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Abstract—Hot-spot events accessing has recently received 
considerable attentions in the event stream historical analysis 
systems. Noting that predicates in SQL(Structured Query 
Language) requests usually have similarity features in a short 
time in event stream systems, that means events frequently 
queried recently might be queried again in the near future. This 
paper proposes a prediction model to forecast query predicates 
and then to choose them for speculative execution. We propose an 
adaptive two-level scoring (TLS) prediction algorithm, which can 
adjust parameters according to the system resource usage 
conditions. We introduce two metrics accuracy rate and 
efficiency rate, for query prediction evaluation, and make a 
detailed analysis of system costs. Our experimental results in 
DBroker system demonstrate the TLS algorithm and local 
speculative execution method can significantly reduce query 
response time. 

Keywords-query prediction; event stream; stream database; 
DBroker; TLS 

I.  INTRODUCTION 
Data stream management systems [1,5,10,11,14] are widely 

used in a range of domains like financial data processing, 
network monitoring, communication data records management 
and sensor networks. Event stream system is a special kind of 
data streaming systems in which event is a basic element of the 
stream. An event is a piece of data that means something 
happened or had some status at some time in the real world. 
Event e is always represented as e={p, t}, in which t is a time 
stamp of event e and p is a set of attributes values. Event 
stream can be looked as a totally ordered set of time serials 
{…,et-1,et,et+1,…}. Events are continuously generating and 
arriving at the system, so the stream is an endless series. Now it 
is always to store historical data of the series in database 
systems for rich semantic off-line analysis [5,12,33], as is 
called event streaming database. Compared to traditional 
databases, event streaming database has much difference, and 
the difference between them is showed in Table I. 

Unlike continuous queries for real-time stream query 
processing, an event streaming database system uses SQL for 
historical data analyzing. An example of query request is that: 

SELECT select_clause FROM event_base 

WHERE event_attributeX= value  
AND event_time BETWEEN (t1,t2) 

[GROUP BY group_by_clause]  
[ORDER BY order_by_clause]; 

TABLE I.  DIFFERENCE BETWEEN TRADITIONAL AND STREAMING 
DATABASES 

 Traditional database Streaming database 
Stored records relatively complex relations simple event serial 

Data period only current state aging problem 
DML operation insert, update, delete batch insert and delete 
Insertion rate relatively low very high 
Query results precise query precise and 

approximate 
Coarse-grained locality is common in event stream 

historical analysis systems: some events with certain attributes 
values would be frequently accessed in a short period, we call 
these events hot-spot events. Hot-spot events are dynamically 
drifting as time elapsing. In an event stream system, coarse-
grained locality mainly behaves as time conditions locality and 
attribute values locality. 

Time conditions locality: user requests always focuses on 
events data in a small range of time interval. In the above 
instance, time interval (t1,t2) is always a recent period of time, 
that's because the newest data is always the most important in 
event stream systems. 

Attribute value locality: data accessing in event steaming 
database focuses on some specific events in a small period of 
time, eg. “event_attributeX = value”. Events with certain 
attribute values frequently queried recently might be queried 
again soon in near future. We call events with these attributes 
values hot-spot events. Hot-spot events would be changed 
when user's interests change, that is called hot-spot drifting. 

According to the two kinds of locality, query prediction 
could be carried out from following two aspects:(i)query time 
conditions prediction, e.g. to predict t1 and t2 values in later 
queries, fortunately, time interval seems to be equal length and 
mostly in a recent period in the same query pattern. (ii) hot-spot 
events prediction, to predict attribute name and values in later 
queries, a common idea is that the events with same attribute 
values will be queried again soon in the future if they are 
frequently queried in a short time.  
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This paper analyzes the real query workloads of DBroker 
system, a large scale data intensive system based on event 
stream application, and then introduces a system design of 
query prediction model. We also propose a two-level 
scoring(TLS) prediction algorithm and carried out a set of 
detailed experiments in DBroker systems, our experimental 
result shows that our prediction approach makes a significantly 
reduce of query response time. 

We have made following contributions in this paper: (1) 
We make a detailed analysis of DBroker system, an event 
stream analysis system on Dawning 4000L Cluster platform, to 
illustrate the hot-spot events accessing problems. (2) We 
propose a query prediction model, including query request 
analyzing, an adaptive TLS prediction algorithm, and query 
cost evaluation. (3) We propose two speculative execution 
methods, global and local methods, and make a comparison of 
them.  

