MapReduce

Ioan Raicu
Computer Science Department
Illinois Institute of Technology

CS 595: Data-Intensive Computing
October 24th, 2011
Motivation: Large Scale Data Processing

• Want to:
 – Process lots of data (> 1 TB)
 – Automatically parallelize across hundreds/thousands of CPUs
 – Have status and monitoring tools
 – Provide clean abstraction for programmers
 – Make this easy
“A simple and powerful interface that enables automatic parallelization and distribution of large-scale computations, combined with an implementation of this interface that achieves high performance on large clusters of commodity PCs.”

Dean and Ghermawat, “MapReduce: Simplified Data Processing on Large Clusters”, Google Inc.
Iterate over a large number of records
• Extract something of interest from each
• Shuffle and sort intermediate results
• Aggregate intermediate results
• Generate final output

Key idea: provide an abstraction at the point of these two operations
• Process data using special `map()` and `reduce()` functions
• The `map()` function is called on every item in the input and emits a series of intermediate key/value pairs
• All values associated with a given key are grouped together
• The `reduce()` function is called on every unique key, and its value list, and emits a value that is added to the output
Borrows from functional programming

Users implement interface of two functions:

- map \((\text{in_key}, \text{in_value}) \rightarrow (\text{out_key}, \text{intermediate_value})\text{ list}\)

- reduce \((\text{out_key}, \text{intermediate_value\ list}) \rightarrow \text{out_value\ list}\)
• Records from the data source (lines out of files, rows of a database, etc) are fed into the map function as key*value pairs: e.g., (filename, line).

• map() produces one or more intermediate values along with an output key from the input.
• After the map phase is over, all the intermediate values for a given output key are combined together into a list

• reduce() combines those intermediate values into one or more final values for that same output key

• (in practice, usually only one final value per key)
• Word frequency

MapReduce Examples

Map

Reduce

Runtime System

<word,1>
<word,1>
<word,1>
<word,1,1>

<word,3>

doc
• Distributed grep
 – Map function emits \(<\text{word}, \text{line_number}\>\) if word matches search criteria
 – Reduce function is the identity function

• URL access frequency
 – Map function processes web logs, emits \(<\text{url}, 1>\)
 – Reduce function sums values and emits \(<\text{url}, \text{total}>\)
MapReduce: Programming Model

Input

Map

MapReduce Framework

Reduce

Output

How now Brown cow

How does it work now

brown 1 cow 1 does 1 How 2 it 1 now 2 work 1
1. The user program, via the MapReduce library, shards the input data

* Shards are typically 16-64mb in size
The user program creates process copies distributed on a machine cluster. One copy will be the “Master” and the others will be worker threads.
3. The master distributes M map and R reduce tasks to idle workers.

- $M ==$ number of shards
- $R ==$ the intermediate key space is divided into R parts
4. Each map-task worker reads assigned input shard and outputs intermediate key/value pairs.
 - Output buffered in RAM.
5. Each worker flushes intermediate values, partitioned into R regions, to disk and notifies the Master process.
6. Master process gives disk locations to an available reduce-task worker who reads all associated intermediate data.
7. Each reduce-task worker sorts its intermediate data. Calls the reduce function, passing in unique keys and associated key values. Reduce function output appended to reduce-task’s partition output file.
8. Master process wakes up user process when all tasks have completed. Output contained in R output files.
1. Partitions input data
2. Schedules execution across a set of machines
3. Handles machine failure
4. Manages interprocess communication
Parallelism

- `map()` functions run in parallel, creating different intermediate values from different input data sets.
- `reduce()` functions also run in parallel, each working on a different output key.
- All values are processed independently.
- Bottleneck: reduce phase can’t start until map phase is completely finished.
Master program divvies up tasks based on location of data: tries to have map() tasks on same machine as physical file data, or at least same rack

map() task inputs are divided into 64 MB blocks: same size as Google File System chunks
Fault Tolerance

• Master detects worker failures
 – Re-executes completed & in-progress map() tasks
 – Re-executes in-progress reduce() tasks
• Master notices particular input key/values cause crashes in map(), and skips those values on re-execution.
 – Effect: Can work around bugs in third-party libraries!
Optimizations

• No reduce can start until map is complete:
 – A single slow disk controller can rate-limit the whole process
• Master redundantly executes “slow-moving” map tasks; uses results of first copy to finish
MapReduce Conclusions

- MapReduce has proven to be a useful abstraction
- Greatly simplifies large-scale computations at Google
- Functional programming paradigm can be applied to large-scale applications
- Fun to use: focus on problem, let library deal w/ messy details
- Greatly reduces parallel programming complexity
 - Reduces synchronization complexity
 - Automatically partitions data
 - Provides failure transparency
 - Handles load balancing
• Open source MapReduce implementation
• Uses
 – Hadoop Distributed Filesystem (HDFS)
 • http://hadoop.apache.org/core/docs/current/hdfs_design.html
 – Java
 – ssh
Questions