
Visual C++ Express Tutorial

Creating a new project/ Opening an existing project

Start Visual 2008 Express Edition by clicking the icon on the desktop or from the Start

tab:

 Start  Programs  Microsoft Visual C++ 2008 Express Edition

  Microsoft Visual C++ 2008 Express Edition

You may see a tab-page labeled "Start Page" with recent projects and Express News.

You may either dismiss this page or select one of the recent projects.

To create a new project:

 Select the menu “File  New  Project…”

 From the menu on the left select "Win32".

 Then from the right panel select “Win32 Console Application”.

 In the lower panel select the folder where you want this project to be in the

“Location” field. You can click on the button “…” to browse the hard disk. For

example, “C:\MyDocuments\EECS211\Program 1”

 In the field “Name” give the project a USEFUL name like Assignment1 or

similar.

The screen described above looks like:

 Press OK. You will get a screen that says you have a console application and

saying you can click "Finish" at any time to accept defaults. DO NOT CLICK

FINISH YET! Click "Next", and in the following panel select "Empty project",

and then click "Finish".

Now you have an empty project.

If the project you want to work on has already been created (the normal case), you can

open it by selecting it from the "Start page" if it appears there or “Open Project/Solution”

from the “File” tab:

 File -> Open -> Project/Solution…
Note, “Open -> Project/Solution…” is different than “Open -> File”. The latter simply

opens one file for editing. You must open the entire workspace, which includes all of the

files you entered plus all the files C++ created when you created the project and compiled

the files in it. If the project you want is one that you worked on recently, you may find it

quickly in the “Recent Projects” option under the “File” tab.

Adding files to the project

Make sure the "Solution Explorer" tab in the left-hand panel is selected. In this panel you

should see a tree-like list with three folders – Header Files, Resource Files, and Source

Files.

What is needed next is a file or files where you write your program (the source code and,

in later assignments, your header files).

 Highlight either "Header files" or "Source files" and right click.

 In the Add menu you can select "New item …" or "Existing item…" Use the

latter if you have already created the file in a different editor and now want to

make it part of this project. Select "New item …" to create a new item.

 For a new item select either "Header file" or "C++ file".

 In the lower section of the window give it a USEFUL name and click on "Add".

That dialog box looks as follows:

You are ready to write your first program! If you have to create other files for this project

then just repeat the above step. That‟s the easiest way to create and add new, empty files

to your project.

You can also add files that you have already created elsewhere or downloaded (for

example, from Blackboard). Point the mouse to one of the three folders in the “File

view” panel at the left, right click, and select “Add" and then "Existing item …". You

can then browse to locate the existing file you want to add.

You can remove a file from the project by right clicking on the file and selecting

"Remove".

Typing in the program

The Visual C++ editor has the standard features of text editors plus some special features

that help you enter C++ code in a visually effective style. The major additional feature is

automatic indentation. As you type statement brackets („{„ and „}‟) the editor

automatically indents or un-indents to make the visual layout of the text match the

standard for C++ programs. For example, suppose on one line you type

 if(x<0) {

The editor will indent the following lines until the matching „}‟ is encountered. For

example.

 if(x<0) {

 cout << “Error: x was negative”;

 return;

 }

This leads to programs that are easier to read because the extent of the block is easy to

identify. In addition, you can use this feature to verify that your brackets are balanced.

One of the most common errors in typing programs is to forget the closing bracket for a

block.

Another useful feature in the C++ editor is the use of color. Tokens that are built in to

C++ appear in color, typically blue. These color-coded tokens include the basic data

types (int, char, etc.), the main control operators (if, while, do, switch), and others. This

feature, again, makes reading the program easier and also allows you to verify that you

have spelled these words correctly. Comments are also displayed in color, normally

green.

Another useful feature is the “Find in Files…” search operation under the “Edit” tab:

 Edit -> Find and replace -> Find in Files

 Use this to find all occurrences of a search string in your project. By the end of the

quarter you will have a project with many files and hundreds of lines of code. This

feature makes finding something in all that text quite easy.