The rest of this paper is organized as follows. Section 2 
presents an overview of related work. Section 3 introduces a 
real event stream management system DBroker, and then 
makes a query workload analysis. In Section 4 we present the 
query prediction model and the two-level scoring (TLS) 
algorithm as well as speculative execution methods, while 
Section 5 gives a system costs analysis of the prediction model, 
and the adaptive improvement of TLS method. Section 6 
presents experimental results. Section 7 discusses the 
challenges of cluster environment and the limitations, and 
Section 8 summarizes the prediction model and points out our 
future improvements. 

II. RELATED WORK 

A. Event Streaming Database 
New applications that must deal with vast numbers of event 

streams are becoming common in recent years. Most 
researchers have focused on streaming online continuous query 
processing [6,13,24,31], especially on streaming aggregation 
and join[4,16,18,20,29]. However, streaming online processing 
can't meet all the requirements of applied systems, they need 
further offline analysis with much richer semantic. A class of 
large scale data intensive applications, like sensor data 
processing and network intrusion detecting systems, employ 
databases to store and analyze those historical data, and it is 
always called streaming database[33]. Comparing with 
traditional database systems, streaming databases pose new 
challenges in data management and query processing.  

Data management: including data organizing, placement, 
partitioning and indexing. Because of infinite nature of event 
streaming, but system storage size is limited, event stream 
database can not store all the historical data. Old data would be 
deleted from database or be compressed, replacing with 
statistical data [32] or sample data. Data writes to system in an 
append-only pattern, once written, it will not be modified. 
Indexing is also a difficult problem, because streaming 
insertion rate is very high, and also there is data aging problem 
[3]. 

Query processing: including data accessing pattern and 
query answering. Data accessing frequency is not unified in 

event stream database, as all data have its life cycle: the newest 
data is the most important and then most often to be queried in 
the system[3,5,13]. Query results may not be required as 
precise as traditional database, instead of approximation, or it 
would make times of efforts to achieve only a little more 
precision, that may not be practical in a large scale system. 

In an event streaming database, indexes and material views 
at table level are not suitable. There are three reasons. First data 
continuously keeps arriving at a very high rate so it is 
expensive to create indexes and views for new coming data. 
Second event streaming data has it own life cycle and it will be 
seldom accessed when it is getting old, that means indexes and 
views for old data are useless. Third the storage for indexes and 
views is too large and introduces a lot of system costs. The 
high maintenance costs and the low utility rate make it is too 
expensive to use indexes and views, and it can’t be 
counterweighed by benefits getting from queries. In a word, 
indexes and material views common used in traditional 
database [34] are not ideal solutions for query optimization in 
large scale data intensive event steam system. Roxana[35] 
proposed on-demand views to support high insertion 
throughput in network intrusion detection system, but it is 
based on rule matching, e.g. special events occur. Sai[36] 
proposed partial index instead of index all data, and the tuple-
level index offered better search and query efficiency than table 
level index in distribute systems. Our prediction model doesn’t 
make use of index or material view, and it automatically 
specifies hot-spot events by prediction algorithm and then 
employs speculative execution for query optimization. 

B. Locality and Caching 
Time conditions locality is an important feature in event 

stream systems[23]. In an event stream system, data accessing 
frequency is shrinking with time elapsing, user requests always 
focus on streaming data in a newest short time interval, usually 
some recent slide windows[5,6,13]. Altiparmak[3] pointed out 
this kind of data aging problem, and proposed incremental 
quantization techniques to enable aging in an efficient manner. 
Zhang[32] proposed a multiple levels of temporal granularity to 
store historical data: older data is aggregated using coarser 
granularity while more recent data is aggregated with finer 
detail. All the research pointed out the data aging problem in 
streaming database, and focused on data management and 
query processing techniques in streaming systems, without 
considering attribute values locality of streaming data. 

