Distributed
File Systems

loan Raicu
Computer Science Department
lllinois Institute of Technology

CS 595
October 17, 2011



Distribuied File Systems:

State of the Ari

 GFS: Google File System

— Google

— C/C++
« HDFS: Hadoop Distributed File System

— Yahoo

— Java, Open Source
e Others

— Sector: Distributed Storage System
» University of lllinois at Chicago
« C++, Open Source

— CloudStore

o C++



http://kosmosfs.sourceforge.net/about.html

Filesysieims Overview

« System that permanently stores data

» Usually layered on top of a lower-level
ohysical storage medium

 Divided into logical units called “files”
— Addressable by a filename (*foo.txt”)

— Usually supports hierarchical nesting
(directories)

* A file path joins file & directory names into
a relative or absolute address to identify
a file ("/home/aaron/foo.txt")




Shared/Parallel/Distributed
Filesysiems

» Support access to files on remote servers

* Must support concurrency

— Make varying guarantees about locking, who
“*wins” with concurrent writes, etc...

— Must gracefully handle dropped connections

» Can offer support for replication and local
caching

 Different implementations sit in different
places on complexity/feature scale



GFS: Motivation

* Google needed a good distributed file system

— Redundant storage of massive amounts of data on
cheap and unreliable computers

* Why not use an existing file system?

— Google’s problems are different from anyone else’s
 Different workload and design priorities

— GFS is designed for Google apps and workloads
— Google apps are designed for GFS



GFS: Assumptions

High component failure rates

— Inexpensive commodity components fail all the
time

“Modest” number of HUGE files

— Just a few million

— Each is 100MB or larger; multi-GB files typical

Files are write-once, mostly appended to

— Perhaps concurrently

Large streaming reads

High sustained throughput favored over low latency



Google Workloads

Most files are mutated by appending new data — large sequential
writes

Random writes are very uncommon

Files are written once, then they are only read
Reads are sequential

Large streaming reads and small random reads
High bandwidth is more important than low latency

Google applications:
— Data analysis programs that scan through data repositories
— Data streaming applications
— Archiving
— Applications producing (intermediate) search results



GFS Design Decisions

Files stored as chunks

— Fixed size (64MB)

Reliability through replication

— Each chunk replicated across 3+ chunkservers
Single master to coordinate access, keep metadata

— Simple centralized management

No data caching

— Little benefit due to large data sets, streaming reads
Familiar interface, but customize the API

— Simplify the problem; focus on Google apps



Application

(file name. chunk index)

GFS client

d

(chunk handle,
chunk locations)

ichunk handle, byte range)

GFS master
File namespace

- Hoo'bar

chunk 2ef

]

Instructions to chunkserver

Chunkserver state

Legend:

—

—

|
-

chunk data

GEFS chunkserver

GFS chunkserver

Linux file system

Linux file system

90 —

Ble —

Data messages
Control messages



GFS Architecture

Single master

Multiple chunk servers

Multiple clients

Each is a commodity Linux machine, a server is a user-level process
Files are divided into chunks

Each chunk has a handle (an ID assigned by the master)

Each chunk is replicated (on three machines by default)

Master stores metadata, manages chunks, does garbage collection,
etc.

Clients communicate with master for metadata operations, but with
chunkservers for data operations

No additional caching (besides the Linux in-memory buffer caching)

10



GFS Discussion

Client/GFS Interaction

Master

Metadata

Why keep metadata in memory?
Why not keep chunk locations persistent?
Level of replication, why 3 is default?
Operation log

Data consistency

Garbage collection

Load balancing

Fault tolerance

Support atomic record append

11



Quesitions




