
C++ Style

Home
Class Info
Links

Lectures
Newsgroup
Assignments

Follow the rules below to write clean simple C++ code. For further examples of good
style, see Ol' Doc McCann's List of Programming Style Guidelines.

Indent consistently
Initialize Variables
Initialize Class Variables Directly
Locally declare for-loop variables
Name Constants
Define A Function for Each Task
Use Good Names
Avoid Needless Variables
Avoid Repeated Code
Use double not float
Avoid "using" declarations in header files
Include "header guards" in all header files
Use member initializer lists in constructors
Declare destructor as virtual if any member function is virtual.
Use typedef's to clarify code using generic containers

Indent consistently

There are several indenting styles commonly used by C and C++ programmers. See
this Wikipedia entry for a list. The book uses the Allman (BSD) style. I use the K & R
style. Either is fine but be consistent.

In all styles, one cardinal rule of indentation is followed:

Indentation = nesting

Nested code, e.g., statements in a for-loop, is always indented some constant
number of spaces (2, 3, or 4 are typical) from the nesting element, e.g., the start of
the for-loop or if-statement. Statements nested at the same level have the same
indentation. The following is very bad indentation:

 void square_array(int x[], int n, int y[])
{
for (int i = 0; i < n; ++i) {
 int z = x[i];
 y[i] = z * z;
 }
 }

The function heading is not nested and should not be indented. The for-loop is nested
and should be indented. The y[i] = ... line should be indented the same as the int z
... line. The close brace for the for-loop should be under the 'f' for the for. The close
brace of the function should be under the 'v' of void. The proper indentation for this
code is:

EECS 211: C++ Style Guidelines http://www.cs.northwestern.edu/academics/courses/211/html/c++-style.html

1 of 6 3/28/2010 7:59 AM

void square_array(int x[], int n, int y[])
{
 for (int i = 0; i < n; ++i) {
 int z = x[i];
 y[i] = z * z;
 }
}

>

Initialize Variables

When a variable has an initial value, assign it in the declaration of the variable, not in
a separate assignment statement. E.g., don't write

int main (void)
{
 int a;

 a = 4;
 ...
}

write

int main (void)
{
 int a = 4;
 ...
}

It's shorter, clearer, and prepares you for C++ where, with some data types, it's
more efficient.

>

Initialize Class Variables Directly

When initializing a variable holding an instance of a class, write

MyClass thing(value);

not

MyClass thing = value;

The second form is equivalent to

MyClass thing (MyClass(value));

This creates a temporary then copies it. While most compilers will optimize the
second form into the more efficient first form, there are times when they can't. So
use the first form and be sure.

This does not apply to basic numeric datatypes and such. int n = 12; is more typical
than int n(12);.

Locally declare for-loop variables

EECS 211: C++ Style Guidelines http://www.cs.northwestern.edu/academics/courses/211/html/c++-style.html

2 of 6 3/28/2010 7:59 AM

Instead of

int i;

for (i = 0; i < n; ++i) {
 ...
}

write

for (int i = 0; i < n; ++i) {
 ...
}

It's shorter and keeps the scope of i as narrow as possible. A code maintainer can
tell that this i is used only in this loop and nowhere else.

Name Constants

Don't scatter literal values like 12 and 52 and 31 throughout your code. Define
named constants at the start of the file, using const type variable = value;.

Define A Function for Each Task

It has been said that the major task of a programmer is managing complexity. Code
grows quickly and it's important to keep it modular and self-documenting, for easy
repair and extension. Well-named modular functions are central to writing good code.

Define a function when

The same task, e.g., finding something in an array, occurs more than
once.
A function gets more than half a dozen lines long. It almost certainly
has at least one, if not several, functions lurking inside it.
You need to put comments on code to explain what it's doing.

Use Good Names

Nothing is more important to readable code than good names. It's also the case that
naming is often done very badly. See the Naming section of Roedy Green's How to
Write Unmaintainable Code for examples of what not to do.

Here are some guidelines for good names:

For a function name, use a verb or a verb-noun to say what a function
returns or does.

Good: isLeapYear, printDate, findLargest.
A name should never say how a function does it,
e.g., printWithLoop.

For a variable name, use a noun that describes the kind of data a
variable holds.

Good: averages, currentDate, numGrades.
A name should normally not specify the data form,
e.g., cardArray.

