
1

PLANET
Massively Parallel Learning of Tree Ensembles with

MapReduce

Joshua Herbach*
Google Inc., AdWords

*Joint work with Biswanath Panda, Sugato Basu, Roberto J. Bayardo

2

Outline

• PLANET – infrastructure for building trees

• Decision trees

• Usage and motivation

• MapReduce

• PLANET details

• Results

• Future Work

.42

3

Tree Models

• Classic data mining model

• Interpretable

• Good when built with ensemble

techniques like bagging

and boosting

|D|=100

|D|=10 |D|=90

|D|=45 |D|=45

|D|=20 |D|=30

|D|=15

|D|=25

A

C

D E

F G H I

X1 < v1

X2 є {v2, v3}

|D|=100

|D|=10 |D|=90

|D|=45 |D|=45

|D|=20 |D|=30

|D|=15

|D|=25

A

B C

D E

F G H I

Construction

X1 < v1

X2 є {v2, v3}

.42

4

5

Find Best Split

6

Trees at Google

• Large Datasets

 Iterating through a large dataset (10s, 100s, or 1000s of GB) is slow

 Computing values based on the records in a large dataset is really slow

• Parallelism!

 Break up dataset across many processing units and then combine results

 Super computers with specialized parallel hardware to support high throughput

are expensive

 Computers made from commodity hardware are cheap

• Enter MapReduce

7

MapReduce*

*http://labs.google.com/papers/mapreduce.html

Input 1

Mappers

7

Input 2

Input 3

Input 4

Input 5

Key A Value

Key B Value

Key A Value

Key B Value

Key C Value

Key B Value

Key C Value

Reducers

Output 1 Output 2

Can use a secondary key to control

ordering reducers see key-value pairs

8

PLANET

• Parallel Learner for Assembling Numerous Ensemble Trees

• PLANET is a learner for training decision trees that is built on MapReduce

 Regression models (or classification using logistic regression)

 Supports boosting, bagging and combinations thereof

 Scales to very large datasets

9

System Components

• Master

 Monitors and controls everything

• MapReduce Initialization Task

 Identifies all the attribute values which need to be considered for splits

• MapReduce FindBestSplit Task

 MapReduce job to find best split when there is too much data to fit in memory

• MapReduce InMemoryGrow Task

 Task to grow an entire subtree once the data for it fits in memory

• Model File

 A file describing the state of the model

10

Architecture

Master

Input Data

Initialization

MapReduce

Attribute

Metadata
Model

FindBestSplit

MapReduce

Intermediate

Results

|D|=100 A

|D|=10 |D|=90 C

X1 < v1

.42

|D|=45 |D|=45 D E

X2 є {v2, v3}

|D|=20

|D|=15

|D|=25

F G H I

InMemory

MapReduce

11

Master

• Controls the entire process

• Determines the state of the tree and grows it

 Decides if nodes should be leaves

 If there is relatively little data entering a node; launch an InMemory MapReduce

job to grow the entire subtree

 For larger nodes, launches a MapReduce job to find candidate best splits

 Collects results from MapReduce jobs and chooses the best split for a node

 Updates Model

• Periodically checkpoints system

• Maintains status page for monitoring

12

Status page

13

Initialization MapReduce

• Identifies all the attribute values which need to be considered for splits

• Continuous attributes

 Compute an approximate equi-depth histogram*

 Boundary points of histogram used for potential splits

• Categorical attributes

 Identify attribute's domain

• Generates an “attribute file” to be loaded in memory by other tasks

*G. S. Manku, S. Rajagopalan, and B. G. Lindsay, SIGMOD, 1999.

14

FindBestSplit MapReduce

• MapReduce job to find best split when there is too much data to fit in memory

• Mapper

 Initialize by loading attribute file from Initialization task and current model file

 For each record run the Map algorithm

 For each node output to all reducers

<Node.Id, <Sum Result, Sum Squared Result, Count>>

 For each split output <Split.Id, <Sum Result, Sum Squared Result, Count>>

Map(data):

 Node = TraverseTree(data, Model)

 if Node to be grown:

 Node.stats.AddData(data)

 for feature in data:

 Split = FindSplitForValue(Node.Id, feature)

 Split.stats.AddData(data)

15

FindBestSplit MapReduce

• MapReduce job to find best split when there is too much data to fit in memory

• Reducer (Continuous Attributes)

 Load in all the <Node_Id, List<Sum Result, Sum Squared Result, Count>> pairs

and aggregate the per_node statistics.

 For each <Split_Id, List<Sum Result, Sum Squared Result, Count>> run the

Reduce algorithm

 For each Node_Id, output the best split found

Reduce(Split_Id, values):

 Split = NewSplit(Split_Id)

 best = FindBestSplitSoFar(Split.Node.Id)

 for stats in values

 split.stats.AddStats(stats)

 left = ComputeImpurity(split.stats)

 right = ComputeImpurity(split.node.stats – split.stats)

 split.impurity = left + right

 if split.impurity < best.impurity:

 UpdateBestSplit(Split.Node.Id, split)

16

FindBestSplit MapReduce

• MapReduce job to find best split when there is too much data to fit in memory

 Reducer (Categorical Attributes)

• Modification to reduce algorithm:

 Compute the aggregate stats for each individual value

 Sort values by average target value

 Iterate through list and find optimal subsequence in list*

*L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. 1984.

17

InMemoryGrow MapReduce

• Task to grow an entire subtree once the data for it fits in memory

• Mapper

 Initialize by loading current model file

 For each record identify the node it falls under and if that node is to be grown,

output <Node_Id, Record>

• Reducer

 Initialize by loading attribute file from Initialization task

 For each <Node_Id, List<Record>> run the basic tree growing algorithm on the

records

 Output the best splits for each node in the subtree

18

Ensembles

• Bagging

 Construct multiple trees in parallel, each on a sample of the data

 Sampling without replacement is easy to implement on the Mapper side for both

types of MapReduce tasks

• Compute a hash of <Tree_Id, Record_Id> and if it's below a threshold then sample it

 Get results by combining the output of the trees

• Boosting

 Construct multiple trees in a series, each on a sample of the data*

 Modify the target of each record to be the residual of the target and the model's

prediction for the record

• For regression, the residual z is the target y minus the model prediction F(x)

• For classification, z = y – 1 / (1 + exp(-F(x)))

 Get results by combining output from each tree

*J. H. Friedman. Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 2001.

19

Performance Issues

• Set up and Tear down

 Per-MapReduce overhead is significant for large forests or deep trees

 Reduce tear-down cost by polling for output instead of waiting for a task to return

 Reduce start-up cost through forward scheduling

• Maintain a set of live MapReduce jobs and assign them tasks instead of starting new

jobs from scratch

• Categorical Attributes

 Basic implementation stored and tracked these as strings

• This made traversing the tree expensive

 Improved latency by instead considering fingerprints of these values

• Very high dimensional data

 If the number of splits is too large the Mapper might run out of memory

 Instead of defining split tasks as a set of nodes to grow, define them as a set of

nodes grow and a set of attributes to explore.

20

Results

21

Conclusions

• Large-scale learning is increasingly important

• Computing infrastructures like MapReduce can be leveraged for large-scale

learning

• PLANET scales efficiently with larger datasets and complex models.

• Future work

 Adding support for sampling with replacement

 Categorical attributes with large domains

• Might run out of memory

 Only support splitting on single values

 Area for future exploration

Google Confidential and Proprietary 22

Thank You!

Q&A