Semantic cache is an efficient way to reduce query response 
time, because of hot-spot accessing characteristic in 
information retrieval systems, web search engines and mobile 
environment. According to granularity of the units cached 
mentioned in [17,27], caching schemes can be classified into 
page level caching, query level caching and table level caching. 
The page level caching is so common used in storage 
subsystems, and the query level caching makes benefit from 
reusing query results, while the table level caching is a way that 
caches entire objects of the table, e.g. indexes and material 
views. Query result caching have attracted much attention in 
several research projects [9,17,25,27]. Some of them cache 
entire result as a whole, and others cache chunks for fine 
granularity caching. The former benefits when a new query is 
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subsumed by a previously cached query, the latter one also 
benefits in overlapping situations, by partially reusing of query 
results. However, semantic cache is not suitable for event 
stream systems, in which streaming data continuously changes 
all the time, and the query results are much different in 
different slide windows. 

C. Prediction and Speculation 
Predicting the future events based on historical data is 

useful and applicable for proactive dynamic query processing, 
events monitoring systems and decision support systems. 
Reference [2,15,22,28] attempt to predict the behavior of query 
execution and plan ahead for possible contingencies. Duan [19] 
described a system called Fa that supports declarative 
forecasting queries with accuracy estimates. Gooijer[21] made 
a comprehensive review of time series forecasting over the past 
25 years. Our work differs from these works that we make 
prediction on user requests operations series, other than on 
execution behavior in dynamic plans, or on approximate results 
for making decision. 

Speculative execution is an effective way to reduce user 
response time if proper used, and it has been much studied in 
database and information retrieval systems. Barish[7,8] 
employed speculative execution to information gathering plans, 
to increase the parallel degree of system. In information 
gathering plans, operation series always follow a regular way, 
and information fetching from remote sites is an inefficient 
operation with high delay, so it leads to much of local system 
resource in idle. In this situation, speculative execution makes 
benefits from exploring system parallel degree. But it is 
different in event stream systems, because in information 
gathering plans, extra costs introduced for remote sites are not 
considered, but in our prediction model it is an important 
evaluation criteria, which can not be ignored. Polyzotis [26] 
applied speculative execution in interactive query processing, it 
takes advantages of the user input time (user thinking time) and 
launches partial query before users total request submitted. It is 
not suitable in many large scale data intensive systems based 
on event stream application, as such users input time is too 
small to be considered comparing to query processing time. 
Wang [30] focused on prediction subsystem with conditions on 
streaming time series, and then reacted with certain actions. 
Such kind of speculation is based on approximate evaluation 
for the conditions, however it is not the situation discussed in 
this paper, either. 

III. DBROKER SYSTEM 
DBroker is an event stream management system on 

Dawning 4000L cluster. It supplies both special and general 
services and strategies for event stream data analysis, including 
data loading and placement, query processing and result 
merging, statistical analysis, configuration consistency and 
service management. It is a hybrid structured parallel database 
system used for network intrusion detecting historical analysis. 
The main system architecture of DBroker is showed in Fig. 1 
and this kind of architecture can well meet the requirements of 
scalability, manageability and availability. 

 

Figure 1.  System architecture of DBroker. 

In Fig. 1, Ls represent for load server nodes, used for 
streaming data partitioning and inserting, Qs represent for 
query server nodes, used for query processing, DBs represent 
for database nodes, C and S are used for service management. 
Among these nodes, Ls, Qs, C and S are called server nodes 
and work as mid-ware of event steaming database, which 
provide data accessing and processing entry for the whole 
system, while DBs provide for data storage and management. 
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Figure 2.  Event accessing statistics in DBroker system (2006.4~2006.10). 

DBroker is one of typical instances for large scale data 
intensive system based on event stream application. It is back-
end of a network intrusion detection system, used for off-line 
analysis. We have made a detailed study of system query trace, 
and we found that events accessing frequency is not uniform in 
the system. Fig. 2 shows the event accessing statistics in about 
6 months(2006.4~2006.10) from system running log. In Fig. 2, 
X axis represents for time, Y axis represents for different event 
attribute values, and the color represents for logarithm of 
frequency. It contains majority of all query requests, about 
86.27% of all in the 6 months. From the figure we can see that 
event data accessing has obvious hot-spot characteristic. 
Queries are always focus on events with some certain attribute 
values in a small period of time, and the hot spots may be 
drifting as time elapses. Our query prediction model is to 
predict those hot-spot events, by analyzing table-scan and filter 
operations in user SQL requests. 
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IV. QUERY PREDICTION 

