. Query results may not be required as
precise as traditional database, instead of approximation, or it
would make times of efforts to achieve only a little more
precision, that may not be practical in a large scale system.

In an event streaming database, indexes and material views
at table level are not suitable. There are three reasons. First data
continuously keeps arriving at a very high rate so it is
expensive to create indexes and views for new coming data.
Second event streaming data has it own life cycle and it will be
seldom accessed when it is getting old, that means indexes and
views for old data are useless. Third the storage for indexes and
views is too large and introduces a lot of system costs. The
high maintenance costs and the low utility rate make it is too
expensive to use indexes and views, and it can’t be
counterweighed by benefits getting from queries. In a word,
indexes and material views common used in traditional
database [34] are not ideal solutions for query optimization in
large scale data intensive event steam system. Roxana[35]
proposed on-demand views to support high insertion
throughput in network intrusion detection system, but it is
based on rule matching, e.g. special events occur. Sai[36]
proposed partial index instead of index all data, and the tuple-
level index offered better search and query efficiency than table
level index in distribute systems. Our prediction model doesn’t
make use of index or material view, and it automatically
specifies hot-spot events by prediction algorithm and then
employs speculative execution for query optimization.

B. Locality and Caching
Time conditions locality is an important feature in event

stream systems[23]. In an event stream system, data accessing
frequency is shrinking with time elapsing, user requests always
focus on streaming data in a newest short time interval, usually
some recent slide windows[5,6,13]. Altiparmak[3] pointed out
this kind of data aging problem, and proposed incremental
quantization techniques to enable aging in an efficient manner.
Zhang[32] proposed a multiple levels of temporal granularity to
store historical data: older data is aggregated using coarser
granularity while more recent data is aggregated with finer
detail. All the research pointed out the data aging problem in
streaming database, and focused on data management and
query processing techniques in streaming systems, without
considering attribute values locality of streaming data.

Semantic cache is an efficient way to reduce query response
time, because of hot-spot accessing characteristic in
information retrieval systems, web search engines and mobile
environment. According to granularity of the units cached
mentioned in [17,27], caching schemes can be classified into
page level caching, query level caching and table level caching.
The page level caching is so common used in storage
subsystems, and the query level caching makes benefit from
reusing query results, while the table level caching is a way that
caches entire objects of the table, e.g. indexes and material
views. Query result caching have attracted much attention in
several research projects [9,17,25,27]. Some of them cache
entire result as a whole, and others cache chunks for fine
granularity caching. The former benefits when a new query is

302

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

subsumed by a previously cached query, the latter one also
benefits in overlapping situations, by partially reusing of query
results. However, semantic cache is not suitable for event
stream systems, in which streaming data continuously changes
all the time, and the query results are much different in
different slide windows.

C. Prediction and Speculation
Predicting the future events based on historical data is

useful and applicable for proactive dynamic query processing,
events monitoring systems and decision support systems.
Reference [2,15,22,28] attempt to predict the behavior of query
execution and plan ahead for possible contingencies. Duan [19]
described a system called Fa that supports declarative
forecasting queries with accuracy estimates. Gooijer[21] made
a comprehensive review of time series forecasting over the past
25 years. Our work differs from these works that we make
prediction on user requests operations series, other than on
execution behavior in dynamic plans, or on approximate results
for making decision.

Speculative execution is an effective way to reduce user
response time if proper used, and it has been much studied in
database and information retrieval systems. Barish[7,8]
employed speculative execution to information gathering plans,
to increase the parallel degree of system. In information
gathering plans, operation series always follow a regular way,
and information fetching from remote sites is an inefficient
operation with high delay, so it leads to much of local system
resource in idle. In this situation, speculative execution makes
benefits from exploring system parallel degree. But it is
different in event stream systems, because in information
gathering plans, extra costs introduced for remote sites are not
considered, but in our prediction model it is an important
evaluation criteria, which can not be ignored. Polyzotis [26]
applied speculative execution in interactive query processing, it
takes advantages of the user input time (user thinking time) and
launches partial query before users total request submitted. It is
not suitable in many large scale data intensive systems based
on event stream application, as such users input time is too
small to be considered comparing to query processing time.
Wang [30] focused on prediction subsystem with conditions on
streaming time series, and then reacted with certain actions.
Such kind of speculation is based on approximate evaluation
for the conditions, however it is not the situation discussed in
this paper, either.

