
Siyuan Ma 

I/O Throttling and Coordination for MapReduce 



Page  2 

A Little Background on MapReduce 

 

 Powerful framework for embarrassingly parallel 

problem 

 Job = map tasks + reduce tasks 

 Ease of programming and scaling up 

 It is a programming model 

 Also a distributed file system 

 



Page  3 

A Little Background on MapReduce 

 

 Also a parallel file system, if let 

 application = User  

 I/O request = job 

 Strip = block 

 

 

 



Page  4 

A Little Backgroud on Hadoop 

 

 Tasks access blocks through DataNode 

 I/O accesses in Hadoop are blocking 

 Large write stream 

 Small read stream 



Page  5 

A Little Backgroud on Hadoop 



Page  6 

A Little Backgroud on Hadoop 



Page  7 

A Little Backgroud on Hadoop 

 

 Task Scheduler 

 Default: FIFO 

 Execute on job a time 

 FairScheduler 

 Multi-user 

 Capacity Scheduler 

 



Page  8 

A Little Backgroud on Hadoop 

 

 Very configurable 

 Hundreds of parameters 

 Companies works on selling configured Hadoop 

 cloundera 

 
mapred.map.max.attempts 4 Expert: The maximum number of attempts per map task. In other words, framework will try to execute a map task these many number of times 

before giving up on it. 

mapred.reduce.max.attempts 4 Expert: The maximum number of attempts per reduce task. In other words, framework will try to execute a reduce task these many number of 

times before giving up on it. 

mapred.tasktracker.map.tasks.
maximum 

2 The maximum number of map tasks that will be run simultaneously by a task tracker.  

mapred.tasktracker.reduce.task
s.maximum 

2 The maximum number of reduce tasks that will be run simultaneously by a task tracker.  

mapred.map.tasks.speculative.e
xecution 

true If true, then multiple instances of some map tasks may be executed in parallel. 

mapred.child.java.opts -Xmx200m 
-Xms32m 

Java opts for the task tracker child processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID. 
Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the 
heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc The configuration variable 
mapred.child.ulimit can be used to control the maximum virtual memory of the child processes.  

mapred.reduce.parallel.copies 5 The default number of parallel transfers run by reduce during the copy(shuffle) phase.  

mapred.reduce.slowstart.compl
eted.maps 

0.05 Fraction of the number of maps in the job which should be complete before reduces are scheduled for the job 



Page  9 

A Little Backgroud on Hadoop 

ipc.client.timeout 60000 Defines the timeout for IPC calls in milliseconds. 

mapred.task.timeout 600000 The number of milliseconds before a task will be terminated if it neither 
reads an input, writes an output, nor updates its status string.  

dfs.datanode.socket.writ
e.timeout  

20000 The dfs Client waits for this much time for a socket write call to the datanode. 

ipc.client.connection.maxid
letime 

10000 The maximum time in msec after which a client will bring down the connection to 
the server. 

  fs.inmemory.size.
mb 

200 Larger amount of memory allocated for the in-memory file-system used to merge map-outputs 
at the reduces.  

  io.sort.factor 100 More streams merged at once while sorting files. 

  io.sort.mb 200 Higher memory-limit while sorting data. 

  io.file.buffer.size 131072 Size of read/write buffer used in SequenceFiles. 



Page  10 

Multi/many core 

 

 PHOENIX - Multicore version 

 MARS – GPU version 

 

 



Page  11 

Motivation 

 

      Two Observations 

 

                             Two Intuitions            
 



Page  12 

ONE OBSERVATION ON TASK LENGTH 

 

 

 

 

Map Task Delay on a single Node 

 

 

More concurrent tasks, more delay 



Page  13 

ONE OBSERVATION ON TASK LENGTH 

 

 

 

 

we bet it is caused by I/O CONTETION! 

 
?Need a proof? 



Page  14 

ONE OBSERVATION ON TASK LENGTH 

 

 

 

 

A quick PROOF 

 

 

Much less delay after REMOVE the I/O bottleneck 



Page  15 

ONE OBSERVATION ON TASK LENGTH 

 

 

 

 

pure I/O Mapreduce Job 

 

 

even WORSE  



Page  16 

Motivation 

 

Two Observations 

observation 1: I/O contention leads to general task delay 

 



Page  17 

ONE OBSERVATION ON AGGREGATE THROUGHPUT 

 

 

 

 

Throughput FLUTUATES as the increase of the 

number of concurrent tasks 

 



Page  18 

ONE OBSERVATION ON AGGREGATE THROUGHPUT 

 

 

 

 

Read & Write Conflicts with each other  
 

 

Read drops to ONE TENTH of its original throughput 

 



Page  19 

Motivation 

 

Two Observations 

observation 1: I/O contention leads to general task delay 

observation 2: Concurrent I/O streams can be harmful 

 

 

 



Page  20 

ONE INTUITION ON THROUGHPUT 

 

 

  

The Throughput is PREDICTABLE knowing the 

number of concurrent read and write stream 

  