A. Prediction Model 
We have developed a prediction model in DBroker system 

to predict users following requests, for query optimizing. Our 
prediction model consists of three units: query request analyzer, 
operation scoring unit and query speculative execution unit. 
Query analyzer is used for SQL analysis and dividing a SQL 
request into query operations; operation scoring unit maintains 
a set of scores of the operations generated by the query 
analyzer and then predicts which operations might come in the 
new future; query speculative execution unit is used for 
speculative execution of those operations predicted by scoring 
unit. As is showed in Fig. 3, when a new user request comes, 
query analyzer first breaks it into an operation tree, and then 
finds out whether there is any operation hit in the prediction 
pool, if hit and result of the operation has been prepared by the 
speculative execution unit, then query server will reconstruct 
execution plan, to make use of the prepared result, thus query 
response time would be dramatically reduced, if not hit query 
server will execute the request in a normal way. 

 

Figure 3.  The structure of prediction model 

In a query execution plan, hot-spot events are always 
reflected as table-scan and filter operations, so we mainly take 
account of predicates in where clause of user SQL requests. We 
introduce a two-level scoring (TLS) algorithm for hot-spot 
events prediction, and the two levels consist of score board and 
prediction pool. An operation consists of an event attribute and 
its value, just like “event_attributeX= value”. The score board 
keeps all the scores of operations, and if an operation comes, 
then its score will be added with a bonus, otherwise its score 
will be decreased with a penalty. So operations with high score 
in score board means that they keep coming frequently and 
more likely to come in next time window. The prediction pool 
is a set of operations with high scores in the score board. First 
of all, we introduce two important metrics of prediction model, 
accuracy rate and efficiency rate, and detailed working 
mechanism will be described in later subsections. 

Accuracy rate: among all the user query requests, the 
percentage of operations hit in prediction pool. The high 
accuracy rate is, the more request will be hit. 

Efficiency rate: among all the operations in the prediction 
pool, the percentage of them hit in later queries. The high 
efficiency rate is, the less extra workload will be introduced to 
the system.  

Accuracy rate and efficiency rate are two most important 
metrics to measure two aspects of prediction model, accuracy 
rate is a performance metric and efficiency rate is a resource-
workload metric. High accuracy rate would dramatically 
reduce query response time, while high efficiency rate would 
introduce less extra workload of the system. Detailed analysis 
of response time and system workload will be discussed in 
Section 5. 

B. Request Analysis 
When a user request comes, it will be broken into a set of 

operations by query analyzer to find out whether the operations 
hit in the prediction pool or not. Then all user requests flowing 
through query request analyzer can be looked as operation 
serials which are ordered by arrival time. Combined with slide 
window technique, the operation serials will be divided into 
continuous small windows. All the windows are equal length of 
time interval. Our prediction algorithm treats all the operations 
in a window as a whole, and predicts operations might be 
submitted in the next time window. 

We focus on operations in ‘where’ clause in a query SQL, 
and there are several reasons. One of the most important is that 
table-scan and filter operation is a time consuming step in the 
query plan, so speculative preparing would get dramatically 
reduction of execution time. Another reason is that scan and 
filter operations are always at the bottom of execution plan tree, 
so the operation input can be determined before execution. In a 
large scale data intensive system, high I/O cost is the 
bottleneck of performance improvement, so speculative 
preparing of I/O fetching would make great sense. Query 
analyzer breaks a SQL request into operations by structure 
analyzing, and the output operation serials will be the input of 
the following operation scoring unit. 

As operations in a time window are looked as a whole, the 
size of time window is a key factor to be considered in query 
prediction model. If it is too large, the number of operations in 
a time window will be too large, and it is hard to determine 
time conditions of the query because the size of time window is 
larger than normal time interval in query predicates. If it is too 
small, then the number of operations in a time window will be 
too small, so it is hard to find out accessing pattern of certain 
operations. An ideal window size must easily to find out the 
occurrence pattern of operations, in our DBroker system, time 
window size is one day length, that is to say we predict 
operations might arriving the next day. In a specific system 
user’s behavior regular may be foreseen, window size can be 
determined at design time, while in a system that user’s 
behavior can’t be foreseen, window size should be determined 
based on statistical information of historical requests. 

Query analyzer is implemented as a plug-in step of 
DBroker query mid-ware, and it is a phase between SQL parser 
and query optimizer. When a query hit in the prediction pool, 
then it will reconstruct the query plan, to make use of the 
speculative results. 