III. DBROKER SYSTEM
DBroker is an event stream management system on

Dawning 4000L cluster. It supplies both special and general
services and strategies for event stream data analysis, including
data loading and placement, query processing and result
merging, statistical analysis, configuration consistency and
service management. It is a hybrid structured parallel database
system used for network intrusion detecting historical analysis.
The main system architecture of DBroker is showed in Fig. 1
and this kind of architecture can well meet the requirements of
scalability, manageability and availability.

Figure 1. System architecture of DBroker.

In Fig. 1, Ls represent for load server nodes, used for
streaming data partitioning and inserting, Qs represent for
query server nodes, used for query processing, DBs represent
for database nodes, C and S are used for service management.
Among these nodes, Ls, Qs, C and S are called server nodes
and work as mid-ware of event steaming database, which
provide data accessing and processing entry for the whole
system, while DBs provide for data storage and management.

4
-
2
9

5
-
6

5
-
1
3

5
-
2
0

5
-
2
7

6
-
3

6
-
1
0

6
-
1
7

6
-
2
4

7
-
1

7
-
8

7
-
1
5

7
-
2
2

7
-
2
9

8
-
5

8
-
1
2

8
-
1
9

8
-
2
6

9
-
2

9
-
9

9
-
1
6

9
-
2
3

9
-
3
0

1
0
-
7

1
0
-
1
4

1
0
-
2
1

1
0
-
2
8 S1

S6

S11

S16

S21

S26

S31

S36

S41

S46

S51

S56

S61

S66

S71

S76

S81

S86

S91

S96

S101

S106

S111

S116

S121

S126

S131

0-0.5 0.5-1 1-1.5 1.5-2 2-2.5 2.5-3 3-3.5 3.5-4 4-4.5 4.5-5

Figure 2. Event accessing statistics in DBroker system (2006.4~2006.10).

DBroker is one of typical instances for large scale data
intensive system based on event stream application. It is back-
end of a network intrusion detection system, used for off-line
analysis. We have made a detailed study of system query trace,
and we found that events accessing frequency is not uniform in
the system. Fig. 2 shows the event accessing statistics in about
6 months(2006.4~2006.10) from system running log. In Fig. 2,
X axis represents for time, Y axis represents for different event
attribute values, and the color represents for logarithm of
frequency. It contains majority of all query requests, about
86.27% of all in the 6 months. From the figure we can see that
event data accessing has obvious hot-spot characteristic.
Queries are always focus on events with some certain attribute
values in a small period of time, and the hot spots may be
drifting as time elapses. Our query prediction model is to
predict those hot-spot events, by analyzing table-scan and filter
operations in user SQL requests.

303

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

IV. QUERY PREDICTION

A. Prediction Model
We have developed a prediction model in DBroker system

to predict users following requests, for query optimizing. Our
prediction model consists of three units: query request analyzer,
operation scoring unit and query speculative execution unit.
Query analyzer is used for SQL analysis and dividing a SQL
request into query operations; operation scoring unit maintains
a set of scores of the operations generated by the query
analyzer and then predicts which operations might come in the
new future; query speculative execution unit is used for
speculative execution of those operations predicted by scoring
unit. As is showed in Fig. 3, when a new user request comes,
query analyzer first breaks it into an operation tree, and then
finds out whether there is any operation hit in the prediction
pool, if hit and result of the operation has been prepared by the
speculative execution unit, then query server will reconstruct
execution plan, to make use of the prepared result, thus query
response time would be dramatically reduced, if not hit query
server will execute the request in a normal way.

Figure 3. The structure of prediction model

In a query execution plan, hot-spot events are always
reflected as table-scan and filter operations, so we mainly take
account of predicates in where clause of user SQL requests. We
introduce a two-level scoring (TLS) algorithm for hot-spot
events prediction, and the two levels consist of score board and
prediction pool. An operation consists of an event attribute and
its value, just like “event_attributeX= value”. The score board
keeps all the scores of operations, and if an operation comes,
then its score will be added with a bonus, otherwise its score
will be decreased with a penalty. So operations with high score
in score board means that they keep coming frequently and
more likely to come in next time window. The prediction pool
is a set of operations with high scores in the score board. First
of all, we introduce two important metrics of prediction model,
accuracy rate and efficiency rate, and detailed working
mechanism will be described in later subsections.

Accuracy rate: among all the user query requests, the
percentage of operations hit in prediction pool. The high
accuracy rate is, the more request will be hit.

