

• Synonymous with supercomputing

• Tightly-coupled applications

• Implemented using Message Passing Interface

(MPI)

• Large of amounts of computing for short

periods of time

• Usually requires low latency interconnects

• Measured in FLOPS

2

• Typically applied in clusters and grids

• Loosely-coupled applications with sequential

jobs

• Large amounts of computing for long periods of

times

• Measured in operations per month or years

3

• Bridge the gap between HPC and HTC

• Applied in clusters, grids, and supercomputers

• Loosely coupled apps with HPC orientations

• Many activities coupled by file system ops

• Many resources over short time periods

– Large number of tasks, large quantity of computing,

and large volumes of data

[MTAGS08 Workshop] Workshop on Many-Task Computing on Grids and Supercomputers 2008

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”
4

5

Number of Tasks

Input
Data
Size

Hi

Med

Low

1 1K 1M

HPC
(Heroic

MPI
Tasks)

HTC/MTC
(Many Loosely
Coupled Tasks)

MapReduce/MTC
(Data Analysis,

Mining)

MTC
(Big Data and
Many Tasks)

[MTAGS08] “Many-Task Computing for Grids and Supercomputers”

6

• Goal: enable the rapid and efficient execution of
many independent jobs on large compute clusters

• Combines three components:
– a streamlined task dispatcher

– resource provisioning through multi-level scheduling
techniques

– data diffusion and data-aware scheduling to leverage the
co-located computational and storage resources

• Integration into Swift to leverage many applications
– Applications cover many domains: astronomy, astro-physics,

medicine, chemistry, economics, climate modeling, etc
[SciDAC09] “Extreme-scale scripting: Opportunities for large task-parallel applications on petascale computers”

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

Task Dispatcher

Data-Aware Scheduler
Persistent Storage

Available Resources

(GRAM4)

Provisioned Resources

text

Executor

1

Wait Queue

Executor

i

Executor

n

Dynamic

Resource

Provisioning

User

7

• Falkon is a real system

– Late 2005: Initial prototype, AstroPortal

– January 2007: Falkon v0

– November 2007: Globus incubator project v0.1

• http://dev.globus.org/wiki/Incubator/Falkon

– February 2009: Globus incubator project v0.9

• Implemented in Java (~20K lines of code) and C

(~1K lines of code)

– Open source: svn co https://svn.globus.org/repos/falkon

• Source code contributors (beside myself)

– Yong Zhao, Zhao Zhang, Ben Clifford, Mihael Hategan
[Globus07] “Falkon: A Proposal for Project Globus Incubation”

[CLUSTER10] “Middleware Support for Many-Task Computing”

• Workload

• 160K CPUs

• 1M tasks

• 60 sec per task

• 2 CPU years in 453 sec

• Throughput: 2312 tasks/sec

• 85% efficiency

http://dev.globus.org/wiki/Incubator/Falkon
https://svn.globus.org/repos/falkon

8

[TPDS09] “Middleware Support for Many-Task Computing”, under preparation

9

Provisioner

Dispatcher

1

Executor

1

Cobalt

Client
Executor

256

Dispatcher

N

Executor

1

Executor

256

Login Nodes

(x10)

I/O Nodes

(x640)

Compute Nodes

(x40K)

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

High-speed local disk

Falkon

10

Slower distributed

storage

ZeptOS

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

11

• Wide range of analyses

– Testing, interactive analysis,

production runs

– Data mining

– Parameter studies
[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

Improvement:

up to 90% lower end-to-end run time

12

B. Berriman, J. Good (Caltech)
J. Jacob, D. Katz (JPL)

[SC07] “Falkon: a Fast and Light-weight tasK executiON framework”

[SWF07] “Swift: Fast, Reliable, Loosely Coupled Parallel Computation”

Improvement:

up to 57% lower end-to-end run time

Within 4% of MPI

• Determination of free

energies in aqueous solution

– Antechamber – coordinates

– Charmm – solution

– Charmm - free energy

13

[NOVA08] “Realizing Fast, Scalable and Reliable Scientific Computations in Grid Environments”

