

• Moore’s Law

– The number of transistors that can be placed

inexpensively on an integrated circuit will

double approximately every 18 months.

– Self-fulfilling prophecy

• Computer architect goal

• Software developer assumption

2

• Impediments to Moore’s Law

– Theoretical Limit

– What to do with all that die space?

– Design complexity

– How do you meet the expected performance

increase?

3

• von Neumann model
– Execute a stream of instructions (machine code)
– Instructions can specify

• Arithmetic operations
• Data addresses
• Next instruction to execute

– Complexity
• Track billions of data locations and millions of instructions
• Manage with:

– Modular design
– High-level programming languages

4

• Parallelism

– Continue to increase performance via

parallelism.

5

0

50

100

150

200

250

300

2004 2006 2008 2010 2012 2014 2016 2018

N
u

m
b

e
r

o
f

C
o

re
s

0

10

20

30

40

50

60

70

80

90

100

M
a
n

u
fa

c
tu

ri
n

g
 P

ro
c
e
s
s

Number of Cores

Processing

• From a software point-of-view, need to

solve demanding problems

– Engineering Simulations

– Scientific Applications

– Commercial Applications

• Need the performance, resource gains

afforded by parallelism

6

• Engineering Simulations
– Aerodynamics
– Engine efficiency

7

• Scientific Applications
– Bioinformatics
– Thermonuclear processes
– Weather modeling

8

• Commercial Applications
– Financial transaction processing
– Data mining
– Web Indexing

9

• Unfortunately, greatly increases coding

complexity

– Coordinating concurrent tasks

– Parallelizing algorithms

– Lack of standard environments and support

10

• The challenge

– Provide the abstractions, programming

paradigms, and algorithms needed to

effectively design, implement, and maintain

applications that exploit the parallelism

provided by the underlying hardware in order

to solve modern problems.

11

• Standard sequential architecture

CPU
RAM

BUS

Bottlenecks

12

• Use multiple

– Datapaths

– Memory units

– Processing units

13

• SIMD

– Single instruction stream, multiple data

stream Processing

Unit

Control

Unit

In
terco

n
n
ect

Processing

Unit

Processing

Unit

Processing

Unit

Processing

Unit
14

• SIMD

– Advantages

• Performs vector/matrix operations well

– EX: Intel’s MMX chip

– Disadvantages

• Too dependent on type of computation

– EX: Graphics

• Performance/resource utilization suffers if

computations aren’t “embarrasingly parallel”.

15

• MIMD

– Multiple instruction stream, multiple data

stream
Processing/Control

Unit

Processing/Control

Unit

Processing/Control

Unit

Processing/Control

Unit

In
terco

n
n
ect

16

• MIMD
– Advantages

• Can be built with off-the-shelf components
• Better suited to irregular data access patterns

– Disadvantages
• Requires more hardware (!sharing control unit)
• Store program/OS at each processor

• Ex: Typical commodity SMP machines we see

today.

17

• Task Communication

– Shared address space

• Use common memory to exchange data

• Communication and replication are implicit

– Message passing

• Use send()/receive() primitives to exchange data

• Communication and replication are explicit

18

• Shared address space

– Uniform memory access (UMA)

• Access to a memory location is independent of

which processing unit makes the request.

– Non-uniform memory access (NUMA)

• Access to a memory location depends on the

location of the processing unit relative to the

memory accessed.

19

• Message passing

– Each processing unit has its own private

memory

– Exchange of messages used to pass data

– APIs

• Message Passing Interface (MPI)

• Parallel Virtual Machine (PVM)

20

• Algorithm

– a sequence of finite instructions, often used

for calculation and data processing.

• Parallel Algorithm

– An algorithm that which can be executed a

piece at a time on many different processing

devices, and then put back together again at

the end to get the correct result

21

• Challenges

– Identifying work that can be done

concurrently.

– Mapping work to processing units.

– Distributing the work

– Managing access to shared data

– Synchronizing various stages of execution.

22

• Models

– A way to structure a parallel algorithm by

selecting decomposition and mapping

techniques in a manner to minimize

interactions.

