
SOFTWARE ENGINEERING AT

MOTOROLA SOLUTIONS

Jeff Yakey

Educational background

 1993 – Graduated from Belvidere High School

 1997 – B.A. from Wartburg College, Waverly IA

 Double major in Computer Science and Mathematics

 1999 – M.S. from Iowa State University in Computer

Science

 Specialized in Algorithmic Robotics

Career at Motorola

 1999 – 2002: Japan VLR Group

 Worked on the MSC/VLR subsystem of the EMX-V

CDMA Cellular Switch

 Embedded real-time software developed in C/C++

 PPC processor running LynxOS RTOS

 2002 – 2003: MMSC project

 Initial development of the Delivery Manager subsystem

of the Multimedia Messaging Service Center

 Developed in C++ on the HP/Tandem NonStop high

availability platform (Guardian OS)

Career at Motorola

 2003 – Present:Repeater Software

 Product Architect on the G-Series Product Platform, using

Enea OSE RTOS

 High Performance Data Base Radio

 Public safety TDMA data base radio operating in 25 kHz channels

 X2 TDMA

 TDMA voice in 6.25 kHz equivalent channels (2 slots in 12.5 kHz)

 High Speed Data Base Radio

 Update to HPD BR to operate in 50 kHz channels

 Conventional Base Radio

 Adding analog voice and multi-frequency features

GTR 8000 Expandable Site

Subsystem

ASTRO Radio Site Architecture

Product/Project Development

Process

Motorola M-Gates

 Corporate wide process for market and product line

planning with system and product development

teams

 Comprised of 16 gates grouped into 5 phases

M13 - Estimation

 Feature requests are generated by business teams,

based on customer requests or market analysis

 Technical experts generate a ROM (Rough Order of

Magnitude) estimate for FRs

 Features are estimated in staff-months

 Business teams prioritize features based on

customer need and cost

 Features are selected for a system release and

locked down

M11 - Scope Lockdown

 System release feature estimates are refined based

on further input from system design team

 High level system design approaches are analyzed

 Tradeoff is usually between customer needs (extra

features) and cost

 Predicted project metrics are generated based on

M11 estimates :

 Project staffing profiles

 Defect arrival/resolution profiles

 Test execution profiles

M7 - System Design Complete

 System design team creates L2 requirements,

allocated to subsystems

 Feature/product architects participate in L2 design

and requirements reviews

 Large features (>500 SM) may follow System Level

Agile Process (SLAP)

 System requirements are developed iteratively

 Subsystem development teams implement L2

requirements

 Allows for earlier testing of system integration

System Level Agile Practice (SLAP)

Requirements creation

 Product level (L3) requirements are captured in

Telelogic (now IBM Rational) DOORS requirements

management tool

 Requirements database allows embedding of objects

(images, tables, etc.)

 Provides linkage and traceability mechanisms for

upstream and downstream requirements

 Inter-product protocols are capture in Interface

Control Documents (ICDs)

DOORS

Architecture

 Architecture decomposes feature into major

software components

 Focus is primarily on interfaces and interactions

between components

 L4 Requirements are written to formalize these

interactions, and are traced to L3 requirements

 Goal is to write requirements that can be unit tested

 Architecture and design patterns are used

throughout products

 Layers pattern

 Active Object and Capsule (UML RT) patterns

GTR Layered Architecture

Platform Layer (HW Abstraction)

Application Layer

Application

Specific

Components

Services Layer

SNMP OS

Application

Common

Components

Tx
(BR only)

Rx
(BR only)

Repeater Software Agile Process

 Based on Scrum agile process

 Development teams work in 5 week iterations

 Best team size is 4-6 developers

 Iterative Lifecycle

 Rapid feedback and learning in short cycles

 Collaborative Teaming

 Teams produce better results than individuals

 Manage themselves to make better decisions

 Development continuously validates quality

Agile Practices

 Agile Project Management

 Automated Testing

 Continuous Integration

 Customer Proxy

 Daily Stand-Up

 Iterative & Incremental Development (IID)

 Paired Development

 Refactoring

 Retrospectives

 Test-Driven Development (TDD)

Calendar for Agile Development

Development tools

 C++/C/PPC Assembly

 Rational Clearcase (Configuration Management)

 Rational Rose Realtime (UML)

 Auto-code generation

 Cppunit/RoseRT Capsule test framework

 Automated unit test execution

 Electric Cloud e-make/Commander

 Automated/parallel build utilities

 Formerly used CruiseControl

 Codewarrior Debugger/PowerTAP JTAG

 Perl/Python (automation scripts, data processing, testing)

 Wikis

Rational RoseRT – Structure

Diagrams

Rational RoseRT – Capsules

Rational RoseRT – State Machines

Rational RoseRT – Message

Sequence Charts

Formal Technical Review (FTR)

 Peer review process

 All deliverables (requirements, ICDs, design, code)

are required to be reviewed

 Improved quality reduces cost of fixing escaped

defects

Project Management Tools

 Version One (Agile Project Management Suite)

 ClearQuest (Defect Management)

 Metrics data collected from tools

Sample Agile Project Metrics

Sample Defect Prediction/Backlog

GLS/Box Test

 Generic Link Simulator

 Motorola developed automated product test

framework

 Primarily intended for network protocol testing

(message sending/receiving)

 Extended to include RF capabilities

 Vector Signal Analyzer (VSA)

 Vector Signal Generator (VSG)

 OTA Protocol Parsers/Formatters

GLS/Box Test Phase

GPIPLAN

GPIP

TX

EXT

FREQ

RX

A

RX

C

RX

B

Xmit

Status

ENET

Link

Status

Site

CTRL A

Site

CTRL B

BR

ENET

Link

Status

LAN

Site

CTRL B

Site

CTRL A

EXT

FREQ

Site CTRL

RF

Input

Analog

out

VSA (Vector Signal Analyzer)

RF

Output

GPIP

Pattern

TRIG In

VSG (Vector Signal Generator)

GLS

Linux

Box

GLS

Window

Box

Sound

Card

To Switch

To Switch

LAN

LAN

To Switch

To Switch

Phase2 GLS Setup -

Connections

Attenuator

M5 - Product Development

Complete

 M5 Goals

 All feature development is complete

 All box tests have been executed

 90% of box tests must pass

 System test begins

 Test product and feature interactions

 Primary activities

 Support system test team

 Defect Repair

M3/M2 - Product Deployment

 All system testing is complete

 100% pass rate is the goal

 Software is turned over to factory

 Installed on newly shipped systems

 CDs available for customer upgrades

 Final project metrics collected and archived

Software Engineering Skills

Beneficial Coursework

 Computer languages

 Exposure to multiple programming paradigms

beneficial

 Use appropriate language to solve problems

 More OOP/OOD/Design Patterns would have been

useful

 Operating Systems

 RTOS concepts very useful

 Networking

 Mobile computing is ubiquitous now

Beneficial Coursework

 Statistics

 Used in performance modeling and profiling

 Design For Six Sigma (DFSS)

 Communication and leadership skills

 Essential to be able to collaborate with colleagues

 Global collaboration is especially challenging

 Our biggest problems are usually due to a breakdown

in communication

Class work is only the beginning

 Continuous learning is essential

 New languages and frameworks keep emerging

 Skills become obsolete very quickly

 Computing challenges have changed considerably

in 12 years

 Secure programming, Information Assurance, Privacy

concerns

 Multicore and concurrent programming

Questions

