
Siyuan Ma

I/O Throttling and Coordination for MapReduce

Page 2

A Little Background on MapReduce

 Powerful framework for embarrassingly parallel

problem

 Job = map tasks + reduce tasks

 Ease of programming and scaling up

 It is a programming model

 Also a distributed file system

Page 3

A Little Background on MapReduce

 Also a parallel file system, if let

 application = User

 I/O request = job

 Strip = block

Page 4

A Little Backgroud on Hadoop

 Tasks access blocks through DataNode

 I/O accesses in Hadoop are blocking

 Large write stream

 Small read stream

Page 5

A Little Backgroud on Hadoop

Page 6

A Little Backgroud on Hadoop

Page 7

A Little Backgroud on Hadoop

 Task Scheduler

 Default: FIFO

 Execute on job a time

 FairScheduler

 Multi-user

 Capacity Scheduler

Page 8

A Little Backgroud on Hadoop

 Very configurable

 Hundreds of parameters

 Companies works on selling configured Hadoop

 cloundera

mapred.map.max.attempts 4 Expert: The maximum number of attempts per map task. In other words, framework will try to execute a map task these many number of times

before giving up on it.

mapred.reduce.max.attempts 4 Expert: The maximum number of attempts per reduce task. In other words, framework will try to execute a reduce task these many number of

times before giving up on it.

mapred.tasktracker.map.tasks.
maximum

2 The maximum number of map tasks that will be run simultaneously by a task tracker.

mapred.tasktracker.reduce.task
s.maximum

2 The maximum number of reduce tasks that will be run simultaneously by a task tracker.

mapred.map.tasks.speculative.e
xecution

true If true, then multiple instances of some map tasks may be executed in parallel.

mapred.child.java.opts -Xmx200m
-Xms32m

Java opts for the task tracker child processes. The following symbol, if present, will be interpolated: @taskid@ is replaced by current TaskID.
Any other occurrences of '@' will go unchanged. For example, to enable verbose gc logging to a file named for the taskid in /tmp and to set the
heap maximum to be a gigabyte, pass a 'value' of: -Xmx1024m -verbose:gc -Xloggc:/tmp/@taskid@.gc The configuration variable
mapred.child.ulimit can be used to control the maximum virtual memory of the child processes.

mapred.reduce.parallel.copies 5 The default number of parallel transfers run by reduce during the copy(shuffle) phase.

mapred.reduce.slowstart.compl
eted.maps

0.05 Fraction of the number of maps in the job which should be complete before reduces are scheduled for the job

Page 9

A Little Backgroud on Hadoop

ipc.client.timeout 60000 Defines the timeout for IPC calls in milliseconds.

mapred.task.timeout 600000 The number of milliseconds before a task will be terminated if it neither
reads an input, writes an output, nor updates its status string.

dfs.datanode.socket.writ
e.timeout

20000 The dfs Client waits for this much time for a socket write call to the datanode.

ipc.client.connection.maxid
letime

10000 The maximum time in msec after which a client will bring down the connection to
the server.

 fs.inmemory.size.
mb

200 Larger amount of memory allocated for the in-memory file-system used to merge map-outputs
at the reduces.

 io.sort.factor 100 More streams merged at once while sorting files.

 io.sort.mb 200 Higher memory-limit while sorting data.

 io.file.buffer.size 131072 Size of read/write buffer used in SequenceFiles.

Page 10

Multi/many core

 PHOENIX - Multicore version

 MARS – GPU version

Page 11

Motivation

 Two Observations

 Two Intuitions

Page 12

ONE OBSERVATION ON TASK LENGTH

Map Task Delay on a single Node

More concurrent tasks, more delay

Page 13

ONE OBSERVATION ON TASK LENGTH

we bet it is caused by I/O CONTETION!

?Need a proof?

Page 14

ONE OBSERVATION ON TASK LENGTH

A quick PROOF

Much less delay after REMOVE the I/O bottleneck

Page 15

ONE OBSERVATION ON TASK LENGTH

pure I/O Mapreduce Job

even WORSE

Page 16

Motivation

Two Observations

observation 1: I/O contention leads to general task delay

Page 17

ONE OBSERVATION ON AGGREGATE THROUGHPUT

Throughput FLUTUATES as the increase of the

number of concurrent tasks

Page 18

ONE OBSERVATION ON AGGREGATE THROUGHPUT

Read & Write Conflicts with each other

Read drops to ONE TENTH of its original throughput

Page 19

Motivation

Two Observations

observation 1: I/O contention leads to general task delay

observation 2: Concurrent I/O streams can be harmful

Page 20

ONE INTUITION ON THROUGHPUT

The Throughput is PREDICTABLE knowing the

number of concurrent read and write stream

Reason1: block reserves locality

Reason2: MapReduce block is huge

Reason3: non-trivial I/O stream reads or writes entire block

Reason4: packet is flushed at the end of a write (->less cache

influence)