For a variable holding generic data, use a standard generic name, such

EECS 211: C++ Style Guidelines http://www.cs.northwestern.edu/academics/courses/211/html/c++-style.html

3 of 6 3/28/2010 7:59 AM

as
i for a for-loop index, and j for a nested for-loop
index
x, y and z for generic numbers, especially floating
point
n for a generic integer

Avoid Needless Variables

Declare variables to

avoid recalculations
give meaningful labels to intermediate results

If neither of these applies, don't create a variable. For example, in

int twoDigits(int number)
{
 int result;

 result = firstDigit(number) + secondDigit(number);
 return result;
}

the variable is absolutely useless. Write

int twoDigits(int number)
{
 return firstDigit(number) + secondDigit(number);
}

Avoid Repeated Code

Never repeat code for anything at all complex. Every copy of such code will have to
be updated if you find a bug or want to make an improvement.

The two ways to avoid repeated code are:

variables, to store calculation results
functions, to hold common code patterns

Use double not float

double is the default floating point type for C++. If you write the number 3.0 in C++
code, it's a double, not a float. Double has the best trade-off between precision and
use of space for most code.

Avoid "using" declarations in header files

Note: The Deitel book vioates this rule frequently.

A "using" declaration, such as can be very useful in avoiding

clutter in your code. It lets you write rather than

.

Such declarations should only appear in implementation code, i.e., .cpp files. They

EECS 211: C++ Style Guidelines http://www.cs.northwestern.edu/academics/courses/211/html/c++-style.html

4 of 6 3/28/2010 7:59 AM

should never appear in header files. "Using" declarations in header files can cause
name conflicts. If one header file has and another has

, then there will be a name conflict when both header files are

included by another file. The whole point of namespaces was to avoid such collisions.

"Using" declarations are fine in .cpp files, because those files are compiled
independently.

Include "header guards" in all header files

Always surround the code in a header with a guard form:

#ifndef NAME_H
#define NAME_H
...
...
#endif

where NAME is the uppercase form of the header file name, e.g., COMPLEX_H for the
header file complex.h.

The guard form prevents the header code from being read more than once, no matter
how many files are compiled that #include it. This is not just for efficiency. Compiler
errors will occur when a header is read multiple times.

Use member initializer lists in constructors

Whenever possible (which is almost always), initialize private data members like this:

Complex::Complex(double r, double i) : real(r), imag(i) { }

not like this:

Complex::Complex(double r, double i)
{
 real = r; imag = i;
}

Initializers are not only clearer, but they also avoid creating default instances when
data members hold user-defined data structures.

Initialization is done in the order in which the variables are declared. To
avoid warning messages, be sure to list variables in declaration order in the
member initialization list.

Declare destructor as virtual if any member function is virtual.

For safety, if a class has any virtual member functions, then make the destructor
virtual too, like this:

class SomeClass
{
 ...
 virtual ~SomeClass();
 ...
}

EECS 211: C++ Style Guidelines http://www.cs.northwestern.edu/academics/courses/211/html/c++-style.html

5 of 6 3/28/2010 7:59 AM

This is explained in Section 13.9, and in many places online, such as here.

Use typedef's to clarify code using generic containers

The standard library containers are great for producing efficient robust code quickly.
But the template notation can clutter up your code pretty quickly. Use typedef to
define clear names for each container-based object. This will simplify the code
overall, and make it much easier to change which container you're using.

So, instead of this

set<string> names;
for (set<string>::const_iterator i = names.begin;
 i != names.end();
 ++i)
{
 ...
}
set<string>::iterator found = find(names.begin(), names.end(), "John");
if (found != names.end()) {
 ...
}

Write this

typedef set<string> List;
typedef List::const_iterator ConstListIter;
typedef List::iterator ListIter;

for (ConstListIter i = names.begin; i != names.end(); ++i)
{
 ...
}

ListIter found = find(names.begin(), names.end(), "John");
if (found != names.end()) {
 ...
}

This becomes particularly useful with the map containers. See Chapter 22 in Deitel for
more examples.

Comments? Contact the Prof!

EECS 211: C++ Style Guidelines http://www.cs.northwestern.edu/academics/courses/211/html/c++-style.html

6 of 6 3/28/2010 7:59 AM