Efficiency rate: among all the operations in the prediction
pool, the percentage of them hit in later queries. The high
efficiency rate is, the less extra workload will be introduced to
the system.

Accuracy rate and efficiency rate are two most important
metrics to measure two aspects of prediction model, accuracy
rate is a performance metric and efficiency rate is a resource-
workload metric. High accuracy rate would dramatically
reduce query response time, while high efficiency rate would
introduce less extra workload of the system. Detailed analysis
of response time and system workload will be discussed in
Section 5.

B. Request Analysis
When a user request comes, it will be broken into a set of

operations by query analyzer to find out whether the operations
hit in the prediction pool or not. Then all user requests flowing
through query request analyzer can be looked as operation
serials which are ordered by arrival time. Combined with slide
window technique, the operation serials will be divided into
continuous small windows. All the windows are equal length of
time interval. Our prediction algorithm treats all the operations
in a window as a whole, and predicts operations might be
submitted in the next time window.

We focus on operations in ‘where’ clause in a query SQL,
and there are several reasons. One of the most important is that
table-scan and filter operation is a time consuming step in the
query plan, so speculative preparing would get dramatically
reduction of execution time. Another reason is that scan and
filter operations are always at the bottom of execution plan tree,
so the operation input can be determined before execution. In a
large scale data intensive system, high I/O cost is the
bottleneck of performance improvement, so speculative
preparing of I/O fetching would make great sense. Query
analyzer breaks a SQL request into operations by structure
analyzing, and the output operation serials will be the input of
the following operation scoring unit.

As operations in a time window are looked as a whole, the
size of time window is a key factor to be considered in query
prediction model. If it is too large, the number of operations in
a time window will be too large, and it is hard to determine
time conditions of the query because the size of time window is
larger than normal time interval in query predicates. If it is too
small, then the number of operations in a time window will be
too small, so it is hard to find out accessing pattern of certain
operations. An ideal window size must easily to find out the
occurrence pattern of operations, in our DBroker system, time
window size is one day length, that is to say we predict
operations might arriving the next day. In a specific system
user’s behavior regular may be foreseen, window size can be
determined at design time, while in a system that user’s
behavior can’t be foreseen, window size should be determined
based on statistical information of historical requests.

Query analyzer is implemented as a plug-in step of
DBroker query mid-ware, and it is a phase between SQL parser
and query optimizer. When a query hit in the prediction pool,
then it will reconstruct the query plan, to make use of the
speculative results.

C. Two Level Scoring Algorithm
Operation scoring algorithm is the basis of query prediction

model. A regularly coming operation would be most likely to

304

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

arrival in the next time window. We use score to measure an
operation arrival frequency in past windows, so high score
means high frequency while low score means low frequency. If
an operation keeps coming, then it will have a high increasing
score, while a predicted operation failed to come in the
following window, then its score will be cut by an invalid
penalty.

We propose a two-level scoring (TLS) algorithm for query
prediction, including score board and prediction pool two
levels. Score board keeps the score of all operations, and
prediction pool keeps all the speculative operations. The TLS
algorithm scores the operations and then decides which
operations to be chosen for prediction pool. Operations in
prediction pool will be executed by speculative execution unit
in advance, and then fill results entry into the prediction pool.
Table II is the description of the TLS algorithm.

TABLE II. TWO-LEVEL SCORING ALGORITHM (TLS)

Input: op_window

Output: predict_pool

(1) For each op in score_board;

a) if op in op_window, then score_board[op].score += bonus;
b) else score_board[op].score -= penalty;
c) if score_board[op].score < score_board.threshold, then

score_board.erase(op);
(2) For each op in op_window

if op not in score_board, then score_board.add[op]; /* add new
operations to score board with a initial score*/

(3) predict_pool.clear(); /* clear the prediction pool */

(4) Choose high scored operations for prediction pool from score_board;

d) while predict_pool.size()< MAXSIZE
e) op=score_board.getnextTop(); /* get the operation with

the rest highest score*/
f) if op.score >= predict_pool.threshhold, then

predict_pool.add(op);
g) else break;

(5) Return predict_pool;

Unlike query analyzer analyzing user request as soon as it
comes, scoring unit only refresh score board and prediction
pool at the edge of two slide windows. In TLS algorithm, low
score operations will be deleted from score board, to keep the
score board in a moderate size, thus to reduce the algorithm
overhead. Operations in prediction pool will be speculative
executed in advance, if it fails to come in the following window,
then the pre-execution effort is in vain. At running time,
prediction pool does not always keep full, that’s because
operation score must higher than a threshold.