Improvement:

up to 88% lower end-to-end run time

5X more scalable

14

• Classic benchmarks for MapReduce

– Word Count

– Sort

• Swift and Falkon performs similar or better than

Hadoop (on 32 processors)
Sort

42

85

733

25

83

512

1

10

100

1000

10000

10MB 100MB 1000MB

Data Size

T
im

e
 (

s
e
c

)
Swift+Falkon

Hadoop

Word Count

221

1143
1795

863

4688
7860

1

10

100

1000

10000

75MB 350MB 703MB

Data Size

T
im

e
 (

s
e

c
)

Swift+PBS

Hadoop

15

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

200000

400000

600000

800000

1000000

T
h

ro
u

g
h

p
u

t
(t

a
s

k
s
/s

e
c

)

T
a

s
k

s
 C

o
m

p
le

te
d

N
u

m
b

e
r

o
f

P
ro

c
e

s
s

o
rs

Time (sec)

Processors
Active Tasks
Tasks Completed
Throughput (tasks/sec)

• CPU Cores: 130816

• Tasks: 1048576

• Elapsed time: 2483 secs

• CPU Years: 9.3

Speedup: 115168X (ideal 130816)

Efficiency: 88%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

start

report

DOCK6

Receptor

(1 per protein:

defines pocket

to bind to)

ZINC
3-D

structures

ligands complexes

NAB script

parameters

(defines flexible

residues,

#MDsteps)

Amber Score:

1. AmberizeLigand

3. AmberizeComplex

5. RunNABScript

end

BuildNABScript

NAB

Script

NAB

Script

Template

Amber prep:

2. AmberizeReceptor

4. perl: gen nabscript

FRED

Receptor

(1 per protein:

defines pocket

to bind to)

Manually prep

DOCK6 rec file

Manually prep

FRED rec file

1
protein
(1MB)

6
GB
2M

structures
(6 GB)

DOCK6 FRED
~4M x 60s x 1 cpu

~60K cpu-hrs

Amber
~10K x 20m x 1 cpu

~3K cpu-hrs

Select best ~500

~500 x 10hr x 100 cpu

~500K cpu-hrs
GCMC

PDB
protein

descriptions

Select best ~5K Select best ~5K

For 1 target:

4 million tasks

500,000 cpu-hrs

(50 cpu-years) 16

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

17

CPU cores: 118784

Tasks: 934803

Elapsed time: 2.01 hours

Compute time: 21.43 CPU years

Average task time: 667 sec

Relative Efficiency: 99.7%

(from 16 to 32 racks)

Utilization:

• Sustained: 99.6%

• Overall: 78.3%

[SC08] “Towards Loosely-Coupled Programming on Petascale Systems”

18

• Purpose

– On-demand “stacks” of

random locations within

~10TB dataset

• Challenge

– Processing Costs:

• O(100ms) per object

– Data Intensive:

• 40MB:1sec

– Rapid access to 10-10K

“random” files

– Time-varying load

AP Sloan
Data

+

+

+

+

+

+

=

+

 Locality Number of Objects Number of Files

1 111700 111700

1.38 154345 111699

2 97999 49000

3 88857 29620

4 76575 19145

5 60590 12120

10 46480 4650

20 40460 2025

30 23695 790
[DADC08] “Accelerating Large-scale Data Exploration through Data Diffusion”

[TG06] “AstroPortal: A Science Gateway for Large-scale Astronomy Data Analysis”

• AstroPortal

– Makes it really easy for astronomers to create

stackings of objects from the Sloan Digital Sky

Servey (SDSS) dataset

19

• Throughput

– 10X higher than GPFS

• Reduced load
– 1/10 of the original GPFS load

• Increased scalability
• 8X

http://www.eecs.northwestern.edu/~iraicu/projects/Falkon/astro_portal.htm

• There is more to HPC than tightly coupled MPI,
and more to HTC than embarrassingly parallel
long jobs

• Data locality is critical at large-scale

20

21

• Embarrassingly Happily parallel apps are trivial to run

– Logistical problems can be tremendous

• Loosely coupled apps do not require “supercomputers”

– Total computational requirements can be enormous

– Individual tasks may be tightly coupled

– Workloads frequently involve large amounts of I/O

– Make use of idle resources from “supercomputers” via backfilling

– Costs to run “supercomputers” per FLOP is among the best

• Loosely coupled apps do not require specialized system software

– Their requirements on the job submission and storage systems can be extremely large

• Shared/parallel file systems are good for all applications

– They don’t scale proportionally with the compute resources

– Data intensive applications don’t perform and scale well

– Growing compute/storage gap

22

