

A Little Background on

® Powerful framework for embarrassingly parallel
problem

W Job = map tasks + reduce tasks
B Ease of programming and scaling up
W |tis aprogramming model

W Also a distributed file system

Page -2

A Little Background on .

W Also a parallel file system, if let
B application = User
® |/Orequest =job
B Strip = block

Page -3

Client

TCPAP NameNode Metadata
Networking
DataNode DataNode DataNode DataNode

Replicated data blocks

W Tasks access blocks through DataNode

W |/O accesses in Hadoop are blocking

W Large write stream

W Small read stream Page -4

MEtadata_,opS"" Namenode

HDFS Architecture

/homeffoo/data, 3, ...

Metadata (Name, replicas, ...

):

Block ops
Read Datanodes Datanodes
= & L = Replication =9 B
(] L] u Blocks
- \. J
N A4
Rack 1 Rack 2

Page -5

Lpdate

J ob Status

anTrac:ker

Aﬁﬁlgf

Local Wirite

\ﬁﬁﬁlgﬂﬁ

Data node

Reduce

BPC Read Data node

Page -6

L J

Cutput
files

W Task Scheduler

W Default: FIFO
W Execute on job a time
W FairScheduler

M Multi-user

W Capacity Scheduler

Page -7

™ Very configurable

® Hundreds of parameters

W Companies works on selling configured Hadoop

¥ cloundera

mapred.map.max.attempts 4 Expert: The maximum number of attempts per map task. In other words, framework will try to execute a map task these many number of times
before giving up on it.

mapred.reduce.max.attempts 4 Expert: The maximum number of attempts per reduce task. In other words, framework will try to execute a reduce task these many number of
times before giving up on it.

mapred.tasktracker.map.tasks. |2 The maximum number of map tasks that will be run simultaneously by a task tracker.

maximum

mapred.tasktracker.reduce.task |2 The maximum number of reduce tasks that will be run simultaneously by a task tracker.

s.maximum

mapred.map.tasks.speculative.e | true If true, then multiple instances of some map tasks may be executed in parallel.

xecution

mapred.child.java.opts -Xmx200m Java opts for the task tracker child processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID.

-Xms32m Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the

heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc The configuration variable
mapred.child.ulimit can be used to control the maximum virtual memory of the child processes.

mapred.reduce.parallel.copies |5 The default number of parallel transfers run by reduce during the copy(shuffle) phase.

mapred.reduce.slowstart.compl | 0.05 Fraction of the number of maps in the job which should be complete before reduces are scheduled for the job

eted.maps

Page -8

ipc.client.timeout 60000 Defines the timeout for IPC calls in milliseconds.

mapred.task.timeout 600000 The number of milliseconds before a task will be terminated if it neither
reads an input, writes an output, nor updates its status string.

dfs.datanode.socket.writ | 20000 The dfs Client waits for this much time for a socket write call to the datanode.

e.timeout

ipc.client.connection.maxid | 10000 The maximum time in msec after which a client will bring down the connection to

letime

the server.

fs.inmemory.size. 200

mb
io.sort.factor

io.sort.mb

io.file.buffer.size

100

200

Larger amount of memory allocated for the in-memory file-system used to merge map-outputs
at the reduces.

More streams merged at once while sorting files.

Higher memory-limit while sorting data.

131072 Size of read/write buffer used in SequenceFiles.

Page -9

® PHOENIX - Multicore version
® MARS - GPU version

GPU
Multiprocessor 1 Multiprocessor P
P1[|P2[[Pn Pi1[|P2[|Pn CPU

T

Page - 10

Motivation

Two Observations

Page - 11

ONE OBSERVATION ON

Map Task Delay on a single Node

One Terasort Job running on a single DataNode with 128MB blocks
50 - 7
an ul
Ll | 6
0 ——
5
B0 | E
= 50 4 -4 @ Average Task Concurrenc
E 50 310.00% E B ¥
= 40+ - 3 E e Mapper Delay
30 LR) - mm Map Phase Completion Delay
121.65%))
1 == apper Completion Time
-0
1 2 3 4 5 6 7 2
Maximum number of concurrent tasks

More concurrent tasks, more delay

Page - 12

ONE OBSERVATION ON

we bet it Is caused by I/O CONTETION!

?Need a proof?

