

• Identify a problem

• Review approaches to the problem

• Propose a novel approach to the problem

• Define, design, prototype an implementation to

evaluate your approach

– Could be a real system, simulation and/or theoretical

• Write a technical report

• Present your results

• Write a workshop/conference paper (optional)

2

• Distributed Operating Systems

– http://www.scalemp.com/

• Achieve a unified OS across machine boundaries

• The opposite of virtualization, which creates multiple virtual

OS instances on one machine

• Choose an OS to modify

– CPU scheduler  load balancing

• Modify the OS scheduler to be aware of threads and cache locality

– Memory manager  shared memory

– File system  leverage shared/parallel file systems

• Choose a virtual machine to modify (e.g. Java)

• Evaluate workloads for performance and scalability
3

http://www.scalemp.com/

• Virtualization has overheads

• Quantify these overheads for a variety of

workloads

– Computational intensive

– Memory intensive

– Storage intensive

– Network intensive

– Across different virtualization technologies

– Across different hardware

• Survey the latest research in addressing

shortcomings of virtualization
4

• Distributed file systems use replication to ensure

reliability of data

• Replication

– Pros: Easy to implement, increases data locality and perf

– Cons: Expensive and inefficient, in terms of network

bandwidth and disk space

• Erasure codes:

– Pros: Efficient in disk space usage

– Cons: Harder to implement, expensive computationally,

decreases locality

• Investigate replacing replication with erasure codes
5

• Explore decentralization of job managers

• Potential load balancing

– Load balancing

• Potential solutions:

– Work stealing

– Hierachical architecture

6

• Most code is inherently sequential in nature 

this was OK while we doubled processor speeds

according to Moore’s Law

• Multi-core and manycore architectures are

making sequential codes inefficient

• How to parallelize existing codes without

burdening the programmer

7

• 100~1000 cores per GPU

• Does cluster computing programming approaches apply

to GPUs?

• How can GPUs be generalized for HPC use?

• Does MapReduce map well to GPUs?

• What architecture support is needed?

– Cores should have L1/L2 caches, and GPU memory should be a

L3 cache for the host memory  Nvidia Fermi might be a step in

the right direction

– Allow cores to execute independent kernels

– No enforcement of coherency across cores

– Allow core-to-core communication

8

• Workflows on GPUs

– Make GPUs look like clusters of computers

– Enable scheduling of independent tasks with support

for file I/O

– Intel MICA architecture might be useful

• Virtualize GPUs

– Allow GPUs to be partitioned over multiple virtual

machines

– Work by Peter Dinda might be relevant and useful

• Applications on GPUs

– Medical imaging, Astronomy

9

• Implement a distributed file system

– Use of FUSE for a general POSIX interface

– Use structured distributed hash tables for distributed meta-

data management

• Can scale logarithmically with system size

• Can create network topology aware overlays

• Relaxed data access semantic to increase scalability

– eventual consistency on data modifications

– write-once read-many data access patterns

• Evaluation scalability and performance

– Compare to NFS, GPFS, PVFS, Lustre, HDFS
10

• Understand file access patterns in HPC

– How large are files and directories, how often is data

accessed, what data is write once read many, or even

write once read never, how much data is modified

concurrently, etc…

• Explore the use of FUSE to implement various

file systems functionality not being met by

existing file systems

• Adding Data Provenance support to

distributed/parallel file systems

• Adding novel features to filesystem namespace
11

• Modify the open source PVFS to achieve

improvements in various areas:

– Fault tolerance

– High availability

– Metadata performance

– Scalability

• Compare PVFS to GPFS and Lustre for

various workloads

13

• Compare cloud performance with grids

and clusters

• Explore variable pricing schemes,

utilization models, etc

• Reducing the cost of cloud storage

through novel architectures

15

• Simulations at exascale and reliability

20

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
pp

lic
at

io
n

U
pt

im
e

%

Scale (# of nodes)

No Checkpointing
Checkpointing to Parallel File System
Checkpointing to Distributed File System

2000
BG/L

1024 nodes

2007
BG/L

106,496 nodes

2009
BG/P

73,728 nodes

2019
~1,000,000 nodes

• Reducing Checkpoint Overhead for MPI

Applications

• Exploring redundancy to optimize MTTF

and system throughput

21

• High failure rate in modern HPC systems

– Large number of components

– Use of off-the-shelf unreliable components

• Failure rates dynamically varies based on

– System architecture and Workload

• Replication for fault detection (possible

tolerance)

• Independent virtual machines as replicas

instead of stand-alone nodes

• Distributed file systems benchmarking

– Compare PVFS, GPFS, FusionFS, HDFS,

and others

• Distributed hash tables benchmarking

– Compare Chord, Tapestry, Kademlia, C-MPI,

memcache, and some database-centric

systems

23

24

