CS 595:
Hot Topics in Distributed Systems:
Data-Intensive Computing

Syllabus

Ioan Raicu
Computer Science Department
Illinois Institute of Technology

CS 595
Hot Topics in Distributed Systems: Data-Intensive Computing
August 23rd, 2010
Introductions

• Ioan Raicu
 – More information at:
 • http://www.cs.iit.edu/~iraicu/

• Everyone else
 – Background?
 – What do you want to get out of this course?
• Data Intensive Computing is critical to advancing modern science
 – Applies to cluster computing, grid computing, supercomputing, and cloud computing
• Increasing gap between compute capacity and storage bandwidth
• Need for advanced techniques to manipulate, visualize and interpret large datasets
• Building large-scale distributed systems is hard
 – network (e.g., transport, routing)
 – algorithmic (e.g., data distribution, resource management)
 – social (e.g., incentives)
• Understand methods and approaches to:
 – Design, implement, and evaluate distributed systems

• Topics include:
 – Resource management (e.g. discovery, allocation, compute models, data models, data locality, virtualization, monitoring, provenance), programming models, application models, and system characterization

• Course involves:
 – Lectures, outside invited speakers, discussions of research papers, homeworks, and a major project
Prerequisites

• Topics
 – Programming (C, C++, or Java)
 – Networking
 – Operating systems
 – Distributed systems
Course Topics

- Distributed Systems: Clusters, Supercomputers, Grids and Clouds
- Data Intensive Computing Overview
- Local Resource Management Systems
- Storage Systems
- Shared, Distributed and Parallel File Systems
- Parallel I/O
- Scientific Computing and Applications
- Parallel Programming Systems and Models
Course Topics (cont)

- MapReduce & Hadoop
- Sphere/Sector
- Parrot and Chirp
- Swift/Falkon
- Data-Intensive Computing with GPUs
- Data-Intensive Computing with Databases
- Many-core Computing Era and New Challenges
- Open Research Questions in Data-Intensive Computing
Computer Usage

- falkon.cs.iit.edu
 - Request account from iraicu@cs.iit.edu
 - Intel Xeon, 16-cores @ 2.33GHz, 48GB RAM, 7TB RAID5 disk, 1Gb/s network
 - Linux Suse 11.2 x64
• PADS Cluster at University of Chicago (1K cores x64)
• IBM BlueGene/P at Argonne National Laboratory (160K PPC)
• SiCortex at Argonne National Laboratory (5832 MIPS)
• ANL/UC TG Cluster at Argonne National Laboratory (~200 IA32)
• TeraGrid (150K of all variety of CPUs)
• Sun Constellation at TACC (62K x64)
• Magellan at Argonne National Laboratory (10K x64 cloud)
• Amazon EC2
Research Papers
Reading and Discussion

• 1~2 papers per lecture
• Each paper must be summarized in writing
• Serve as background to the lecture
• Serve as basis for discussion
 – Each paper will have a student discussion leader
Homeworks

- Up to 5 assignments
- Will give hands-on experience with some specific technology or theoretical concept
- Generally will have 1 week to complete
- Must be completed individually
Projects

• Major quarter long project
 – Topic of choice of the student
 – Can work in groups
 – May require the following things:
 • Reading research papers
 • Using open source software
 • Implementation of a real/simulated system
 • Analysis of theoretical work
 • Performance evaluation of theoretical/real systems
 • Written report(s)
 • Oral presentation(s)
Project Ideas

- Distributed file systems
- Data aware scheduling algorithms
- Distributed operating systems
- Distributed job management systems
- Parallel programming languages
- Distributed workflow systems
- Distributed monitoring systems
Scientific computing with GPUs
Scientific computing with MapReduce
Distributed caching strategies
Distributed cache eviction policies
Distributed hash tables
Virtualization impact for data-intensive computing
Useful Software for your Projects

- **Operating systems:** Linux, Windows
- **Scripting:** BASH
- **Source control:** SVN
- **Programming languages:** Java, C/C++
- **Job submission systems:** GRAM, PBS, Condor, Cobalt, SGE, Falkon
- **Programming models:** MapReduce (Hadoop), MPI (MPICH), Multi-Threading (PThreads), Workflows (Swift, Pegasus/DAGMan, Nimrod, Taverna, BPEL)
- **File systems:** FUSE
Useful Software for your Projects (cont)

• Parallel file systems: GPFS, PVFS, Lustre
• Distributed file systems: GPS, HDFS
• Data services: GridFTP
• Grid middleware: Globus
• Cloud middleware: Nimbus, Eucalyptus, OpenNebula
• Distributed hash tables: Chord, Tapestry
• Simulation environments: GridSim, SimGrid, OptorSim, GangSim, Bricks
• Virtualization: Sun Virtual Box, XEN, VMWare
• Participation in paper discussions: 15%
• Homeworks: 20%
• Mid-quarter oral presentation: 5%
• Final oral presentation: 10%
• Project / Report: 50%
Course Outcomes

- Understand the importance of data-intensive computing
- Understand the difference between cluster computing, grid computing, supercomputing, and cloud computing
- Understand how to build large scale distributed systems
- Understand applications that require data-intensive computing
- Understand trends in many-core computing and challenges that will come with them
- Build distributed systems
- Be familiar with multiple programming models
- Read and understand a research paper
- Make a formal presentation on a technical topic
- Write up a formal report (and a research paper) on the project
• Required texts
 – None
 – Readings will be from online material
Questions

- Write me:
 - iraicu@cs.iit.edu
- Skype me:
 - ioan.raicu
- Call me:
 - 1-312-567-5704
- Mailing list
 - cs595-f10@mailer.iit.edu