

EECS 211: Simple Introduction to Using

UNIX for Programming Assignments

Ioan Raicu

Spring 2010

iraicu@eecs.northwestern.edu

Adapted from L. Henschen, September 2007

MARCH, 2010

Table of Contents

INTRODUCTION... 3

SOFTWARE REQUIRED FOR REMOTE LOGIN... 4

LOGGING IN AND THE MAN COMMAND ... 5

FILES AND DIRECTORIES .. 7

COMPILING AND RUNNING C++ PROGRAMS - INTRODUCTION 10

EMACS: A SIMPLE LINE EDITOR FOR UNIX AND C++ 12

MAKE AND MAKEFILES ... 14

SIMPLE DEBUGGING WITH GDB/DDD.. 18

APPENDIX I COMMONLY USED UNIX COMMANDS .. 22

APPENDIX II COMMONLY USED EMACS COMMANDS 24

APPENDIX III COMMONLY USED GDB COMMANDS 26

Introduction

 The purpose of this document is to provide students in this class with enough of

an introduction to certain UNIX tools so that they can do their programming assignments.

It is not meant to be a comprehensive or general introduction to UNIX features, nor is it

intended to introduce operating systems concepts. The coverage of features for any

individual UNIX tool is not deep but should be enough for students to use the tools

effectively for this class. Students are referred to any of a large number of standard

books on UNIX tools as well as the “man” command within UNIX itself for additional

information on these and other tools.

 The material presented here has been compiled from a variety of standard books

on UNIX as well as from previous teachers and Teaching Assistants for this course,

particularly Prof. Peter Scheuermann, Vana Doufexi, Olivier Ghica, and Hui Ding.

 Many sections of this document illustrate actual dialogues with the UNIX system

or the student‟s own PC or describe text that the student must enter into a field. To

distinguish such information from the normal text in this document, the following color-

coding scheme is used:

 Orange text is text the user types.

 Green text is text that the computer displays back to the user.

Software Required for Remote Login

 Each student will be given an account for one of the department‟s UNIX labs,

typically the T-lab. This account allows both on-site and remote login and provides non-

volatile storage on the lab‟s file system. User files can be accessed from any machine in

the lab or through remote login.

 For security reasons, remote login to the UNIX machines in the department lab

must be made using a secure shell client (SSH) protocol. Requests for connection

through a non-secure software tool, such as HyperTerminal, will not be accepted. If you

are accessing the lab remotely, you will need to go through Northwestern‟s virtual private

network, for an added level of security. See

 http://www.it.northwestern.edu/offcampus/index.html

for instructions how to add and then configure a connection to this private network

 An excellent, free software package allowing secure remote login can be obtained

from

 http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Select the release version of putty.exe appropriate for your computer. (Note, this site also

posts a so-called “development snapshot”, which is their latest working version and

which is not guaranteed to work.)

 Use of the graphics debugger (GDD) remotely requires a computer which

supports an X-Windows environment. If your computer does not support this, you can

check the department lab web site for instructions on how to obtain the required software:

 http://www.ece.northwestern.edu/CFS/PCs.html

http://www.it.northwestern.edu/offcampus/index.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.ece.northwestern.edu/CFS/PCs.html

Logging in and the man Command

 Remote login is begun by establishing a connection to the Northwestern

University Virtual Private Network and then executing the secure client network

connection on your laptop or PC. The SSH software should pop up a window, and you

should request it to make a remote connection. The SSH software will ask for several

pieces of information at various points in the opening dialogue. Some of these will be in

the initial panel when you open the software, others may be requested in later windows

before the login is complete.

1. host name or IP address – type tlab-yx.cs.northwestern.edu, where xy is any of 11,

12, …, 18.

2. port – typically this should be set to 22 if it doesn‟t automatically default to that

value

3. protocol – if your secure-client software offers a selection of protocols, be sure

that SSH is selected

4. user name – this is your UNIX lab user account name

5. password – this is your UNIX lab user password

The putty SSH software mentioned in the previous section immediately opens a window

in which the first three items are to be entered. When they have been entered or selected,

type connect. The window will change, at which point you are connected to the

department‟s UNIX lab. You typically need to press <ENTR> once or twice, after which

the UNIX system will prompt you for your user name and password.

 UNIX is a command-line system. Instead of clicking icons with a mouse the user

types the name of the program to be executed and possibly also options and inputs for the

program.