D. Speculative Execution
After predictor refreshing the content of prediction pool,

query speculative execution unit pre-executes the operations,
and then fill the results entry into the prediction pool.
Speculative execution is much more complicated, and it needs
to consider following two aspects problems.

The first problem is scheduling, including when does it to
execute the operations, and how to schedule all the operations

execution. The priority of speculative process must be lower
than normal request. To make greatest use of system resource,
common operations can be run as a batch. When a normal
request comes and hit an operation under speculative execution,
we introduce a forwarding technology to make use of result as
early as possible. In Section 6 of this paper, we’ve just applied
a naive scheduling method, which is to execute operations in
prediction pool one after another as soon as predictor refreshes
the pool.

The second problem is result management, including how
to store the results and how long it would be kept. An operation
result might be hit more than one times in the following
window, or the result might be reused in more than one
following window. An ideal scheme is that to store as many
results to make most reuse of them as system capability
permitted. Results management is not deeply studied in this
paper, and in the experiment section, we use only a simple
method, that is to keep speculative result for a window time.

In a cluster environment like DBroker, speculative
execution can be implemented in two ways: global and local.
Global way executes operations overall and collect all the
results together to a query server node, while local method
executes operations and keeps results separately in all the
database nodes. If the speculative execution result size is
relatively small, global way may be better, and if the result size
is relatively large, local way could get high parallel degree in
later processing.

V. COST ANALYSIS AND ADAPTIVE MECHANISM

A. Cost Analysis
Prediction and speculative execution may reduce query

response time because of preparing in advance. We use Tcomp
representing for compile time, Topi representing for time spent
on executing operation opi, and pinner and ppipeline representing
for inner and pipeline parallel degree respectively. In a system
without query prediction, query response time is computed as
follows:

pipeline
i

inneropicompquery ppTTT // ⎟
⎠

⎞
⎜
⎝

⎛+= ∑ (1)

In a prediction system, we use ‘a’ representing for
prediction accuracy rate, and then response time is computed as
follows:

() pipeline
i

inneropicompquery ppTTT //1 ⎟
⎠

⎞
⎜
⎝

⎛ ⋅−+= ∑α (2)

From the formula we can see that, the higher accuracy rate
‘a’ is, the lower query time Tquery is.

If an operation in prediction pool failed to come in the next
window, the speculative execution is in vain, that is a waste of
system cost. So prediction model does not really decrease
system total cost, on the contrary, it may introduce extra
workload. In a system with prediction, operations will be
executed only in two cases: a) they are in the prediction pool,
and will be executed in advance; b) they are not in prediction
pool, and will be executed at submitting time. We use ’ε’
representing for efficiency rate and use the number of

305

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

operations executed for workload, then system workload and
extra workload are computed as follows:

()
()

⎟
⎠
⎞

⎜
⎝
⎛ +−⋅=

−⋅+⋅=
+=

11
1/

ε
εα

αεα

op

opop

misspredict

N

NN
NNW

 (3)

() εεα /1 −⋅⋅= opextra NW (4)
In some particularly systems, the very same operations will

arrive more than one time in a time window, so it can make
reuse of speculative execution results. Suppose that operation
repeated rate is ‘r’ (in DBroker system it is 11.27%), and then
system workload and extra workload are computed as follows:

()
⎟
⎠
⎞

⎜
⎝
⎛ +−−⋅= 11

ε
εα rNW op (5)

() εεα /1 −−⋅⋅= rNW opextra (6)
System workload reduces compared to system without

operations repeating. In some cases, (1-r-ε) may be a minus
value, then system workload will be less than original system.
Generally, the higher accuracy rate ‘a’ is, the more extra
workload it will be introduced, while the higher efficiency rate
‘ε’ is, the less extra workload is. Prediction model should make
a balance between accuracy rate and efficiency rate.

B. Adaptive Mechanism
We’ve introduced an adaptive mechanism for automatically

parameters adjusting. Prediction system parameters include
score board threshold, prediction pool max size, prediction
threshold, operation hit bonus and invalid penalty, etc.
Adaptive mechanism consists of two components, system
resource monitor and parameter adjuster.

• System resource monitor: used for system resource
usage monitoring, then make an evaluation of current
workload whether it is too heavy or too light or
moderate.