You can shrink compound statements by clicking on the small minus sign (-) on the left

margin next to the control keyword. This abbreviates the entire structure on a single line.

This is useful in two ways. The original intent was to allow the user to shrink sections of

code in a large file that were not of immediate interest to the programmer. For example,

a section of code near the beginning of the main function that had already been debugged

could be shrunk so that the programmer's focus could be directed to newer sections of

code that still needed to be tested. The potential danger in doing this is that some section

in the shrunk code might be relevant to the lines of code being tested. A second use for

this feature is to check the balance of curly brackets. The user can shrink a structure and

see the all the lines the user believed to belong to that structure were, indeed, shrunk.

Any shrunk structure can be expanded again by clicking on the plus sign that corresponds

to the minus sign used to shrink the section.

How do you compile, run and test your program?

If you‟re done with your program and want to test if it compiles and runs, use the

operations under the “Build” and "Debug" tabs.

To check if a cpp file in your project has syntactic errors, such as typing errors, select the

file you want (click on its tab if it is open or highlight it in the file panel on the left) and

select “Compile …” from the “Build” tab.

 Build -> Compile

The C++ compiler will attempt to translate your source code into a so-called “object” file.

If there are syntactical errors, these will be reported in the panel at the bottom of the

screen. NOTE: The absence of syntactic errors does not mean your program will

produce the correct results, only that you have not misspelled words or left out a

bracket or a variety of other typographical mistakes. If you double-click on an error,

the editor will move to the line in your file where the compiler recognized that a problem

exists. Note, this is often one or more lines past where the actual error occurs. For

example, if you forget to type “;” at the end of one line, C++ will not recognize that until

it encounters the next non-blank, non-comment character.

When there are no more compiler errors and you are ready to test your program, select

one of the following from the "Debug" tab:

 Debug -> Start Without Debugging – to (re)build your project and run

 without debugging, i.e., normal execution.

 Debug -> Start Debugging – to (re)build your project and run to the first

 breakpoint in your program files.

 Debug -> Step Into – to (re)build your project and have the debugger step into

 the first statement of the main function and then wait for additional

 commands.

If any of the files in the project have been changed since the last execution C++ will tell

you that the exe file does not exist and asks you if you want to create it. Click OK. C++

then compiles any out-of-date files in your project, links the object files together with

other libraries on the computer and executes or steps into the resulting application. Any

errors in the compilation of any out-of-date files or in the linking process are reported in

the panel at the bottom. If there are no errors, your program should begin to execute. A

window will normally pop up, and you enter input through this window and see the

results of your output in this window. When your program reaches the end and is ready

to terminate, the system will display “Press and key to continue” and wait for you to

press a key. This allows you to see the output from your program before the window

disappears. (Note, for systems that close the window immediately without waiting, you

can add a prompt and input at the end of the main function, just before the return

statement. For example, input an integer. You program will wait until you actually enter

data.)

Using the Debug Features

An important and very helpful feature of modern integrated systems is the debugger. The

debugger lets you execute your program one statement or a group of statements at a time

and then look at and possibly modify the results before continuing. You can set a

breakpoint, a line where the debugger will stop, by clicking in the gray vertical line at the

left side of the cpp file; you can remove the breakpoint by clicking on it. You can have

the system execute your program until it reaches a breakpoint. For complicated sections

of code, you can have the debugger execute one line at a time so you can watch the

program's progress very closely. These execution options are available on the "Debug"

tab and the corresponding F keys. When debugging, variables in the current scope of

execution will be displayed in the panel at the lower left, and you can view and modify

their values. Modify the value of a variable by right clicking on the value field and

selecting "Edit value".

When you have finished one debugging session and want to make changes to your code,

if your program did not terminate in the debugger execution mode you must select "Stop

Debugging" from the "Debug" tab.