 The UNIX system then displays a prompt, typically the name of the machine that

you are running on plus the path to the current working directory and the percent sign. At

this point you may type commands into the UNIX system. Two commands that you will

use a lot are ls and man. The ls command will be described in the next section. The man

command allows you to ask for help on how to use the UNIX commands. For example,

you could type

 cayman :~ % man man

to see (a rather long) description of the man command, how to use it and the various

options you can use when using it. The description is displayed one screen at a time. If

the description is longer than one screen you can get the next line of the description by

typing <ENTR> or the next screen by pressing the space bar. For novice UNIX users,

probably most of the description is not understandable and can be ignored.

 When connecting to the department‟s UNIX lab you will be connected to one of

the UNIX machines, but not necessarily the same one each time. You will still be able to

access any files you have on the system because the files are stored under your user name

on the system file server and are non volatile.

Files and Directories

 Files are organized into hierarchical structures, similar to windows folders. In

UNIX terminology, a folder is called a directory. When you first login, you are “in your

home directory”. Your home directory is a directory whose name is your user name and

which occurs, along with probably most other users‟ home directories, at a particular

place in the UNIX file system hierarchy. You can see the full path of the current working

directory by using the pwd (print working directory) command. For example:

 cayman :~ % pwd

 /a/core/files9/home/henschen

 cayman :~ %

 You can list the files in the working directory with the ls (list) command. For

example:

 cayman :~ % ls

 … list of files and directories …

 cayman :~ %

It is important to understand that your directories will be listed along with your files and

will be indistinguishable, unlike Windows which lists the folders as icons. You can use

the “-l” option to list both a key character („d‟ for directory, „-„ for file) plus all the

permissions associated with this file. (File permissions is an advanced topic beyond the

scope of this document.) For example:

 cayman :~ % ls -l
 -rwx------ 1 henschen eecs 560 Jan 18 2007 a.out

 drw-rw-rw- 2 henschen eecs 27560 Jan 6 2007 project1

 -rw-rw-rw- 1 henschen eecs 5948 Dec 21 2006 xmaslist

 cayman :~ %

The directory/folder character is the first one. The next nine characters list the

permissions (r for read, w for write, x for execution). Following the number is the owner

of the file (henschen), the group to which the owner belongs (eecs), the file size, the date

the file was created, and finally the file or directory name itself. Unless directed

otherwise, the ls command will list the items in alphabetic order. Many folders contain

system files and other special files. These files have names that begin with „.‟. You can

have these displayed by the ls command by including the –a attribute on the command

line.

 It is wise to organize your files into related groups with directories (like folders in

Windows systems). To make a new directory in the working (i.e., current) directory, use

the command mkdir (make directory). In the opposite direction, you can delete a

directory with the command rmdir (remove directory). For example:

 cayman :~ % mkdir xyz

 cayman :~ % ls -l
 -rwx------ 1 henschen eecs 560 Jan 18 2007 a.out

 drw-rw-rw- 2 henschen eecs 27560 Jan 6 2007 project1

 -rw-rw-rw- 1 henschen eecs 5948 Dec 21 2006 xmaslist

 drw-rw-rw- 1 henschen eecs 256 Jan 30 2007 xyz

 cayman :~ % rmdir xyz

 cayman :~ % ls -l
 -rwx------ 1 henschen eecs 560 Jan 18 2007 a.out

 drw-rw-rw- 2 henschen eecs 27560 Jan 6 2007 project1

 -rw-rw-rw- 1 henschen eecs 5948 Dec 21 2006 xmaslist

The directory must be empty or UNIX will not remove it but print an error message.

Individual files can be removed with the command rm (remove). For example:

 cayman :~ % rm xmaslist

 Navigation is accomplished with the cd (change directory) command. The most

commonly used forms are:

 cd project1 project1 should be in the current working directory and becomes

the new working directory

 cd .. the two dots mean go up one directory level

 cd go to the HOME directory

 The command to make a copy of a file is cp. This command takes two arguments

– the name of the file to be copied and the name of the new file. For example:

 cayman :~ % cp main.cpp main0125.bak

The source file is a file in the current working directory, and the new file is created in the

current working directory. You can specify a file in another directory by giving a path.

A simple path is relative to the current working directory; a full path is relative to the root

of the file system. The character „/‟ is used to separate multiple directories in a path. For

example, the command

 cp xyz/main.cpp mybackups/eecs211/project2/main0129.cpp

says to copy the file main.cpp from the xyz directory within the current working directory

to the directory project2 within the directory eecs211 within the directory mybackups

within the current working directory and give it the name main0129.cpp. You can move

a file using the mv command, which has the same format as cp.

 You can display all or selected parts of a normal file by using one of the following

commands:

 cat filename display the whole file

 less filename display the whole file one screen at a time

 head filename display the first 10 lines of the file

 tail filename display the last 15 lines file

For files that are more than 20 or so lines long, cat is not a good choice because the text

flies by too fast to read. Instead, use less and use the space bar to move to the next screen.