23

• Models

– Data-parallel

– Task graph

– Work pool

– Master-slave

– Pipeline

– Hybrid

24

• Data-parallel

– Mapping of Work

• Static

• Tasks -> Processes

– Mapping of Data

• Independent data items assigned to processes

(Data Parallelism)

25

• Data-parallel
– Computation

• Tasks process data, synchronize to get new data
or exchange results, continue until all data
processed

– Load Balancing
• Uniform partitioning of data

– Synchronization
• Minimal or barrier needed at end of a phase

– Examples
• Ray Tracing

26

• Data-parallel

P

P

P

P

P

D D

D D

D

O

O

O

O

O

27

• Task graph

– Mapping of Work

• Static

• Tasks are mapped to nodes in a data dependency

task dependency graph (Task parallelism)

– Mapping of Data

• Data moves through graph (Source to Sink)

28

• Task graph
– Computation

• Each node processes input from previous node(s) and send
output to next node(s) in the graph

– Load Balancing
• Assign more processes to a given task
• Eliminate graph bottlenecks

– Synchronization
• Node data exchange

– Examples
• Parallel Quicksort, Divide and Conquer approaches
• Scientific Applications that can be expressed in workflows

(e.g. DAGs)

29

• Task graph

P

P P

P

P

P

D

D

D

O

O

30

• Work pool

– Mapping of Work/Data

• No desired pre-mapping

• Any task performed by any process

• Pull-model oriented

– Computation

• Processes work as data becomes available (or

requests arrive)

31

• Work pool

– Load Balancing

• Dynamic mapping of tasks to processes

– Synchronization

• Adding/removing work from input queue

– Examples

• Web Server

• Bag-of-tasks

32

• Work pool

P

Work Pool

P
P

P
P

In
p

u
t q

u
eu

e

O
u
tp

u
t q

u
eu

e

33

• Master-slave

– Modification to Worker Pool Model

• One or more Master processes generate and

assign work to worker processes\

• Push-model oriented

– Load Balancing

• A Master process can better distribute load to

worker processes

34

• Pipeline

– Mapping of work

• Processes are assigned tasks that correspond to

stages in the pipeline

• Static

– Mapping of Data

• Data processed in FIFO order

– Stream parallelism

35

• Pipeline
– Computation

• Data is passed through a succession of processes,
each of which will perform some task on it

– Load Balancing
• Insure all stages of the pipeline are balanced

(contain the same amount of work)

– Synchronization
• Producer/Consumer buffers between stages

– Ex: Processor pipeline, graphics pipeline

36

• Pipeline

P

In
p
u
t q

u
eu

e

O
u
tp

u
t q

u
eu

e

P P

b
u
ffer

b
u
ffer

37

• Message-Passing

• Shared Address Space

38

• Message-Passing

– Most widely used for programming parallel

computers (clusters of workstations)

– Key attributes:

• Partitioned address space

• Explicit parallelization

– Process interactions

• Send and receive data

39

• Message-Passing
– Communications

• Sending and receiving messages
• Primitives

– send(buff, size, destination)
– receive(buff, size, source)
– Blocking vs non-blocking
– Buffered vs non-buffered

• Message Passing Interface (MPI)
– Popular message passing library
– ~125 functions

40

• Message-Passing

Workstation

Workstation

Workstation

Workstation

Data

P4 P3 P2 P1

send(buff1, 1024, p3) receive(buff3, 1024, p1)

41

• Shared Address Space
– Mostly used for programming SMP machines

(multicore chips)
– Key attributes

• Shared address space
– Threads
– Shmget/shmat UNIX operations

• Implicit parallelization

– Process/Thread communication
• Memory reads/stores

42

• Shared Address Space
– Communication

• Read/write memory
– EX: x++;

– Posix Thread API
• Popular thread API
• Operations

– Creation/deletion of threads
– Synchronization (mutexes, semaphores)
– Thread management

43

• Shared Address Space

Workstation

T3 T4 T2 T1

Data SMP RAM

44

• Synchronization

– Deadlock

– Livelock

– Fairness

• Efficiency

– Maximize parallelism

• Reliability

– Correctness

– Debugging

45

46