• Parameter adjuster: used for collecting online
predictor status, and adjusting parameters in a heuristic
way based on cost and workload formula discussed in
last subsection..

The purpose of adaptive mechanism is to make a balance
between efficiency rate and accuracy rate, to make greatest
improvement in query response time under system capability.
Parameter adjusting is a heuristic and iterative course based on
system tuning experience. When the system workload is too
heavy in a period of time, then the adjuster will reduce the
prediction pool size, or increase the prediction pool threshold,
or increase the invalid penalty, all these means would increase
the efficiency rate, as well as reduce the accuracy rate, and then
system workload will be slowed down. In the other hand, when
the system workload is too light, then the adjuster will increase
the prediction pool size, or decrease the prediction pool
threshold, or decrease the invalid penalty.

VI. EXPERIMENTS

A. Environment
We perform all experiments in a small scale 5-node cluster

system, using the query SQL trace from DBroker system as
user’s query requests(more than 6000 queries), and the event
stream data is also collected from DBroker system. The
experimental environment consists of a query node(8*2.2G
CPU, 4GB Memory, Linux AS4, 1Gb Ethernet), and 4
database nodes(4*2.4G CPU, 4GB Memory, Linux AS4,
5*146GB SCSI Disks, Oracle 10.2, 1Gb Ethernet). In a
database node, one disk is used for system software, and the
others are used for storing event streaming data. We make a
comparison of our TLS algorithms and traditional cache
replacing algorithms, and we also make a comparison of
execution time between hitting and missing.

To illustrate the superiority of our TLS algorithm, we
implemented two other algorithms, Naive and OLS methods,
for comparison, and the two ideas are borrowed from cache and
page replacing algorithms. In Naive method, operations
occurred in recently several windows are speculative executed
for the next window, and in OLS method, most recently used
operations are predicted for next window.

Figure 4. Accuracy rate in defferent methods

Figure 5. Efficiency rate in defferent methods

Fig. 4 and Fig. 5 show the comparison of the three methods
while prediction pool max size is varying from 1 to 128. We
can see that TLS method has a bit lower accuracy rate, but
much higher efficiency rate than the other two methods. That’s
because naive method predicts as many operations as possible
so it gets higher accuracy rate, OLS method does not consider
invalid penalty and then gets lower efficiency rate. Fig. 6
shows the extra workload introduced to the system, it is
computed from formula (5) in Section 5, while the operations
repeated rate ‘r’ is 11.27%. We can see that TLS has

306

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

introduced the least extra overhead, and much less than the
other two.

Figure 6. Extra worloadk of system in defferent methods

B. Speculative Execution
We also compare the query response time between hitting

and missing. We’ve chosen 10 typical query requests from the
query SQL trace, all of them query specific events data of
previous day, and are I/O costing operations. Each query
involves a large amount of data, about 4GB data in each
database node, and the row count is about 50,000,000. So in all
4 nodes, each query may involve about 16GB data. We make a
comparison of two speculative execution methods and no
prediction way. Fig. 7 shows the execution time in different
methods.

0.01

0.1

1

10

100

1000

10000

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

no predict

global

local

Figure 7. Query Response time in Different methods

From the figure we can see that in most cases, speculative
execution can dramatically reduce response time, because of a
greatly reduction of large amount of I/O cost. When speculative
execution result size is small (as in q1, q4 and q7), the global
method is better, but if the speculative execution result size is
too large (as in q9), then global method may be even worse
than no prediction method, that is because global method
collected speculative execution result in one query server node,
thus it can’t develop large parallel degree in post processing.
Local method is always better than no prediction method, a
simple and effective way is to use local method.

VII. DISCUSSION
As an effective way to hide processing time, data prediction

and speculative execution have attracted much more attentions
in researchers, however to predict operations in event
streaming is a novel concept. In a large scale data intensive
system based on event streaming application, query processing

time is dominated by I/O overhead. Hot-spot events accessing
pattern gives an opportunity of prediction and speculative
execution. We have developed an effective algorithm to predict
table-scan and filter operations in future requests based on an
analysis of historical query requests. Our model takes only
table-scan and filter operations in account, partly because the
operating data source is definite without dependency, so it is
relatively easy to implement. Situations for other operations
speculative execution are more complicated, and the operation
data may depend on the output of earlier operations.