 Finally, if you are not sure which of a number of files has some text you are

looking for, you can use the grep command to look for a word or phrase in a file. The

grep command takes two arguments – a text to search for and a file to search in. For

example:

 cayman :~ % grep MAX_CHARS main.cpp
 char cmd_line[MAX_CHARS];

 for(j=0; j<MAX_CHARS; j++) {

 cayman :~ %

The grep command is case-sensitive unless you specify the –i (ignore case) option. For

example:

 cayman :~ % grep max_chars main.cpp

 cayman :~ % grep –i max_chars main.cpp
 char cmd_line[MAX_CHARS];

 for(j=0; j<MAX_CHARS; j++) {

 cayman :~ %

You can also have the grep command list the line numbers of the lines that it finds by

using the –n option.

 cayman :~ % grep –n MAX_CHARS main.cpp
 char cmd_line[MAX_CHARS];

 for(j=0; j<MAX_CHARS; j++) {

 cayman :~ %

Finally, you can search in several files by listing them on the command line.

 cayman :~ % grep –n MAX_CHARS main.cpp system_utilities.cpp

 To summarize, then, the most commonly used file commands are:

 pwd - print the path to the working directory

 ls - list the files in the working directory

o –l option specifies long format for the output

o –a option includes the „.‟ files

 mkdir - make a new directory

 rmdir - remove a directory (must be empty)

 cd - change to a new working directory

o directory name

o .. to move to the parent of the current working directory

o no argument to move to your HOME directory

 cp - copy a file

 mv - move a file

 cat, less, head, tail – display contents of a file

 grep - search for a text string in a file

o -i to ignore case

o –n to print the line numbers

Compiling and Running C++ Programs - Introduction

 This section provides a quick introduction to compiling and running C++

programs with the GCC (GNU Compiler Collection) on UNIX. A more complete

discussion of how programs spread across multiple files are processed by GCC is given

in a later section.

 Simple C++ programs in a single file are compiled with the g++ command. For

example:

 cayman :~ % g++ hello.cpp

(Note, C programs would be compiled with the gcc command.) This command will

cause the GCC compiler to analyze the program in the file hello.cpp. If there are no

syntactic errors, the compiler will translate the program into an intermediate form. If

your program used any functions defined in other files (e.g., C++ library functions like

cin and cout, DLLs that you, etc.) and the intermediate form can be linked successfully

with those, an executable file will be generated and given the name a.out. You may then

execute your function by calling it from the command line using “./” in front of the file

name:

 cayman :~ % ./a.out

Any cout statements in your program will generate text in your login window; any cin

statements will accept text from the keyboard. As with most C++ systems, text from the

keyboard is not passed into the program until the user types <ENTR>.

 If errors are encountered during any step of the process, appropriate error

messages are displayed, and no executable file is created. If the errors were found during

the compile phase (translation from C++ source to intermediate form), line numbers will

be displayed along with the error message itself. If the error occurred during the linking

phase, the linker will identify the source file name, if possible, which contains a problem.

 As with most UNIX commands the user can specify options to change the default

behavior of the compiler. The four most commonly used options with the command are:

 -Wall - (Warnings – all) display warning messages in addition to error messages;

 -o - (Output) name the executable file something besides a.out

 -ggdb - include the information necessary to use the Gnu debugger gdb

 -c - compile the source files but do not generate the executable file

Just because a program compiles and links does not mean it is correct. Many times the

compiler will translate C++ code which is not strictly correct syntactically. Using the –

Wall option causes the compiler to display a warning message for each such anomaly in

the program. Programmers should read warning messages to make sure the warning isn‟t

in fact an error or mistake in the code. C++ applications are normally developed with

many cpp files, and often a programmer may focus on one or two of these at a time.

Each cpp file will generate an output file when successfully compiled. If each execution

of g++ stored the output in a.out, each successive compile would overwrite the output

from the previous compile unless the user made a copy first. For safety and clarity, it is

common to give the intermediate, compiled version of a file the same base name as the

file itself. This is done by including “-o fname” in the command line. Debugging will be

discussed in a later section. Finally, it is often desirable to just compile a cpp file to see if

there are any typos or syntactical errors without actually linking; this is especially the

case when first typing in a new file.

These options can be used independently or together in the same command. The “-Wall”,

“-ggdb” and “-c” options come after the command and before the cpp file name, in any

order; the “-o fname” comes at the end of the line. For example:

 cayman :~ % g++ -Wall –ggdb hello.cpp –o hello

 cayman :~ % ./hello

 You may compile several cpp files together by listing them in a single g++

command line.

 cayman :~ % g++ -Wall helloa.cpp hellob.cpp –o hello

 cayman :~ % ./hello

In this case the executable produced would be named “hello”.

