

• System that permanently stores data

• Usually layered on top of a lower-level
physical storage medium

• Divided into logical units called “files”

– Addressable by a filename (“foo.txt”)

– Usually supports hierarchical nesting
(directories)

• A file path joins file & directory names into
a relative or absolute address to identify
a file (“/home/aaron/foo.txt”)

• Support access to files on remote servers

• Must support concurrency

– Make varying guarantees about locking, who
“wins” with concurrent writes, etc...

– Must gracefully handle dropped connections

• Can offer support for replication and local
caching

• Different implementations sit in different
places on complexity/feature scale

• 1980~1990: NFS

• ~2000: PVFS

• ~2002: GPFS

• ~2003: Lustre

• ~2003: GFS

• ~2006: Sector

• ~2007: HDFS

4

• First developed in 1980s by Sun

• Presented with standard UNIX FS
interface

• Network drives are mounted into local
directory hierarchy

• Initially completely stateless

– Operated over UDP; did not use TCP
streams

– File locking, etc., implemented in higher-level
protocols

• Modern implementations use TCP/IP &
stateful protocols

 Node 0

NFS Server Node 1

Node 2

Node N

Each cluster node has
dual-processor Pentium
Linux, HD, lots of memory

• Client/server system

• Single server for files

DATA

FILE

• NFS defines a virtual file system

– Does not actually manage local disk layout on server

• Server instantiates NFS volume on top of local
file system

– Local hard drives managed by concrete file systems
(EXT, ReiserFS, ...)

– Other networked FS's mounted in by...?

Hard Drive 1

User-visible filesystem

NFS server

NFS client

Hard Drive 2

EXT2 fs ReiserFS

Hard Drive 1 Hard Drive 2

EXT3 fs EXT3 fs

Server filesystem

• NFS v4 supports stateful locking of files

– Clients inform server of intent to lock

– Server can notify clients of outstanding lock
requests

– Locking is lease-based: clients must
continually renew locks before a timeout

– Loss of contact with server abandons locks

• NFS Clients are allowed to cache copies of
remote files for subsequent accesses

• Supports close-to-open cache consistency

– When client A closes a file, its contents are
synchronized with the master, and timestamp is
changed

– When client B opens the file, it checks that local
timestamp agrees with server timestamp. If not, it
discards local copy.

– Concurrent reader/writers must use flags to disable
caching

• NFS Volume managed by single server

– Higher load on central server

– Simplifies coherency protocols

• Full POSIX system means it “drops in”
very easily, but isn’t “great” for any
specific need

• NFS not sufficient for high-performance

computing workloads

• At the time, other solutions either non-

existent, or did not run in Linux clusters

– GPFS (proprietary on some IBM machines)

– Lustre (not yet)

– GFS (proprietary to Google)

12

• Native PVFS Library

– User space implementation

• Trapping I/O System calls

– Allows applications to run without recompiling

– Has limitations related to multi-process applications

(e.g. exec causes file descriptor state to be lost)

– Also requires high maintenance

• VFS Kernel Module

– A module specific for PVFS, similar to NFS module

13

#include <pvfs.h>

int main() {

int fd, bytes;

 fd=pvfs_open(fn,O_RDONLY,0,NULL,NULL);

 ...

 pvfs_lseek(fd, offset, SEEK_SET);

 ...

 bytes_read = pvfs_read(fd, buf_ptr, bytes);

 ...

 pvfs_close(fd);

}

15

• One node is a manager node

– Maintains metadata information for files

• Configuration and usage options include:

– Size of stripe

– Number of I/O servers

– Which nodes serve as I/O servers

– Native PVFS API vs. UNIX/POSIX API

• Also a client/server system

• Many servers for each file

• Fixed sized stripes in round-robin fashion

Node 0

Node 2

Node 1

DATA

FILE

Each cluster node still has
dual-processor Pentium
Linux, HD, lots of memory

• GPFS had been used for years on IBM machines

• GPFS has been used on some of the largest

supercomputers, including Linux-based ones

• GPFS aims for POSIX access semantic in a

parallel file system

• All nodes have the same view

• Use distributed locking protocols

18

• Parallel data and metadata access

• Data striping across disks

• General Large File System Issues

– Data stripping and allocation, pre-fetch, and

write-behind

– Large directory support

– Logging and recovery

19

• Locking management

– Distributed locking

– Centralized management

• GPFS distributed lock manager

• Parallel data access

– Byte range locks

• Synchronizing access to file metadata

• Allocation maps

– Managing free space

• Centralized token manager scaling
20

• Node failures

– Use recovery logs from shared disks

• Communication failures

– Heartbeat messages

• Disk failures

– RAID

– Replication

21

• Also has a distributed lock manager

– But more limited than that of GPFS

– Intent locking

• Switch between different strategies based on concurrency

level

• Object-based vs. Block-based

– Object-based protocols can help in locking and

allocation of metadata

– Lustre is backwards compatible with block-based

storage

• Client caching metadata

22

23