C. Two Level Scoring Algorithm 
Operation scoring algorithm is the basis of query prediction 

model. A regularly coming operation would be most likely to 
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arrival in the next time window. We use score to measure an 
operation arrival frequency in past windows, so high score 
means high frequency while low score means low frequency. If 
an operation keeps coming, then it will have a high increasing 
score, while a predicted operation failed to come in the 
following window, then its score will be cut by an invalid 
penalty. 

We propose a two-level scoring (TLS) algorithm for query 
prediction, including score board and prediction pool two 
levels. Score board keeps the score of all operations, and 
prediction pool keeps all the speculative operations. The TLS 
algorithm scores the operations and then decides which 
operations to be chosen for prediction pool. Operations in 
prediction pool will be executed by speculative execution unit 
in advance, and then fill results entry into the prediction pool. 
Table II is the description of the TLS algorithm. 

TABLE II.  TWO-LEVEL SCORING ALGORITHM (TLS) 

Input: op_window 

Output: predict_pool 

(1) For each op in score_board; 

a) if op in op_window, then score_board[op].score += bonus; 
b) else score_board[op].score -= penalty; 
c)  if score_board[op].score < score_board.threshold, then 

score_board.erase(op); 
(2) For each op in op_window 

if op not in score_board, then score_board.add[op];  /* add new 
operations to score board with a initial score*/ 

(3) predict_pool.clear();  /* clear the prediction pool */ 

(4) Choose high scored operations for prediction pool from score_board; 

d) while predict_pool.size()< MAXSIZE 
e)   op=score_board.getnextTop();  /* get the operation with 

the rest highest score*/ 
f)   if op.score >= predict_pool.threshhold, then 

predict_pool.add(op); 
g)   else break; 

(5) Return predict_pool;  

Unlike query analyzer analyzing user request as soon as it 
comes, scoring unit only refresh score board and prediction 
pool at the edge of two slide windows. In TLS algorithm, low 
score operations will be deleted from score board, to keep the 
score board in a moderate size, thus to reduce the algorithm 
overhead. Operations in prediction pool will be speculative 
executed in advance, if it fails to come in the following window, 
then the pre-execution effort is in vain. At running time, 
prediction pool does not always keep full, that’s because 
operation score must higher than a threshold.  

D. Speculative Execution 
After predictor refreshing the content of prediction pool, 

query speculative execution unit pre-executes the operations, 
and then fill the results entry into the prediction pool. 
Speculative execution is much more complicated, and it needs 
to consider following two aspects problems. 

The first problem is scheduling, including when does it to 
execute the operations, and how to schedule all the operations 

execution. The priority of speculative process must be lower 
than normal request. To make greatest use of system resource, 
common operations can be run as a batch. When a normal 
request comes and hit an operation under speculative execution, 
we introduce a forwarding technology to make use of result as 
early as possible. In Section 6 of this paper, we’ve just applied 
a naive scheduling method, which is to execute operations in 
prediction pool one after another as soon as predictor refreshes 
the pool. 

The second problem is result management, including how 
to store the results and how long it would be kept. An operation 
result might be hit more than one times in the following 
window, or the result might be reused in more than one 
following window. An ideal scheme is that to store as many 
results to make most reuse of them as system capability 
permitted. Results management is not deeply studied in this 
paper, and in the experiment section, we use only a simple 
method, that is to keep speculative result for a window time. 

In a cluster environment like DBroker, speculative 
execution can be implemented in two ways: global and local. 
Global way executes operations overall and collect all the 
results together to a query server node, while local method 
executes operations and keeps results separately in all the 
database nodes. If the speculative execution result size is 
relatively small, global way may be better, and if the result size 
is relatively large, local way could get high parallel degree in 
later processing. 

V. COST ANALYSIS AND ADAPTIVE MECHANISM 

A. Cost Analysis 
Prediction and speculative execution may reduce query 

response time because of preparing in advance. We use Tcomp 
representing for compile time, Topi representing for time spent 
on executing operation opi, and pinner and ppipeline representing 
for inner and pipeline parallel degree respectively. In a system 
without query prediction, query response time is computed as 
follows: 

pipeline
i

inneropicompquery ppTTT // ⎟
⎠

⎞
⎜
⎝

⎛+= ∑    (1) 

In a prediction system, we use ‘a’ representing for 
prediction accuracy rate, and then response time is computed as 
follows:

( ) pipeline
i

inneropicompquery ppTTT //1 ⎟
⎠

⎞
⎜
⎝

⎛ ⋅−+= ∑α   (2) 

From the formula we can see that, the higher accuracy rate 
‘a’ is, the lower query time Tquery is. 