 REMEMBER: Header files are included by the C/C++ preprocessor (see later

section). They are NOT mentioned on the gcc or g++ command line itself.

EMACS: A Simple Line Editor for UNIX and C++

 EMACS is a simple line editor that can be used to enter and edit C++ files and

header files. EMACS allows a user to create new files, edit a file, move around in the file

using the cursor keys, search for text, and many other basic operations. It automatically

indents subordinate blocks in c/cpp and h files. It is not a sophisticated, visual-based

editor; however, it is sufficient for most purposes for this class.

 You normally invoke emacs with the command name and a file name:

 cayman :~ % emacs test.cpp

If the file already exists, it will be loaded. If it does not exist, it will be created. The

emacs window normally consists of two parts – a buffer showing the contents of your file

and a command line at the bottom of the screen. You type text into the upper area and

use the arrows, Page Up/Down, and other common keys to edit and move around in the

file. You type CTRL key combinations and ESC key sequences to request emacs to

perform operations like save a file or exit. An example will be shown in class, and a pdf

file containing a summary of all the emacs commands (including many more than you

will use in this class) will be posted on Blackboard.

Here is a summary of the most useful CTRL and ESC commands. The notation C-letter

means to hold the CTRL key while you type letter. For example, C-x means CTRL-x.

On the other hand, ESC-letter means to press the two keys in sequence; press ESC, then

release ESC, then press letter. C-letter followed by another key press means press the

two combinations in order. For example, C-x C-c means press CTRL-x and then press

CTRL-c.

Quit emacs:

 C-x C-c

Basic file manipulation:

 C-x C-s save

 C-x C-c quit

 C-x i insert another file into this file at the cursor position

Navigation in text

 Use the four arrows (up/down/left/right)

 ESC-< to go to the beginning of the file, ESC-> to go to the end

 C-v or scroll down one screen, ESC-v to scroll up one screen. PageUp and

PageDown also scroll up and down.

Undo

 C-x u undo the last command or keystroke

 DEL delete text backwards

 C-d delete text forwards.

Search

 C-s begin dynamic search forward. You type text in the command line

area at the bottom of the screen. Each additional letter typed moves the cursor to

the next place in the file that matches the sequence of letters typed so far. In

addition, emacs underlines all other occurrences of the search text in the file.

 C-r begin dynamic search backwards. Same except the search goes

backwards.

 <ENTR> terminate the search

 Typing C-s or C-r before a search is terminated moves the cursor to the next

(previous) occurrence of the search string.

 ESC-p/ESC-n emacs remembers the search strings the user has entered in a

circular list. If at any time during the search you type one of these commands,

emacs will display the previous or next search string. You can continue to change

the search string, and then when you found the one you want press C-s or C-r to

continue searching, now with the newly chosen search string.

Copy and Paste

 NOTE: You can use your mouse to identify a region of text, copy it into a

Windows buffer, and then paste into any application expecting input from the

keyboard. For example, you could open a file on your PC, use the mouse to copy

a block of text, bring the window with emacs to the front, and then paste the text

into your emacs buffer.

 Registers. emacs has a set of numbered registers, each of which can hold text.

o You identify a block of text in two steps

 Put the cursor at the beginning of the text and enter the command

C-space (called “marking” in emacs)

 Move the cursor to the end of the text and enter the command

C-x r s register_number to save the text in the indicated register

o You insert the text from a register with the command

C-x r i register_number

Shell

 ESC-! execute a shell command. The user may type a shell command

into the command line. This is useful for compiling after you have edited a cpp

file.

 C-x 1 <CTRL>-x “one”. Many shell commands and other emacs

commands open a new window to show the output of the command. This will

eliminate that window.

Help

 C-h t emacs tutorial

 C-h a string show help relevant to the string

 C-x 1 remove the help screen

 C-ESC-v <CTRL><ESC>v - scroll the help screen, but this doesn‟t

work on a Windows machine.

Make and Makefiles

 Non-trivial C++ applications are normally spread over many files – C++ files and

header files. As the number of files grows, remembering which files need to be

recompiled as you make additions and corrections becomes more of a problem. Which of

your cpp files used a particular header that you just modified, possibly even indirectly?

Which of your cpp files did you modify after the last debug session? UNIX provides a

relatively simple mechanism to manage this complexity and, in the spirit of UNIX, a

whole lot more. This mechanism is called “make”. The “make” command executes a set

of UNIX commands from a file. (By default it uses a file called “Makefile”, but the user

can change this by using the –f option on the make command line.) In addition, make

will check all the dependencies you tell it about and compile any files that have been

changed (are “out of date” in UNIX terms) since the last time they were compiled. The

make command also allows you to execute other UNIX commands, like remove

unwanted files, zip a group of files, compress files, etc. – in fact literally any command

that you could type in yourself. This section will describe the ones we will use for EECS

211, but this is only a small fraction of the full capabilities of the make command.