Page 21

ONE INTUITION ON THROUGHPUT

I/O stream is either quite large (128MB), or quite small (256B)

Page 22

ONE INTUITION ON THROUGHPUT

The Throughput is PREDICTABLE knowing the

number of concurrent read and write stream

on a specified storage system

It indicates R-W concurrency control can MAXIMIZE

system throughput

Page 23

ONE INTUITION ON TASK DELAY

GENERAL Task Delay cause GENERAL Job Delay

Remove GENERAL on task delay, hence getting

rid of GENREAL on job delay

Page 24

Some Experimental Results

 Effect of I/O Throttling

Page 25

ONE INTUITION ON TASK DELAY

Notice I/O CONTENTION is the real problem

+

Take into account the job priority

=

Give EXCLUSIVE I/O resource access to the tasks

from HIGH PRIORITY jobs

=

I/O Coordination

Page 26

ONE INTUITION ON TASK DELAY

An example assuming constant throughput

Page 27

Motivation

Two Observations

1. I/O contention leads to general task delay

2. Concurrent I/O streams can be harmful

Two Intuitions

1. R-W concurrency control can MAXIMIZE system

throughput

2. Apply I/O coordination to REDUCE average job delay

Page 28

 Model

Page 29

Anatomy of MapReduce Job A’s Completion Time

Page 30

Anatomy of MapReduce Job A’s Completion Time

Page 31

How does I/O Coordination Work

Page 32

How does I/O Coordination Work

Page 33

How does I/O Coordination Work

Page 34

Hardware Influence

 Faster Storage

 Faster CPU

 # cores on a computing node

Page 35

Design

Page 36

Design

 Ordered jobs by their priority

 Job priority = (user-defined priority, submission time)

 Calculate the throughput G considering all the streams

 Calculate the throughput P in consideration of streams in the pool

 If (G-P)/G > MAXDIFF

 Select G’s solution

 Else, P’s solution

 Select the tasks base on their priority

Page 37

Design

Page 38

Design

 Tradeoff: Throughput VS. Response Time

 MAXDIFF

 (G-P)/G > MAXDIFF

 Maximum throughput drop allowed

 JPOOLSIZE

 Small

 Much better response time for high priority job

 Miserable throughput

 Possible miserable average job response time

Page 39

Design(Alternative)

 Rule of Thumb

 Get no more than x read streams

 Get no more than y write streams

 Reason

 Accuracy of the table

 Difficulty to capture the buffer state

 io.file.buffer.size

 Default: 4K

 Recommend: 128K

 Max: block size

 simple

 Drawback

 Not optimal

Page 40

Design

 Two techniques complements one another

 R-W Concurrency Control

 Input: a group of Read and Write Stream

 Output: #Read Stream and #Write Stream that maximize the throuput

 How to select Read and Write stream?

 I/O Coordination

 Input: a group of streams

 Output: a group of streams that have the highest priority

 Which stream to be selected?

Page 41

Implementation

 DataXeiver.java

 readBlock()

 writeBlock()

Page 42

Implementation

 BlockSender.java

 SendBlock()

 BlockReceiver.java

 ReceiveBlock()

 DataOrchestrator.java

 Structure for synchronization

 Block unauthorized I/O stream

 Re-check the blocking condition for every chunk(read) and

packet(write)

able to suspend Stream in the middle of serving

while(!isMyTurn2Read(id)) {

synchronized(this){

try {

this.wait(TIMEOUT);

} catch(InterruptedException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

}

}

Page 43

Implementation

Page 44

Some Experimental Results

 Configuration: poolsize=2

Page 45

Some Experimental Results

 When job is small: 512M/128M = 4 blocks

 effective for job response time

 Sensitive to priorities

Page 46

Some Experimental Results

 When job is large: 2048M/128M = 16 blocks

 Less effective for job response time

Page 47

Some Experimental Results

 When job is large: 2048M/128M = 16 blocks

 Still effective in regard to QoS

Page 48

Some Experimental Results

Page 49

Future Work

 Make this work an official patch for Hadoop

 Other shared resources

 Network contention (Network I/O coordination)

 Bus, Cache, Memory Controller in many core

 Virtual Environment

 More QoS Oriented

Thanks
Thank You