Page - 13

ONE OBSERVATION ON

A quick PROOF

One Terasort Job running on a single DataNode with SSD

25 -+ 7
-6
20 — —
/—‘—i‘ — — 5
— 15 SR g
.E. -4 e Average Task Concurrency
E 10 3 g o Mapper Delay
) - mm ap Phase Completion Delay
> a4.53% - 1 === Average Mapper Completion Time
AT% AT7% - D70 7
15,1298 75% 10.8%78% 2 B " 20407 " 15 0% 17615
PR W — | * !
1 2 3 & 5 & 7 2

maximum number of concurrent tasks

Much less delay after REMOVE the I/O bottleneck

Page - 14

Awverage Task Concurrency

s Job Delay
e Sy erage Task Completion Time

-
=
[¥]
=
-
=
"~
Y
7
7

Asusainouo) yse]

1\\\\\\\\

TestDFSIO -write on a single node

= = [=] = = [=] = =

=1 (=1 [=] (=] [=1 [=1 (=1

M~ (=] [=g (23] ~ -
swil

£
z =
o
o .
™ 2 g
ERN
@ i< 8z
nNu S5 3 ot
d - Asusainauo) ysep
L 2 ;
N r .m — n”,] W ,6 PR s B N R
@) O © R -
_” ~ c 2 \\\\\\\\m\\\\\\\\\\\\\\\\\\\\\\\\
< SHREE \\\\M\)
> T & .
nd) Q g 3
w p
LL mm T3
V) B g
m = "
LLI .
Z .
@) g 28888888 g °
swiy

coresin use

Page - 15

even WORSE

Motivation

Two Observations

observation 1: I/O contention leads to general task delay

Page - 16

ONE OBSERVATION ON

Bandwidth
= [t L F=3 (¥} (%] =]
] = = = (o] (o] (]
1

=
]

number of concurrent tasks

TestDFSIO Read

1 2 3 4

Coresin use

L 11
o = MW B

8

-7
-6

-~
=

Concurrency
1 =
Bandwidth
(] = (Fg] (=]
= = = L]

= b
o o
1

=
]

1

TestDFSIO Write

3 4

Cores in use

I 1
o Pk M W =

2

- 7

T
(=3

ATE THROUGHPUT

Throughput FLUTUATES as the increase of the

Concurrency

s Apgregate |/Orate
—g=|/0 rate per task

==de=Task Concurrency

Page - 17

ONE OBSERVATION ON REGATE ROUGHPUT

Read & Write Conflicts with each other

Aggregate Throughput under Read & Write Contention on a Single Computing Node
e | I | T T 1
O

Y 2,
=S By s _
6 o 4 40 0
LT
53 &
il ® ’ e _
5 b 2 -
o
<+ =
§af : 4
= s
[=3
pa O
& S -
S
3 3] e
2 o T Al
D So S (
~& s S 5
70 /_i—\
| M & '/\ o “ =
D I i R W
% - R e O
0 & 5o 60 S
< N\ = 50 50
0 k. | | | | a0 | |
0 1 2 3 4 5 6 7

Number of Readers

Read drops to ONE TENTH of its original throughput

Page - 18

Motivation

Two Observations

observation 1: I/O contention leads to general task delay

observation 2: Concurrent I/O streams can be harmful

Page - 19

ONE INTUITION ON

The Throughput is PREDICTABLE knowing the
number of concurrent read and write stream

Reasonl: block reserves locality
Reason?2: MapReduce block is huge
Reason3: non-trivial I/0O stream reads or writes entire block

Reason4: packet is flushed at the end of a write (->less cache
Influence)

Page - 20

ONE INTUITION ON

DataNode Runtime

12000 4.295E409
10000 3 3y uge
an s l 16777216
— 2000 o
n =
E 6000 - B5536 a
= @
= 4000 - ¥ X X X % So6 s m /O Stream
I~ |
2000 - > Request Size

0 - ' ' ' ' ' ' 1 ¥ Real Size

R S
@4\?‘“’4\‘?&) f\"?‘.(\?c“:x\‘?b %V&:

%%% “»'»%q:'»
\p,.p@ Gﬂ: o‘b,p‘b G%\G%‘P% SRS

Task

I/O stream is either quite large (128MB), or quite small (256B)

Page - 21

ONE INTUITION ON

The Throughput is PREDICTABLE knowing the
number of concurrent read and write stream
on a specified storage system