 The most common kinds of lines in a make file, aside from comment lines, are

dependencies and commands. A dependency is a line that begins (in column 1) with a

list of files (separated by blank if there are more than one), following by a colon followed

by another list of files. The files to the left of the colon are called target files; the files to

the right are the files on which the target files depend. For example, the dependency line

 main.o: definitions.h system_utilities.h main.cpp

says that the compiled version of main (main.o) depends on both header files,

definitions.h and system_utilities.h, as well as the C++ file main.cpp. As the project

grows and, for example, more header files are included in the main.cpp file, all the

programmer need do is add the new files to the dependency; it is not necessary to

remember every time you change one or more header files which ones are used in which

C++ file. A typical make file has many dependency lines. A command line in a make

file is simply a UNIX command. Command lines must have at least one tab character at

the beginning. Comments in a make file begin with the „#‟ character. The format for a

simple make file is a sequence of dependencies, each dependency followed by one or

more command lines. For example:

project2: system_utilities.o main.o

 g++ -Wall system_utilities.cpp main.cpp –o project2

system_utilities.o: system_utilities.h definitions.h system_utilities.cpp

 g++ -Wall –c system_utilities.cpp

main.o: system_utilities.h definitions.h main.cpp

 g++ -Wall –c main.cpp –o main.o

The third group, for example says that the compiled form of the main program depends

on the two header files and the cpp file; further, in order to bring main.o “up to date” the

g++ compiler should be called using the –Wall option and the –o option.

 “make” is a standard UNIX command and is invoked, like all other UNIX

commands, by writing it as the first token on a line, possibly with other tokens

representing file names, options, or other information to be used in executing the

command. By default, make uses the dependencies and commands in a file (in the

current directory) called either “makefile” or “Makefile”. (It is common to use the

second one because it stands out more when an ls command is executed.) The user can

specify a different file by using the “-f” option and then giving the name of the make file

to be used. In most cases the remaining tokens on the line refer to files listed on the left

of a colon in a dependency. The user can reference several of these on the same

command line. Here are some examples:

 cayman :~ % make project2

 cayman :~ % make –f altmake main.o

 cayman :~ % make main.o system_utilities.o

The first and third would use the file makefile or Makefile. The second would use the

file altmake.

 When the user issues a make command, the UNIX make utility opens the

makefile and analyzes all the dependencies for the files listed on the make command line.

For example, in the first example of the preceding paragraph, the make utility would

check the dependency for project2, that is, would check to see if any of the files on which

project2 depends has changed. This analysis is recursive, so any file on the right of the

colon that is itself listed on the left of a colon in another dependency causes that other

dependency to be checked and processed before the continuation of the first dependency.

For any dependency that is out of date (some file on the right has changed since a file on

the left was last created), the sequence of commands following the dependency is

executed. Continuing with our example of “make project2”, the make utility first checks

the dependency for system_utilities.o. If system_utilities.o is out of date, the g++

compiler is called with the arguments shown. Similarly, make checks for main.o being

out of date and regenerates it if necessary. Finally, if either one of the two .o files were

out of date, the command following the project2 dependency is executed. There can be

any number of commands following a dependency, and if the dependency is out of date

all of the command following it are executed (unless one of them results in an error

condition).

 If the make command is called with no dependencies listed on the command line,

the make utility assumes the user wants the first dependency in the file. It is also quite

common to list a dependency with no files on the right of the colon. If the make

command is issued for that dependency, the commands following the dependency line are

executed unconditionally. For example, a common operation after a coding or debugging

session is to remove unwanted files. The makefile could contain the following lines.

 cleanup:

 rm *.o

 ls *.cpp

 ls *.h

Executing the command “make cleanup” would (unconditionally) delete all files of type o

in the current folder, then list in turn all the files of type cpp followed by all files of type

h.

 Comments can (and should) be embedded into a make file. The make utility

ignores all characters following the character „#‟ until the end of the line.

 It is also very common and convenient to have user-defined macros in a make file.

These are variables that are defined and initialized at the beginning of the make file.