It is difficult to get both high accuracy rate and efficiency
rate, naive method predict as many as possible without
considering frequency so it can get a high accuracy rate, but
efficiency rate is too much lower. OLS does not consider
invalid penalty of prediction, and it also gets a poor efficiency.
TLS method yields a little in accuracy rate by strict scoring
algorithm, but gets a much higher efficiency rate. In a large
scale system which is always under high workload, it is a
useful and practical approach.

Our prediction model is implemented in the mid-ware layer
of a cluster environment database system, and we’ve developed
two methods of speculative execution, global and local.
Generally speaking, global method is more suitable for small
result size, which means this method is more suitable for high
selectivity. A more effective way to choose for optimal method
should be combined with system statistical information.
Scheduling for speculative execution is not considered in this
paper, actually it is a more difficult problem, especially in a
cluster environment. To avoid repeated table scan cost in
speculative execution, we can merged some operations together
with a conjunction ‘or’, e.g. operation {col1=x} and operation
{col2=y} can be merged as operation {col1=x or col2=y}.

VIII. CONCLUSION AND FUTURE WORK
We’ve designed and implemented a query prediction model

for large scale data intensive system based on event streaming
application in this paper. Firstly we’ve made a study of query
requests in DBroker system, a typical event streaming
application system, and found hot-spot events accessing
pattern. Then we’ve give a system design of query prediction
model, we’ve developed TLS prediction algorithm as well as
two speculative execution methods. Our experimental results
demonstrate that the prediction algorithm can make a good
balance in accuracy rate and efficiency rate, and our
speculative execution method can get a great reduction of
response time.

In the future, we will go on our research in two aspects.
First we will expand hot-spot events prediction based on event
rule detection, considering for event configuration information
variation. Second we will go on researches on optimization for
speculative execution, combined with database statistical
information.

REFERENCES
[1] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S.

Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: a new model

307

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

and architecture for data stream management. VLDB, 12(2):120-139,
August 2003.

[2] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S. Subrahmanian.
Query caching and optimization in distributed mediator systems. In
Proceedings of the 1996 ACM SIGMOD international conference, pages
137-146. SIGMOD, June 1996.

[3] F. Altiparmak, D. Chiu, and H. Ferhatosmanoglu. Incremental
quantization for aging data streams. In Proceedings of the Seventh IEEE
International Conference on Data Mining Workshops}, pages 527-532.
ICDM, September 2007.

[4] R. Ananthakrishna, A. Das, J. Gehrke, F. Korn, S. Muthukrishnan, and
D. Srivastava. Efficient approximation of correlated sums on data
streams. IEEE Transactions on Knowledge and Data Engineering,
15(3):569-572, March 2003.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and
issues in data stream systems. In Proceedings of the twenty-first ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database
systems, pages 1-16. PODS, June 2002.

[6] S. Babu and J. Widom. Continuous queries over data streams. ACM
SIGMOD Record, 30(3):109-120, September 2001.

[7] G. Barish and C. A. Knoblock. Combining classification and
transduction for value prediction in speculative plan execution. In
Proceedings of IIWeb'2003, pages 131-136. IIWeb, August 2003.

[8] G. Barish and C. A. Knoblock. Speculative plan execution for
information gathering. Artificial Intelligence, 172(4-5):413-453, March
2008.

[9] M. J. Carey, M. J. Franklin, M. Livny, and E. J. Shekita. Data caching
tradeoffs in client-server dbms architectures. ACM SIGMOD Record},
20(2):357 - 366, June 1991.

[10] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G.
Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring
streams: A new class of data management applications. In Proceedings
of the 28th international conference on Very Large Data Bases, pages
215-226. VLDB, August 2002.

[11] S. Chandrasekara, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. R. Madden, F. Reiss, and M.
A. Shah. Telegraphcq: continuous dataflow processing. In Proceedings
of the 2003 ACM SIGMOD international conference on Management of
data, pages 668-668. CIDR, January 2003.

[12] S. Chandrasekaran and M. Franklin. Remembrance of streams past:
overload-sensitive management of archived streams. In Proceedings of
the 30th international conference on Very large data base, pages 348-
359. VLDB, August 2004.

[13] S. Chandrasekaran and M. J. Franklin. Streaming queries over streaming
data. In Proceedings of the 28th international conference on Very Large
Data Bases}, pages 203-214. VLDB, August 2002.

[14] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: a scalable
continuous query system for internet databases. In ACM SIGMOD
Record, pages 379-390. SIGMOD, May 2000.