It iIndicates R-W concurrency control can MAXIMIZE
system throughput

Page - 22

ONE INTUITION ON

GENERAL Task Delay cause GENERAL Job Delay

Remove GENERAL on task delay, hence getting
rid of GENREAL on job delay

Page - 23

Some Experimental Results

W Effect of I/O Throttling

120

100

80

60

Throughput

40

20

2 3 4 5 6 7

Number of concurrent tasks

Page - 24

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

s Throughput Difference

== R-\W concumrency
control

=== Original

ONE INTUITION ON

Notice I/O CONTENTION is the real problem

+

Take into account the job priority

Give EXCLUSIVE I/O resource access to the tasks
from HIGH PRIORITY jobs

/O Coordination

Page - 25

ONE INTUITION ON

An example assuming constant throughput

- e B
= L THTRLLITY

Jab & dob B Job © Tob A Jo © CDDTdinatiDn Jab & Juh Job C Jab & Tl ©
N EE 1] e HE (EE
----- ma I] .
EE EE [T 1] [| .] AN HEE [T [T 1] iml N
EE EE [T 1] [| .] AN HEE [T 1] iml N
EE B i 3= Efoim & EE ! LI
AG il 1 5 AT A LA Ly i1 i3 Bl Ch AT A8 Ci ()
Nedde 3 Kode 4 Node 3 Nedde 4

Page - 26

Motivation

Two Observations

1. I/0O contention leads to general task delay

2. Concurrent I/O streams can be harmful

Two Intuitions

1. R-W concurrency control can MAXIMIZE system
throughput

2. Apply I/0 coordination to REDUCE average job delay

Page - 27

B Some Definitions
1.

. Job A, task A1, A2, A3

Average HRTEREENRNEHEGS
12 | - !
11 ‘
10 —
9
.
7

j——iNEE
System state S ! e \

Time(s)

2
3. Sy is the contention free system
4.
5

N;4s,(A) is the number of tasks forming job A

—job
: dgsk(A,S) is the expected number of concurrent tasks

in job A running on system S

T.qsk(A4;,S) indicates the completion time of task 4; on
system S.

Page - 28

’s Completion Time

SorJob A:

T(A) — Ttask(A) X —=ob Neasi(4)
d:ask(A)

m ZiT ask(4i,S)
Traske(4,5) = 55 @

we further dissect T,,(4;) into two parts, the non-1/O
part and the I/O part

Trask(4/,50) = Tnon—1/0(4;,50) + T1/0(4;,50)

Page - 29

’s Completion Time =

Sntroduce /O stretch factor:

T10(A;S)
T1/0(Aj,S0)

STijo"(4,8) =

Then

Trask(41,S) = Tron1/0(4;,S) + T10(4;,Sy) X STi55(4;,S)

Page - 30

How does I/O Coordination Work s

4t works by reducing STRETCH FACTOR for high priority
tasks through R-W concurrency control
m Still assume throughput is constant, and priority p(A) > p(B) > p(C)

0 ST,%S" A;,S) = #expected read stream + #expected write stream
u Before coordination: ST//5*(t,5) = 4

W After coordination: ST/75*(t,S) = 2,t in {A1 — A8} and ST};*(B1,5) = 3

Page - 31

;

=
o

£

Coordination

Page - 32

How does I/O Coordination Work.

oy applying coordination, system state shifts from s ,;to S,,.,,

W Task /O Portion : P;,o(t) = T;/0(t,So)/T(t, So)

® Py(t,Solds Snew) = Prjo(ST1j5 (t, Sora) = ST (t: Snew))

" Percentage of time that saved P(4,S,14, Snew) = Xjea Ps(4)) Sotds Snew) / Neask (A)
= P110(A) Xea(STi55"(Aj Sota) = STi50 (A7 Snew)) /N cask (4)

Page - 33

Hardware Influence

W Faster Storage
® Faster CPU

W #cores on acomputing node

Page - 34

=-W concurrency control

Get a throughput matrix TP for the storage system

TPJi,j] = system throughput while i read stream and j write stream working
at the same time

Get a optimal R-W table RW
RWIi,j] = argmax(TP|s,t]),s < i,t <j

0 1 2 2
0 0 69.16115 40.514 0 40.514
1 46.431 60.75237 56.45112 1 56.45112
2 62.27 ©0.3143 50.31301 2 62.27 ©0.3143 50.31301
3 4596 56.7809 52.43179 3 4596 56.7809 52.43179

Page - 35

Ordered jobs by their priority

W Job priority = (user-defined priority, submission time)
Calculate the throughput G considering all the streams
Calculate the throughput P in consideration of streams in the pool
If (G-P)/G > MAXDIFF