They are typically given names that consist of all upper-case letters. The format of a

definition is

 NAME = rest of line

For example, we could have

 OBJECTS = main.o system_utilities.o process_memory.o

 SOURCES = main.cpp system_utilities.cpp process_memory.cpp

 CFLAGS = -Wall

 STUDENT = ljh

 PROJECT = program2

 HANDIN = $(STUDENT)-$(PROJECT).tar

(Note, a tar file is like a zip file.) One of these user-defined macros, or in effect

variables, can by used later in the file (including in a later macro definition) by using the

character „$‟ and parentheses. When the variable is so referenced, the text to the right of

the equal sign is substituted for the variable. So, for example, the variable HANDIN has

the value ljh-program2.tar because the two variables STUDENT and PROJECT get

replaced by their respective values. It is common to use variables like OBJECTS and

SOURCES in projects where the set of files is likely to expand. For example, in EECS

211 we add new header and source files as the project proceeds. Listing the relevant files

as the values of variables like this avoids the need to search through a (sometimes long)

makefile every time a new source and header file are added. For example, in the

presence of the above definitions, we might include a dependency like

 $(PROJECT): $(OBJECTS)

 g++ $(CFLAGS) $(SOURCES) –o $(PROJECT)

Then the command “make project2” would check if any of the object files were out of

date and regenerate the executable if they were. An interesting feature is that any of

these can be overridden from the command line. For example, if you wanted to rebuild

the project but not see the warning messages, you could use the command

 cayman :~ % make project2 “CFLAGS = “

Simple Debugging with gdb/ddd

By now you know that even if a program compiles and links it still may not be correct. It

may run to normal termination but produce the wrong results, or it may terminate

abnormally (“crash”). One way to try to find the mistake is to simply look at the code.

For example, if the output for some variable is not what the programmer expected, a good

first step is to trace back from the output statement through all the various steps that led

to the final value for that variable. A second way to help find a mistake is to insert

additional output statements that print variables and other information, such as which

function the output statement is in, along the way so that the programmer can see the

progress of the computation and tell where it went wrong. After the mistake is fixed,

these extra output statements can be removed. Both of these techniques are useful when

the program is relatively small or when a small amount of new code has been added to a

larger project. In many cases, however, looking at the code or intermediate steps is not

easy, and a special tool called a debugger is the most productive method for finding and

fixing errors.

A debugger is a tool that allows the programmer extensive control over the execution of a

program and allows the programmer to stop the execution and examine the state of the

executable at the point where the program was stopped. In a normal “run”, the program

continues execution until it terminates normally (typically by reaching the end of the

main function, but there are other means for the programmer to make the program

terminate) or the program crashes because of some physical error such as divide by 0 or,

more commonly, attempt to access memory outside that which belongs to the program.

A debugger allows the programmer to specify points, called breakpoints, at which the

execution of the program should stop. Once stopped, the programmer can examine and

even modify variables at that point, see how the program got to that point (examine the

execution or “call” stack), continue the execution, either to the next breakpoint or by

proceeding one statement at a time, step into functions, etc.

Here are some examples of how a programmer might use a debugger.

1. An output statement produces the wrong value. The programmer could select

some strategic breakpoints along the way to the output statement. As execution

stopped at each breakpoint the programmer examines the variables to see if the

intermediate steps are ok. The programmer might continue to the next breakpoint

or single-step through a critical section to see if the right branches on conditional

statements or loops are being taken.

2. An output statement produces the wrong value, but there are many ways to reach

that point in the program. The programmer might set a single breakpoint at the

output statement. When the execution stops, the programmer examines the call

stack to see how the program got to that point for this particular case of input data.

The programmer might then look at the code for the functions that lead up to this

breakpoint or might set breakpoints at the beginning of those functions and start

the debugging over, proceeding as in example 1.

3. The program crashes. This kind of error is very often due to bad pointers, either

uninitialized or NULL pointers. The UNIX system will list the address of the

point in the executable program where the error occurred. The programmer can

use the debugger and set a breakpoint at that address. Once the program stops,

the programmer can check the call stack to see how the program got there and

then either examine the code or set new breakpoints and restart the debugging.

Most modern compiler systems have associated debuggers. UNIX has the gdb, a

relatively simple debugger, and gdd, a visual-style debugger, each as separate tools in the

UNIX system. VisualC++ has a debugger built into the integrated VisualC++

environment along with the compiler, editor, and other tools. Although the format for

performing operations and specifying things like breakpoints may be different in the

various debuggers, the basic functionality is the same for all debuggers and includes:

 the ability to set and clear breakpoints;

 the ability to examine and modify variables;

 the ability to evaluate expressions;

 the ability to step through the program one statement at a time, selectively

stepping over or into functions that occur in the statement;

 the ability to step out of the current function;

 the ability to continue execution to the next breakpoint or to skip over a

breakpoint some number of times (useful when the breakpoint is inside a

loop and you want to see what happens the last one or two times through

the loop).