[15] R. L. Cole and G. Graefe. Optimization of dynamic query evaluation
plans. In Proceedings of the 1994 ACM SIGMOD international
conference on Management of data, pages 150-160. SIGMOD, 1994.

[16] A. Das, J. Gehrke, and M. Riedewald. Approximate join processing over
data streams. In Proceedings of the 2003 ACM SIGMOD international
conference on Management of data}, pages 40-51. SIGMOD, June 2003.

[17] P. M. Deshpande, K. Ramasamy, A. Shukla, and J. F. Naughton.
Caching multidimensional queries using chunks. In Proceedings of the
1998 ACM SIGMOD international conference, pages 259-270.
SIGMOD, June 1998.

[18] A. Dobra, M. Garofalakis, J. Gehrke, and R. Rastogi. Processing
complex aggregate queries over data streams. In Proceedings of the 2002

ACM SIGMOD international conference, pages 61-72. SIGMOD, June
2002.

[19] S. Duan and S. Babu. Processing forecasting queries. In Proceedings of
the 33rd international conference on Very large data bases, pages 711-
722. VLDB, September 2007.

[20] J. Gehrke, F. Korn, and D. Srivastava. On computing correlated
aggregates over continual data streams. ACM SIGMOD Record,
30(2):13-24, June 2001.

[21] J. G. D. Gooijer and R. J. Hyndman. 25 years of time series forecasting:a
selective review. Tinbergen Institute Discussion Papers No. TI 05-
068/4, June 2005.

[22] M. J., Franklin, B. Thor, Jonsson, and D. Kossmann. Performance
tradeoffs for client-server query processing. ACM SIGMOD Record,
25(2):149-160, June 1996.

[23] F. Li, C. Chang, G. Kollios, and A. Bestavros. Characterizing and
exploiting reference locality in data stream applications. In Proceedings
of the 22nd International Conference on Data Engineering, page 81.
ICDE, December 2006.

[24] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman. Continuously
adaptive continuous queries over streams. In Proceedings of the 2002
ACM SIGMOD international conference, pages 49-60. SIGMOD, June
2002.

[25] B. Nag, P. M. Deshpande, and D. J. DeWitt. Using a knowledge cache
for interactive discovery of association rules. In Proceedings of the fifth
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 244-253. SIGKDD, August 1999.

[26] N. Polyzotis and Y. Ioannidis. Speculative query processing. In
Proceedings of the 2003 CIDR Conference. CIDR, January 2003.

[27] Q. Ren, M. H. Dunham, and V. Kumar. Semantic caching and query
processing. IEEE Transactions on Knowledge and Data Engineering,
15(1):192-210, January 2003.

[28] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R.
Vilalta, and A. Sivasubramaniam. Critical event prediction for proactive
management in large-scale computer clusters. In Proceedings of the
ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 426-435. SIGKDD, August 2003.

[29] U. Srivastava and J. Widom. Memory-limited execution of windowed
stream joins. In Proceedings of the Thirtieth international conference on
Very large data bases, pages 324-335. VLDB, August 2004.

[30] X. S. Wang, L. Gao, and M. Wang. Condition evaluation for speculative
systems: a streaming time series case. In Proceedings of the Second
Workshop on Spatio-Temporal Database Management, pages 65-72.
STDBM, August 2004.

[31] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event
processing over streams. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 407-418.
SIGMOD, June 2006.

[32] D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger. Temporal
aggregation over data streams using multiple granularities. In Extending
Database Technology, pages 646-663. EDBT, March 2002.

[33] C. Cranor, T. Johnson, O. Spatscheck, and V. Shkapenyuk. Gigascope:A
stream database for network applications. In Proceedings of the 2003
ACM SIGMOD international conference, June 2003.

[34] A. Y. Halevy. Answering queries using views: A survey. The VLDB
Journal, 10(4), 2001.

[35] Roxana Geambasu, Tanya Bragin, Jaeyeon Jung, and Magdalena
Balazinska. On-Demand View Materialization and Indexing for Network
Forensic Analysis In Proc. of NetDB, April 2007.

[36] Sai wu, Jianzhong Li, Beng Chin Ooi, kian-Lee Tan. Just-in-time query
retrieval over partially indexed data on structured P2P overlays. In
Proceedings of the 2008 ACM SIGMOD international conference, June
2008.

308

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on April 2, 2009 at 00:02 from IEEE Xplore. Restrictions apply.