If an operation in prediction pool failed to come in the next 
window, the speculative execution is in vain, that is a waste of 
system cost. So prediction model does not really decrease 
system total cost, on the contrary, it may introduce extra 
workload. In a system with prediction, operations will be 
executed only in two cases: a) they are in the prediction pool, 
and will be executed in advance; b) they are not in prediction 
pool, and will be executed at submitting time. We use ’ε’ 
representing for efficiency rate and use the number of 
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operations executed for workload, then system workload and 
extra workload are computed as follows: 

( )
( )

⎟
⎠
⎞

⎜
⎝
⎛ +−⋅=

−⋅+⋅=
+=

11
1/

ε
εα

αεα

op

opop

misspredict

N

NN
NNW

  (3) 

( ) εεα /1 −⋅⋅= opextra NW   (4) 
In some particularly systems, the very same operations will 

arrive more than one time in a time window, so it can make 
reuse of speculative execution results. Suppose that operation 
repeated rate is ‘r’ (in DBroker system it is 11.27%), and then 
system workload and extra workload are computed as follows: 

( )
⎟
⎠
⎞

⎜
⎝
⎛ +−−⋅= 11

ε
εα rNW op                   (5) 

( ) εεα /1 −−⋅⋅= rNW opextra                (6) 
System workload reduces compared to system without 

operations repeating. In some cases, (1-r-ε) may be a minus 
value, then system workload will be less than original system. 
Generally, the higher accuracy rate ‘a’ is, the more extra 
workload it will be introduced, while the higher efficiency rate 
‘ε’ is, the less extra workload is. Prediction model should make 
a balance between accuracy rate and efficiency rate. 

B. Adaptive Mechanism 
We’ve introduced an adaptive mechanism for automatically 

parameters adjusting. Prediction system parameters include 
score board threshold, prediction pool max size, prediction 
threshold, operation hit bonus and invalid penalty, etc. 
Adaptive mechanism consists of two components, system 
resource monitor and parameter adjuster.  

• System resource monitor: used for system resource 
usage monitoring, then make an evaluation of current 
workload whether it is too heavy or too light or 
moderate. 

• Parameter adjuster: used for collecting online 
predictor status, and adjusting parameters in a heuristic 
way based on cost and workload formula discussed in 
last subsection.. 

The purpose of adaptive mechanism is to make a balance 
between efficiency rate and accuracy rate, to make greatest 
improvement in query response time under system capability. 
Parameter adjusting is a heuristic and iterative course based on 
system tuning experience. When the system workload is too 
heavy in a period of time, then the adjuster will reduce the 
prediction pool size, or increase the prediction pool threshold, 
or increase the invalid penalty, all these means would increase 
the efficiency rate, as well as reduce the accuracy rate, and then 
system workload will be slowed down. In the other hand, when 
the system workload is too light, then the adjuster will increase 
the prediction pool size, or decrease the prediction pool 
threshold, or decrease the invalid penalty. 

VI. EXPERIMENTS 

A. Environment 
We perform all experiments in a small scale 5-node cluster 

system, using the query SQL trace from DBroker system as 
user’s query requests(more than 6000 queries), and the event 
stream data is also collected from DBroker system. The 
experimental environment consists of a query node(8*2.2G 
CPU, 4GB Memory, Linux AS4, 1Gb Ethernet), and 4 
database nodes(4*2.4G CPU, 4GB Memory, Linux AS4, 
5*146GB SCSI Disks, Oracle 10.2, 1Gb Ethernet). In a 
database node, one disk is used for system software, and the 
others are used for storing event streaming data. We make a 
comparison of our TLS algorithms and traditional cache 
replacing algorithms, and we also make a comparison of 
execution time between hitting and missing. 

To illustrate the superiority of our TLS algorithm, we 
implemented two other algorithms, Naive and OLS methods, 
for comparison, and the two ideas are borrowed from cache and 
page replacing algorithms. In Naive method, operations 
occurred in recently several windows are speculative executed 
for the next window, and in OLS method, most recently used 
operations are predicted for next window.  