As with other UNIX tools, gdb is a command-line based tool. The executable file must

have been built using the –g or –ggdb option. For example,

 cayman :~ % g++ -Wall –ggdb hello.cpp –o hello

Then rather that executing the program hello (i.e., rather than cayman :~ % ./hello), type

 cayman :~ % gdb

 cayman :~ % gdb file hello

The first command starts the gdb tool; the second loads the executable file that you want

to debug. Alternatively, you could combine the two into a single command:

 cayman :~ % gdb hello

You can find out other command-line options by typing

 cayman :~ % gdb -h

Most of these will not be useful in this course. You terminate a debugging session by

typing quit.

 cayman :~ % gdb quit

If the program you are debugging has not yet reached its own termination, gdb will warn

you and ask if you want to continue.

One of the first operations before beginning debugging is to set breakpoints. You may

set a breakpoint at the beginning of a function, at a specific line within a function, or at a

particular physical address in memory (which you might obtain from the error message

when your program crashed). Examples are

 cayman :~ % gdb break main

 cayman :~ % gdb break student::print();

 cayman :~ % gdb break student.cpp:27

 cayman :~ % gdb break 0x8048e30

You may also list the breakpoints by typing the command

 cayman :~ % gdb info break

which will produce a list of the breakpoints, each with its own number and other

information. (See further down for more information about info.) You can remove

breakpoints when you no longer need them by typing either of the commands

 cayman :~ % gdb clear function

 cayman :~ % gdb delete breakpoint-number

Once the breakpoints have been set you start the debugging of the program. The run

command starts at the beginning of the program and continues until a breakpoint or

termination. Note, if you had already been debugging, this command will ask you if you

want to start over. (You could also start the debugging session by issuing the command

to “step into” main. See later in this paragraph.) When a breakpoint is reached, the

various options for continuing the execution are:

 continue – a resume execution;

 run – start over;

 next – execute the next instruction;

 next n – execute the next n instructions;

 step – like next except step into any functions in that line;

 finish – step out of the current function;

 backtrace – show the call stack for the current position in the program.

Of course, normally you want to look at things when you reach a breakpoint. The print

command is used for this purpose. You can print individual variables or array elements

or even entire arrays that are within the scope of the line where the debugger is currently

stopped. For example, assuming “process” is a class with a data member

number_of_files,

 cayman :~ % gdb print i

 cayman :~ % gdb print process->number_of_files

 cayman :~ % gdb print process_list[2]

 cayman :~ % gdb print process_list@4

You can also arrange to have variables displayed automatically whenever a breakpoint is

reached by using the display command; see the manual or the appendix for details.

Very often you discover that some variable has the wrong value. Rather than quitting and

having to start over after you fix the code, thus wasting all the time spent in the session so

far, it is useful to be able to “fix” the value of the variable so you can continue debugging

and continue checking the remainder of the program. You can do this by using the

variable option of the set command:

 cayman :~ % gdb set variable variable = expression

(Note, the set command has many options, so be sure to include variable on the command

line.) For example, suppose you used to print to find out that the value of the argument a

in a function you just entered was wrong and you wanted to continue debugging with a

reasonable value. You could give the command

 cayman :~ % gdb set variable a = 5

The expression can involve variables within the current scope of execution, for example,

 cayman :~ % gdb set variable a = a+1

The info command provides a variety of useful information, such as what variables are in

the current scope, what are the global variable, what breakpoints are currently active, etc.

You can type info on then command line and get a list of the command-line options.

 cayman :~ % gdb info

We have already seen one example of this command to get a list of the breakpoints. Two

very useful command options are locals and args, which list the local variables (excluding

the function arguments) and the arguments of the current function respectively.

 cayman :~ % gdb info locals

 cayman :~ % gdb info args

See the manual or the appendix for details.

The help command provides information about the gdb commands at the level specified

on the command line. For example,

 cayman :~ % gdb help

provides a list of the different classes of commands that that are relevant at the top level

of the gdb command line – e.g., data for command that have to do with data (like print) or

breakpoints for commands that have to do with breakpoints. Typing help and a command

class gives a list of the commands in that class:

 cayman :~ % gdb help data

Typing help and a command, e.g. set, gives information about that command:

 cayman :~ % gdb help set

You can continue to drill down to get the details as needed, for example,

 cayman :~ % gdb help set variable

Most gdb commands have abbreviations to reduce the amount of typing required. In

most cases the abbreviation is the first letter of the command (or first few letters if two

commands begin with the same letter) or the first letters of the two words of a compound

word command (e.g., bp for breakpoint).

Appendix 3 provides a summary of the most commonly-used commands for gdb.

