


• Hash Table that spans multiple computers 

• Basic operations 

– Insert, Remove, Find, and Update 

• Goals 

– Scalability and reliability 

• Some distributed hash table 

implementations 

– Chord, CAN, Pastry, Tapestry, Cycloid, 

Kademlia, Dynamo, ZHT, C-MPI, MemCache  
2 



• Dynamo is used to manage the state of 

services(eg. Shopping carts, wish list…)  

• Very high availability 

• High reliability 

• Balance between availability, consistency, 

cost-effectiveness and performance. 



• Build a distributed storage system: 

– Scalable 

– Simple: key-value 

– Highly available 

– Guarantee Service Level Agreements 

(SLA) 

 

 



• Query Model: simple read and write operations to a data 

item that is uniquely identified by a key. 

• ACID Properties: Atomicity, Consistency, Isolation, 

Durability. 

• Efficiency: System must meet the strict Service Level 

Agreements requirement 

• Other Assumptions: operation environment is safe, 

there are no security issue such as authentication and authorization. 

 

 



• SLA:  A contract where a 
client and a service agree on 
several system characteristics 
– The client’s expected request 

rate distribution for a particular 
API  

– Expected service latency under 
certain conditions 

 

 

Example: service guaranteeing that it will 
provide a response within 300ms for 99.9% 
of its requests for a peak client load of 500 
requests per second. 

 Service-oriented architecture of  

Amazon’s platform 



• Sacrifice strong consistency for availability 

• Conflict resolution is executed during read 

instead of write : always writeable. 

• Other principles: 

– Incremental scalability: scale node one by one 

– Symmetry: P2P character 

– Heterogeneity: nodes with different capacity  



Problem Technique Advantage 

Partitioning Consistent Hashing Incremental Scalability 

High Availability for writes 
Vector clocks with 

reconciliation during reads 

Version size is decoupled 

from update rates. 

Handling temporary 

failures 

 

Sloppy Quorum and 

hinted handoff 

 

Provides high availability 

and durability guarantee 

when some of the replicas 

are not available. 

Membership and failure 

detection 

Gossip-based 

membership protocol and 

failure detection. 

Preserves symmetry and 

avoids having a 

centralized registry for 

storing membership and 

node liveness information. 

 



• Consistent hashing: the output 

range of a hash function is treated 

as a fixed circular space or “ring”. 

• “Virtual Nodes”: Each node can 

be responsible for more than one 

virtual node. 

 



• Each node is assigned a random value 

represents its “position” 

• Key need to search the first node along the 

circle  

 

 

 





• Good: 

– Impact of adding and removing nodes over 

system is small 

 

• Bad: 

– Non-uniform data and load distribution 

– Ignorant of diversity in the performance of 

nodes 

 



 

• Each node gets assigned to multiple points 
in the ring. 

• Good: 

– If a node fails the load on this node will 
spread across the remaining available 
nodes. 

– When a node come back again, the new 
node accepts a same amount of load from 
each of the other nodes. 

– aware of diversity in performance of 
nodes 



• Each data item is 

replicated at N hosts. 

• Preference list: The list of 

nodes for storing replica. 

 



• A put() call may return to its caller before 

the update has been applied at all the 

replicas 

• A get() call may return many versions of 

the same object. 

• Challenge: an object having distinct version, they 

need to be handled in the future. 

• Solution: uses vector clocks in order to capture 

causality between different versions of the same object. 



• A vector clock is a list of (node, counter) 

pairs. 

• Every version of object has a vector clock. 

• If the counters on the first object’s clock 

are smaller than that in the second clock, 

then the first is old and can be dismissed. 



• Dynamic: Load balancer selects a node based 

on load information then forward the requests 

– Client doesn’t have to link any code to Dynamo 

 

• Static: Use a partition-aware client library , 

send requests directly to the correct prime 

nodes. 

– Fast, don’t need to get load info, don’t need to 

forward anything 

 



• Flex membership 

 

• R/W is the minimum number of nodes that 
must participate in a successful read/write 
operation. 

• Setting R + W > N yields a quorum-like 
system. 

• R/W number is bigger, then the reliability 
is better but availability is worse 



• Preference list: physical node list for 

storing replica 

• Choose first N “healthy” nodes in the list to 

read/write replica 

 



• Assume N = 3. When A 

is temporarily down 

during a write, send 

replica to D. 

• D is hinted that the 

replica is belong to A and 

it will send to A when A 

is recovered. 

• Again: “always writeable” 



• Membership 

– Gossip protocol 

 

• Failure Detection: 

– Message response instead of regular heart 

beat 



• Java 

• Local persistence component 

– Berkeley Database (BDB) Transactional Data 

Store 

– MySQL 

– BDB Java Edition 

 



24 


