Cloud Computing and Grid Computing
360-Degree Compared

Ioan Raicu
Computer Science Department
Illinois Institute of Technology

CS595
September 7th, 2011
Cluster Computing

Computer clusters using commodity processors, network interconnects, and operating systems.
Highly-tuned computer clusters using commodity processors combined with custom network interconnects and customized operating system.
Top 10 Supercomputers from Top500

- Cray XT4 & XT5
 - Jaguar #1
 - Kraken #3
- IBM BladeCenter Hybrid
 - Roadrunner #2
- IBM BlueGene/L & BlueGene/P
 - Jugene #4
 - Intrepid #8
 - BG/L #7
- NUDT (GPU based)
 - Tianhe-1 #5
- SGI Altix ICE
 - Plaiedas #6
- Sun Constellation
 - Ranger #9
 - Red Sky #10
Grids tend to be composed of multiple clusters, and are typically loosely coupled, heterogeneous, and geographically dispersed.
Major Grids

- TeraGrid (TG)
 - 200K-cores across 11 institutions and 22 systems over the US
- Open Science Grid (OSG)
 - 43K-cores across 80 institutions over the US
- Enabling Grids for E-sciencE (EGEE)
- LHC Computing Grid from CERN
- Middleware
 - Globus Toolkit
 - Unicore
Cloud Computing: An Emerging Paradigm

Search Volume Index

- Cloud computing
- Computer science
- HPC
- University of Chicago
- Northwestern University

Cloud Computing and Grid Computing 360-Degree Compared
• A large-scale distributed computing paradigm driven by:
 1. economies of scale
 2. virtualization
 3. dynamically-scalable resources
 4. delivered on demand over the Internet
Magellan +
DOE’s Advanced Network Initiative

Cloud Computing and Grid Computing 360-Degree Compared
Major Clouds

- **Industry**
 - Google App Engine
 - Amazon
 - Windows Azure
 - Salesforce

- **Academia/Government**
 - Magellan
 - FutureGrid

- **Opensource middleware**
 - Nimbus
 - Eucalyptus
 - OpenNebula
So is “Cloud Computing” just a new name for Grid?

• IT reinvents itself every five years
• The answer is complicated…

• **YES**: the vision is the same
 – to reduce the cost of computing
 – increase reliability
 – increase flexibility by transitioning from self operation to third party
So is “Cloud Computing” just a new name for Grid?

• **NO**: things are different than they were 10 years ago
 – New needs to analyze massive data, increased demand for computing
 – Commodity clusters are expensive to operate
 – We have low-cost virtualization
 – Billions of dollars being spent by Amazon, Google, and Microsoft to create real commercial large-scale systems with hundreds of thousands of computers
 – The prospect of needing only a credit card to get on-demand access to *infinite computers is exciting; *infinite<\(O(1000)\)
So is “Cloud Computing” just a new name for Grid?

- **YES:** the problems are mostly the same
 - How to manage large facilities
 - Define methods to discover, request, and use resources
 - How to implement and execute parallel computations
 - Details differ, but issues are similar
Outline

- Business model
- Architecture
- Resource management
- Programming model
- Application model
- Security model
• **Grids:**
 – Largest Grids funded by government
 – Largest user-base in academia and government labs to drive scientific computing
 – Project-oriented: service units

• **Clouds:**
 – Industry (i.e. Amazon) funded the initial Clouds
 – Large user base in common people, small businesses, large businesses, and a bit of open science research
 – Utility computing: real money
Why is this a big deal?
 – No owned infrastructure
 – All resources rented on demand

Critical for startups with risky business plans

Not possible without Cloud Computing and a credit card
 – Launched in 2007/2008 timeframe
An Example of an Application in the Cloud

- **Animoto**
 - Makes it really easy for people to create videos with their own photos and music.
• Grids:
 – Application: *Swift, Grid portals (NVO)*
 – Collective layer: *MDS, Condor-G, Nimrod-G*
 – Resource layer: *GRAM, Falkon, GridFTP*
 – Connectivity layer: *Grid Security Infrastructure*
 – Fabric layer: *GRAM, PBS, SGE, LSF, Condor, Falkon*

• Clouds:
 – Application Layer: *Software as a Service (SaaS)*
 – Platform Layer: *Platform as a Service (PaaS)*
 – Unified Resource: *Infrastructure as a Service (IaaS)*
 – Fabric: *IaaS*
Resource Management

• Compute Model
 – batch-scheduled vs. time-shared
• Data Model
 – Data Locality
 – Combining compute and data management
• Virtualization
 – Slow adoption vs. central component
• Monitoring
• Provenance
Programming and Application Model

• Grids:
 – Tightly coupled
 • High Performance Computing (MPI-based)
 – Loosely Coupled
 • High Throughput Computing
 • Workflows
 – Data Intensive
 • Map/Reduce

• Clouds:
 – Loosely Coupled, transactional oriented
Programming Model Issues

- **Multicore** processors
- Massive **task parallelism**
- Massive **data parallelism**
- Integrating **black box applications**
- Complex **task dependencies** (task graphs)
- **Failure**, and other execution management issues
- **Dynamic task graphs**
- Documenting **provenance** of data products
- **Data management**: input, intermediate, output
- **Dynamic data access** involving large amounts of data
Aimed to simplify usage of complex resources

• Grids
 – Front-ends to many different applications
 – Emerging technologies for Grids

• Clouds
 – Standard interface to Clouds
An Example of an Application in the Grid
Security Model

- **Grids**
 - Grid Security Infrastructure (GSI)
 - Stronger, but steeper learning curve and wait time
 - Personal verification: phone, manager, etc

- **Clouds**
 - Weaker, can use credit card to gain access, can reset password over plain text email, etc
Conclusion

• Move towards a mix of micro-production and large utilities, with load being distributed among them dynamically
 – Increasing numbers of small-scale producers (local clusters and embedded processors—in shoes and walls)
 – Large-scale regional producers

• Need to define protocols
 – Allow users and service providers to discover, monitor and manage their reservations and payments
 – Interoperability
• Need to combine the centralized scale of today’s Cloud utilities, and the distribution and interoperability of today’s Grid facilities
• Need support for on-demand provisioning
• Need tools for managing both the underlying resources and the resulting distributed computations
• Security and trust will be a major obstacle for commercial Clouds by large companies that have in-house IT resources to host their own data centers