The ddd debugger is a Windows-style front end for gdb and has many aspect similar to

the Visual C++ integrated debugger. The complete ddd user‟s manual is posted on the

Blackboard site. Section 1 – A Sample DDD Session – provides a good overview of how

to use the ddd debugger. The remainder of the manual provides details of the individual

features and operations. Most of that material concerns either advanced options or

formatting options. A close examination of Section 1 should be sufficient for most of the

debugging you will do in this class. NOTE: The ddd debugger requires a windows-

based access to the UNIX system; most SSH programs do not have the display

capabilities necessary to run ddd.

Appendix I Commonly Used Unix Commands

Here is a list of the top-level commands you will use most often in this course. It is

provided as a quick reference in the early weeks. Most likely after a week or two you

will be so familiar that you will no longer need this list. Some sample uses are also

shown in lieu of a listing of options for each individual command.

Help command

 man display the manual for a given command.

 e.g. man ls

File and directory commands

 ls list the files and directories in the current working directory

 e.g. ls *.cpp

 pwd print the name of the current working directory

 cd change the current working directory

 e.g. cd project3

 e.g. cd .. (go up one level in the directory structure)

 mkdir make a new directory

 rmdir remove (i.e., delete) a directory

 e.g. mkdir project4

 rmdir project2

 rm remove (i.e., delete) a file

 cp copy a file to another place

 e.g. cp main.cpp main.tmp

 e.g. cp main.cpp project4 (project 4 is a directory)

 cat display a file

 less display a file one screen at a time

 head display the first 10 lines of a file

 tail display the last 15 lines of a file

 e.g. cat definitions.h

 head main.cpp

 grep find occurrences of a word or phrase in a file

 e.g. grep MAX_FILES main.cpp

Compiling and debugging

 g++ compile a file or group of files

 e.g. g++ -Wall main.cpp system_utilities.cpp –o project2

 make invoke the make file to do a set of jobs

 gdb invoke the debugger

 ./file execute the program in file

Editor

 emacs invoke the emacs line editor

 e.g. emacs system_utilities.cpp

Appendix II Commonly Used EMACS Commands

Remember, C-letter means hold the “Cntrl” key and then press letter, while ESC-letter

means press ESC and letter in sequence.

Quit emacs:

 C-x C-c quit completely

 C-z suspend emacs

Basic file manipulation:

 C-x C-s save

 C-x i insert another file into this file at the cursor position

 C-x C-w file write the edit buffer to the file

Navigation in text

 Use the four arrows (up/down/left/right)

 ESC-< go to the beginning of the file

 ESC-> go to the end

 C-v or PageDown scroll down one screen

 ESC-v or PageUp scroll up one screen

Undo

 C-x u undo the last command or keystroke

 DEL delete text backwards

 C-d delete text forwards.

(NOTE: The “Delete” key inserts a tilde character “~” but does not delete text.)

Search

 C-s string begin dynamic search forward.

 C-r string begin dynamic search backwards.

 <ENTR> terminate the search

 C-s move to next occurrence of the search string

 C-r move to next occurrence of the search string

 ESC-p/ESC-n change to next/previous search string

Copy and Paste

 mouse mark region, then copy/paste

 C-space mark beginning of text block for a region

 C-x r s reg mark end of the text region and save in register reg

 C-x r i reg insert register reg text at cursor position

Shell

 ESC-! execute a shell command

 C-x 1 close the window opened by the last shell command (Note,

 the last key for this command is “one”, not “el”.)

Help

 C-h t emacs tutorial

 C-h a string show help relevant to the string

 C-x 1 remove the help screen

 C-ESC-v <CTRL><ESC>v - scroll the help screen

 C-h a string show command matching string

Appendix III Commonly Used gdb Commands

Remember to use the –ggdb option when you build the project.

Start the debugger

 gdb starts gdb without loading the program

 gdb file starts gdb and loads file

Quit the debugger

 quit

Help

 gdb –h display command line options

 help display a list of the gdb commands

 help cmd display information about cmd

You can continue to drill down to get the details as needed, for example,

 help set variable

Breakpoints

 break set a breakpoint at a function, file line, address, etc.

 e.g. break main

 break system_utilities.cpp:20

 clear function clear the breakpoint at the indicated function

 delete n delete breakpoint number n

 info break list the current breakpoints

 continue resume execution

 run start over

 next execute the next instruction

 next n execute the next n instructions

 step execute the next instruction, stepping into any function

 finish step out of the current function

 backtrace show the call stack for the current position in the program

Displaying and changing variables

 print var show the value of var

 display var show the value of var each time execution stops

 set var exp change the value of var to exp

Information about debugger attributes

 info display a list of options for the info command

 info item display information about item

 e.g. info variables

 info locals