Reason1: block reserves locality 

Reason2: MapReduce block is huge 

Reason3: non-trivial I/O stream reads or writes entire block 

Reason4: packet is flushed at the end of a write (->less cache 

influence) 



Page  21 

ONE INTUITION ON THROUGHPUT 

 

 

 

 

I/O stream is either quite large (128MB), or quite small (256B) 



Page  22 

ONE INTUITION ON THROUGHPUT 

 

 

  

The Throughput is PREDICTABLE knowing the 

number of concurrent read and write stream 

on a specified storage system 

 
 

It indicates R-W concurrency control can MAXIMIZE 

system throughput 



Page  23 

ONE INTUITION ON TASK DELAY 

 

 

  

GENERAL Task Delay cause GENERAL Job Delay 

 

 

Remove GENERAL on task delay, hence getting 

rid of GENREAL on job delay 



Page  24 

Some Experimental Results 

 Effect of I/O Throttling 



Page  25 

ONE INTUITION ON TASK DELAY 

 

 

 

 

Notice I/O CONTENTION is the real problem 

+ 

Take into account the job priority 

= 

Give EXCLUSIVE I/O resource access to the tasks 

from HIGH PRIORITY jobs 

= 

I/O Coordination 

 



Page  26 

ONE INTUITION ON TASK DELAY 

 

 

 

 

An example assuming constant throughput 

 



Page  27 

Motivation 

 

Two Observations 

1. I/O contention leads to general task delay 

2. Concurrent I/O streams can be harmful 

Two Intuitions 

1. R-W concurrency control can MAXIMIZE system 

throughput 

2. Apply I/O coordination to REDUCE average job delay 

 

 

 

 



Page  28 

 Model 





Page  29 

Anatomy of MapReduce Job A’s Completion Time 





Page  30 

Anatomy of MapReduce Job A’s Completion Time 





Page  31 

How does I/O Coordination Work 





Page  32 

How does I/O Coordination Work 

 

 

 



Page  33 

How does I/O Coordination Work 





Page  34 

Hardware Influence 

 Faster Storage 

 Faster CPU 

 # cores on a computing node 



Page  35 

Design 





Page  36 

Design 

 Ordered jobs by their priority 

 Job priority = (user-defined priority, submission time) 

 Calculate the throughput G considering all the streams 

 Calculate the throughput P in consideration of streams in the pool 

 If (G-P)/G > MAXDIFF 

 Select G’s solution 

 Else, P’s solution 

 Select the tasks base on their priority 



Page  37 

Design 



Page  38 

Design 

 Tradeoff: Throughput VS. Response Time 

 MAXDIFF 

 (G-P)/G > MAXDIFF 

 Maximum throughput drop allowed 

 JPOOLSIZE 

 Small 

 Much better response time for high priority job 

 Miserable throughput 

 Possible miserable average job response time 

 



Page  39 

Design(Alternative) 

 Rule of Thumb 

 Get no more than x read streams 

 Get no more than y write streams 

 Reason 

 Accuracy of the table 

 Difficulty to capture the buffer state 

 io.file.buffer.size  

 Default: 4K 

 Recommend: 128K 

 Max: block size 

 simple 

 Drawback 

 Not optimal 

 

 



Page  40 

Design 

 Two techniques complements one another 

 R-W Concurrency Control 

 Input: a group of Read and Write Stream 

 Output: #Read Stream and #Write Stream that maximize the throuput 

 How to select Read and Write stream? 

 I/O Coordination 

 Input: a group of streams 

 Output: a group of streams that have the highest priority 

 Which stream to be selected? 

 



Page  41 

Implementation 

 DataXeiver.java 

 readBlock()  

 writeBlock() 



Page  42 

Implementation 

 BlockSender.java 

 SendBlock() 

 BlockReceiver.java 

 ReceiveBlock() 

  DataOrchestrator.java 

 Structure for synchronization 

 Block unauthorized I/O stream 

 Re-check the blocking condition for every chunk(read) and 

packet(write) 

able to suspend Stream in the middle of serving 

 

 

while(!isMyTurn2Read(id)) {

synchronized(this){

try {

this.wait(TIMEOUT);

} catch(InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}



Page  43 

Implementation 



Page  44 

Some Experimental Results 

 Configuration: poolsize=2 



Page  45 

Some Experimental Results 

 When job is small: 512M/128M  = 4 blocks 

 effective for job response time 

 Sensitive to priorities 



Page  46 

Some Experimental Results 

 When job is large: 2048M/128M  = 16 blocks 

 Less effective for job response time 



Page  47 

Some Experimental Results 

 When job is large: 2048M/128M  = 16 blocks 

 Still effective in regard to QoS 



Page  48 

Some Experimental Results 



Page  49 

Future Work 

 Make this work an official patch for Hadoop 

 Other shared resources 

 Network contention (Network I/O coordination) 

 Bus, Cache, Memory Controller in many core 

 Virtual Environment 

 More QoS Oriented 

 

 

 



Thanks 
Thank You 