W Select G’s solution

W Else, P’s solution

Select the tasks base on their priority

Page - 36

1/0 COORDINATION
order the jobs by
their pricrity

0 1 2
T
1 TP[1,2] R=W CONCURRENCY CONTORL
2 TP[2,0] TPR[21] TP[2,2] Choose proper number of
3 TP[20] TP[31] TR[3.2] read streams and write

streams to maximize the
throughput

1/0 COORDINATION
select the tasks
aceording te their

+——7Friority

priorities

®

— — OR(same priority) — —

Page - 37

W Tradeoff: Throughput VS. Response Time
®m MAXDIFF
¥ (G-P)/G > MAXDIFF
W Maximum throughput drop allowed
= JPOOLSIZE
W Small
W Much better response time for high priority job
W Miserable throughput
W Possible miserable average job response time

Page - 38

Design(Alternative)

@ Rule of Thumb
B Get no more than x read streams

W Get no more than y write streams

® Reason
W Accuracy of the table
W Difficulty to capture the buffer state

M io.file.buffer.size
B Default: 4K
B Recommend: 128K
B Max: block size

W simple
W Drawback

¥ Not optimal

Page -39

W Two techniques complements one another

¥ R-W Concurrency Control
M Input: agroup of Read and Write Stream
B Output:
B How to select Read and Write stream?
W 1/O Coordination
M Input: agroup of streams
B Output:

B Which stream to be selected?

Page - 40

Implementation

DataXeiver.java

readBlock()
writeBlock()
readBlocki. .. | sendBlock(...) |
blockSender = new EBlockSender(...); whilel{endOffset > offset)
DlockSender.coln = true; if{ealn)

coordination{):
len = sendChunks(...};
offset += len;

writeBlock(. ..} |

blockReceiver = naw BlockReceiver(...):

blockBeceiver.coln true; ;
receiveBlock(. ..} |

whilelreceivePacket {)>0)
if {oolnd
coordination{):

Page -41

Implementation

. while (! isMyTurn2Read (id)) {
¥ BlockSender.java il Ee e () §
t {
= SendBlock() bi

this.wait (TIMEOUT) ;

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace () ;

W ReceiveBlock() }

m DataOrchestrator.java /

W BlockRecelver.java

W Structure for synchronization

¥ Block unauthorized I/0O stream

W Re-check the blocking condition for every chunk(read) and
packet(write)

W able to suspend Stream in the middle of serving

Page - 42

Implementation

o riority

MapReduce Tasks

o ety

MapReduce Tasks

Finished

Storage Access

DataNode

Storage Access

Page -43

Some Experimental Results

Configuration: poolsize=2

Terasort Benchmark with coordination

2500 35.00%
- 30.00%
25.00%
- 20.00%
15.00%
10.00%
5.00%
0.00%
-5.00%
-10.00% == coordinated
0 T T . . -15.00%

S

Percentage

o difference

= OF I

Average Job Response Time(s)

Page -44

Some Experimental Results

W When job is small: 512M/128M = 4 blocks
m effective for job response time

W Sensitive to priorities

Average Job Response Time for
different job sets

200
&00
o u %50
0 - m 72
1-4 5-8 912 13-16 17-20 21-24 25-28 29-32
job sets

Page - 45

Some Experimental Results

W When job is large: 2048M/128M = 16 blocks

W Less effective for job response time

2048M 32J0OBs 16 Nodes
140 w Average Map Task
120 Length
lgg : m deviation of Mapper
Length
60 -
a0 ® Average Reduce Task
20 Length
o - H deviation of Reducer
OFF Length

Page - 46

Some Experimental Results

W When job is large: 2048M/128M = 16 blocks
m Still effective in regard to QoS

Average Job Response Time for
different job sets

1000

mOrF

mON
1-4 58 9512 13-16 17-20 21-24 25-28 29-32
job sets

Page - 47

Some Experimental Results

Average Job Response Time(s)

TestDFSIO -write Benchmark with coordination

60.00%

- 40.00%

- 20.00%

0.00%

Percentage

o difference
=== Co0Ordinated
== orig

Page - 48

W Make this work an official patch for Hadoop

W Other shared resources
@ Network contention (Network I/0O coordination)

W Bus, Cache, Memory Controller in many core
¥ Virtual Environment
W More QoS Oriented

Page -49

