


• Moore’s Law 

– The number of transistors that can be placed 

inexpensively on an integrated circuit will 

double approximately every 18 months. 

– Self-fulfilling prophecy 

• Computer architect goal 

• Software developer assumption 
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• Impediments to Moore’s Law 

– Theoretical Limit 

– What to do with all that die space? 

– Design complexity 

– How do you meet the expected performance 

increase? 
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• von Neumann model 
– Execute a stream of instructions (machine code) 
– Instructions can specify 

• Arithmetic operations 
• Data addresses 
• Next instruction to execute 

– Complexity 
• Track billions of data locations and millions of instructions 
• Manage with: 

– Modular design 
– High-level programming languages 
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• Parallelism 

– Continue to increase performance via 

parallelism. 
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• From a software point-of-view, need to 

solve demanding problems 

– Engineering Simulations 

– Scientific Applications 

– Commercial Applications 

• Need the performance, resource gains 

afforded by parallelism 
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• Engineering Simulations 
– Aerodynamics 
– Engine efficiency 
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• Scientific Applications 
– Bioinformatics 
– Thermonuclear processes 
– Weather modeling 
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• Commercial Applications 
– Financial transaction processing 
– Data mining 
– Web Indexing 
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• Unfortunately, greatly increases coding 

complexity 

– Coordinating concurrent tasks 

– Parallelizing algorithms 

– Lack of standard environments and support 
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• The challenge 

– Provide the abstractions, programming 

paradigms, and algorithms needed to 

effectively design, implement, and maintain 

applications that exploit the parallelism 

provided by the underlying hardware in order 

to solve modern problems. 
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• Standard sequential architecture 
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• Use multiple 

– Datapaths 

– Memory units 

– Processing units 
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• SIMD  
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• SIMD  

– Advantages 

• Performs vector/matrix operations well 

– EX: Intel’s MMX chip 

– Disadvantages 

• Too dependent on type of computation 

– EX: Graphics 

• Performance/resource utilization suffers if 

computations aren’t “embarrasingly parallel”. 
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• MIMD  

– Multiple instruction stream, multiple data 

stream 
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• MIMD  
– Advantages 

• Can be built with off-the-shelf components 
• Better suited to irregular data access patterns 

– Disadvantages 
• Requires more hardware (!sharing control unit) 
• Store program/OS at each processor 

 
• Ex: Typical commodity SMP machines we see 

today. 
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• Task Communication 

– Shared address space 

• Use common memory to exchange data 

• Communication and replication are implicit 

– Message passing 

• Use send()/receive() primitives to exchange data 

• Communication and replication are explicit 
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• Shared address space 

– Uniform memory access (UMA) 

• Access to a memory location is independent of 

which processing unit makes the request. 

– Non-uniform memory access (NUMA) 

• Access to a memory location depends on the 

location of the processing unit relative to the 

memory accessed. 
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• Message passing 

– Each processing unit has its own private 

memory 

– Exchange of messages used to pass data 

– APIs 

• Message Passing Interface (MPI) 

• Parallel Virtual Machine (PVM)  
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• Algorithm 

– a sequence of finite instructions, often used 

for calculation and data processing. 

• Parallel Algorithm 

– An algorithm that which can be executed a 

piece at a time on many different processing 

devices, and then put back together again at 

the end to get the correct result 
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• Challenges 

– Identifying work that can be done 

concurrently. 

– Mapping work to processing units. 

– Distributing the work 

– Managing access to shared data 

– Synchronizing various stages of execution. 
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• Models 

– A way to structure a parallel algorithm by 

selecting decomposition and mapping 

techniques in a manner to minimize 

interactions. 
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• Models 

– Data-parallel 

– Task graph 

– Work pool 

– Master-slave 

– Pipeline 

– Hybrid 
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• Data-parallel 

– Mapping of Work 

• Static 

• Tasks -> Processes 

– Mapping of Data 

• Independent data items assigned to processes 

(Data Parallelism) 
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• Data-parallel 
– Computation 

• Tasks process data, synchronize to get new data 
or exchange results, continue until all data 
processed 

– Load Balancing 
• Uniform partitioning of data 

– Synchronization 
• Minimal or barrier needed at end of a phase 

– Examples 
• Ray Tracing 
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• Data-parallel 
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• Task graph 

– Mapping of Work 

• Static 

• Tasks are mapped to nodes in a data dependency 

task dependency graph (Task parallelism) 

– Mapping of Data 

• Data moves through graph (Source to Sink) 
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• Task graph 
– Computation 

• Each node processes input from previous node(s) and send 
output to next node(s) in the graph 

– Load Balancing 
• Assign more processes to a given task 
• Eliminate graph bottlenecks 

– Synchronization 
• Node data exchange 

– Examples 
• Parallel Quicksort, Divide and Conquer approaches 
• Scientific Applications that can be expressed in workflows 

(e.g. DAGs) 
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• Task graph 
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• Work pool 

– Mapping of Work/Data 

• No desired pre-mapping 

• Any task performed by any process 

• Pull-model oriented 

– Computation 

• Processes work as data becomes available (or 

requests arrive) 
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• Work pool 

– Load Balancing 

• Dynamic mapping of tasks to processes 

– Synchronization 

• Adding/removing work from input queue 

– Examples 

• Web Server 

• Bag-of-tasks 

32 



• Work pool 
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• Master-slave 

– Modification to Worker Pool Model 

• One or more Master processes generate and 

assign work to worker processes\ 

• Push-model oriented 

– Load Balancing 

• A Master process can better distribute load to 

worker processes 
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• Pipeline 

– Mapping of work 

• Processes are assigned tasks that correspond to 

stages in the pipeline 

• Static 

– Mapping of Data 

• Data processed in FIFO order 

– Stream parallelism 
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• Pipeline 
– Computation 

• Data is passed through a succession of processes, 
each of which will perform some task on it 

– Load Balancing 
• Insure all stages of the pipeline are balanced 

(contain the same amount of work) 

– Synchronization 
• Producer/Consumer buffers between stages 

– Ex: Processor pipeline, graphics pipeline 
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• Pipeline 
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• Message-Passing 

• Shared Address Space 

38 



• Message-Passing 

– Most widely used for programming parallel 

computers (clusters of workstations) 

– Key attributes: 

• Partitioned address space 

• Explicit parallelization 

– Process interactions 

• Send and receive data 
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• Message-Passing 
– Communications 

• Sending and receiving messages 
• Primitives 

– send(buff, size, destination) 
– receive(buff, size, source) 
– Blocking vs non-blocking 
– Buffered vs non-buffered 

• Message Passing Interface (MPI) 
– Popular message passing library 
– ~125 functions 
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• Message-Passing 

 

 

 

Workstation 

 

 

 

Workstation 

 

 

 

Workstation 

 

 

 

Workstation 

Data 

P4 P3 P2 P1 

send(buff1, 1024, p3) receive(buff3, 1024, p1) 

41 



• Shared Address Space 
– Mostly used for programming SMP machines 

(multicore chips) 
– Key attributes 

• Shared address space 
– Threads 
– Shmget/shmat UNIX operations 

• Implicit parallelization 

– Process/Thread communication 
• Memory reads/stores 
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• Shared Address Space 
– Communication 

• Read/write memory 
– EX: x++; 

– Posix Thread API 
• Popular thread API 
• Operations 

– Creation/deletion of threads 
– Synchronization (mutexes, semaphores) 
– Thread management 
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• Shared Address Space 
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• Synchronization 

– Deadlock 

– Livelock 

– Fairness 

• Efficiency 

– Maximize parallelism 

• Reliability 

– Correctness 

– Debugging 
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