 

Figure 4.  Accuracy rate in defferent methods 

 

Figure 5.  Efficiency rate in defferent methods 

Fig. 4 and Fig. 5 show the comparison of the three methods 
while prediction pool max size is varying from 1 to 128. We 
can see that TLS method has a bit lower accuracy rate, but 
much higher efficiency rate than the other two methods. That’s 
because naive method predicts as many operations as possible 
so it gets higher accuracy rate, OLS method does not consider 
invalid penalty and then gets lower efficiency rate. Fig. 6 
shows the extra workload introduced to the system, it is 
computed from formula (5) in Section 5, while the operations 
repeated rate ‘r’ is 11.27%. We can see that TLS has 
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introduced the least extra overhead, and much less than the 
other two. 

 

Figure 6.  Extra worloadk of system in defferent methods 

B. Speculative Execution 
We also compare the query response time between hitting 

and missing. We’ve chosen 10 typical query requests from the 
query SQL trace, all of them query specific events data of 
previous day, and are I/O costing operations. Each query 
involves a large amount of data, about 4GB data in each 
database node, and the row count is about 50,000,000. So in all 
4 nodes, each query may involve about 16GB data. We make a 
comparison of two speculative execution methods and no 
prediction way. Fig. 7 shows the execution time in different 
methods. 
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Figure 7.  Query Response time in Different methods 

From the figure we can see that in most cases, speculative 
execution can dramatically reduce response time, because of a 
greatly reduction of large amount of I/O cost. When speculative 
execution result size is small (as in q1, q4 and q7), the global 
method is better, but if the speculative execution result size is 
too large (as in q9), then global method may be even worse 
than no prediction method, that is because global method 
collected speculative execution result in one query server node, 
thus it can’t develop large parallel degree in post processing. 
Local method is always better than no prediction method, a 
simple and effective way is to use local method. 

VII. DISCUSSION 
As an effective way to hide processing time, data prediction 

and speculative execution have attracted much more attentions 
in researchers, however to predict operations in event 
streaming is a novel concept. In a large scale data intensive 
system based on event streaming application, query processing 

time is dominated by I/O overhead. Hot-spot events accessing 
pattern gives an opportunity of prediction and speculative 
execution. We have developed an effective algorithm to predict 
table-scan and filter operations in future requests based on an 
analysis of historical query requests. Our model takes only 
table-scan and filter operations in account, partly because the 
operating data source is definite without dependency, so it is 
relatively easy to implement. Situations for other operations 
speculative execution are more complicated, and the operation 
data may depend on the output of earlier operations. 

It is difficult to get both high accuracy rate and efficiency 
rate, naive method predict as many as possible without 
considering frequency so it can get a high accuracy rate, but 
efficiency rate is too much lower. OLS does not consider 
invalid penalty of prediction, and it also gets a poor efficiency. 
TLS method yields a little in accuracy rate by strict scoring 
algorithm, but gets a much higher efficiency rate. In a large 
scale system which is always under high workload, it is a 
useful and practical approach. 

Our prediction model is implemented in the mid-ware layer 
of a cluster environment database system, and we’ve developed 
two methods of speculative execution, global and local. 
Generally speaking, global method is more suitable for small 
result size, which means this method is more suitable for high 
selectivity. A more effective way to choose for optimal method 
should be combined with system statistical information. 
Scheduling for speculative execution is not considered in this 
paper, actually it is a more difficult problem, especially in a 
cluster environment. To avoid repeated table scan cost in 
speculative execution, we can merged some operations together 
with a conjunction ‘or’, e.g. operation {col1=x} and operation 
{col2=y} can be merged as operation {col1=x or col2=y}.  

 

VIII. CONCLUSION AND FUTURE WORK 
We’ve designed and implemented a query prediction model 

for large scale data intensive system based on event streaming 
application in this paper. Firstly we’ve made a study of query 
requests in DBroker system, a typical event streaming 
application system, and found hot-spot events accessing 
pattern. Then we’ve give a system design of query prediction 
model, we’ve developed TLS prediction algorithm as well as 
two speculative execution methods. Our experimental results 
demonstrate that the prediction algorithm can make a good 
balance in accuracy rate and efficiency rate, and our 
speculative execution method can get a great reduction of 
response time. 

In the future, we will go on our research in two aspects. 
First we will expand hot-spot events prediction based on event 
rule detection, considering for event configuration information 
variation. Second we will go on researches on optimization for 
speculative execution, combined with database statistical 
information. 
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