
 1

EECS 211

Introduction to Compiling and Linking

 The transformation of a set of C++ source and header files into an executable file

requires many steps. This document provides a brief overview of those steps to help you

understand the various commands you yourself have to issue in order to run and test your

programs.

Compiling, Linking, and Building a Program

 The process of transforming a set of text files containing C++ code into an

executable file is called “building”. Because the code for the project may be spread

across many C++ code and header files, building a project involves many smaller steps.

The one most commonly thought of is compiling (translating a single C++ file into

machine instructions). But there are other steps as well – pre-processing and linking.

This section briefly describes what happens in each of these steps.

 A compiler is a special program that processes statements written in a particular

programming language and turns them into machine language or "code" that a computer's

processor uses and can understand. Typically, a programmer writes language statements

in a language, such as C++, using an editor. The file that is created (filename.cpp in the

C++ language) contains what are generally called the source or high-level programming

statements. The programmer then runs the appropriate language compiler (such as C++),

specifying the name of the file that contains the source statements. The job of the

compiler, then, is to take that source file (cpp file), check it line by line for possible

syntax errors, and transform it into a corresponding sequence of machine-level

instructions. Note that each type of computer processor has it‟s own set of machine

instructions. Thus, there is not a single C++ compiler but rather a compiler for each

target hardware platform.

Figure 1. Compiling a Single C++ File

C++ compiler

#include <iostream>
using namespace std;

int main()
{
 cout >> “Helloworld”;
 return 0;
}

Jbeoq4ob23230232
ohqwegoihq240tyq2
hqhg0qh4gq-
h40qhg0aqwh4t024
yt024tq0ghqhg[ajfsh
gqa3402y2gahg02y
y3oshag2ywhqt2

 Machine readable

language

(executable file)

Human readable

language (source file)

helloworld.cpp helloworld

 2

 Compiling a C++ file doesn't produce an executable file! The program described

in the C++ file would likely have included calls to functions in the operating system API

(Application Programming Interface), such as I/O functions, or to built-in functions of the

language, such as math functions. The file produced by the compiler is called an “object

file”. In addition to the machine instructions corresponding to the (transformed) lines of

C++ code it contains references to these various externally defined functions. It is not in

executable form by itself but must have these externally defined functions added, or

“linked”, into it. A more complete description of the process is given in Figure 2:

Figure 2. Compiling and Linking a Project in a Single C++ File

In addition to the source (cpp) files, which contain executable statements, there are

also header (.h) files. Header files normally contain only declarations. Before

“compilation” takes places, an additional step must be performed: “preprocessing”. The

preprocessor program reads the source file as text and produces another text file as

output. Source code lines which begin with the special character „#‟ are actually written

not in C++ itself, but in preprocessor language. Based on these statements, the

preprocessor makes substitutions of one character string for another, substitutes the text

of a header file for #include statements, and even expands some function calls into other

text. This additional step is shown in Figure 3.

Figure 3: Preprocessing step in the building operation

Source File

(filename.cpp)
 Compiler Linker

Object File

(filename.o)

Executable
File

(filename)

Library
Modules

<iostream>

<fstream>

Source File

(filename.cpp)

Header File

(filename.h)

 Compiler Linker

Object File

(filename.o)

Executable

File

(filename)

Library
Modules

<iostream>

<fstream>

 Preprocess

“Building” the program

 3

 Most projects have the code in a set of C++ and header files. This keeps the files

of a more manageable size and allows the code to be “modularized‟, that is, to be split up

into smaller segments with each segment containing only closely related code such as the

implementation of a class or a set of related utility functions. In order to build such a

project, each C++ file must be compiled and the object files then linked together with the

library functions. Each compilation step, of course, involves a preprocessing step in

which the # instructions are performed to modify the text of the file. Figure 4 shows the

build process for a multi-file project.

Figure 4: Building a Multi-file Project

Compiling/Linking vs. Testing/Debugging

 Just because a project builds does not mean that the program is correct, that is,

that the program does what it‟s supposed to do. A successful build only means that the

compiler did not find any syntactical errors in any of the C++ files and that the linker was

able to resolve all external references. The program must be tested, and any errors that

are found must be fixed.

Source File

(filename1.cpp)

Header File

(filename1.h)

 Compiler

 Linker

Object File

(filename1.o)

Executable

File

(filename)

C++ Libraries

.lib
<iostream>

<fstream>

 Preprocess

Header File

(filenamen.h)

 Compiler

Object File

(filenamen.o) Preprocess

Source File

(filenamen.cpp)

… … … …

 4

 Testing is the process of running the program on test input cases for which the

correct behavior or output is known. There are well-developed theories and practices for

designing good test sets. Some of the more common considerations are:

 Natural boundaries in the data. For example, if legal test scores are 0-100

inclussive, then the program should be tested with inputs of –1, 0, 1, 99, 100, and

101 as well as some other values away from these borders.

 Iterations performed correct number of times. For example, if a loop is supposed

to execute N times, be sure that it doesn‟t execute N-1 or N+1 times. If a loop is

terminated by a sentinal value, make sure the sentinal value does not get included

with the valid data and that the last valid datum does get included.

 Debugging is both the finding and fixing of errors. It involves testing, of course,

but then also includes changing the code to fix the errors that are found. There are two

main methods of debugging. The first method involves straightforward execution of the

program followed by an analysis of the results. For each incorrect result the source code

is examined to see what that error was made. It is interesting to note that test cases are

often designed to help pinpoint where certain kinds of errors might occur. The second

method is to use a special feature of moden compiler systems, called “the debugger”, to

step through the program, in some cases, line by line. Debuggers allow the programmer

to see exactly how the program processes an input, to stop the program at virtually any

point, and to examine and even change intermediate values of variables in the code.

Visual C++ and other “integrated” C++ systems

 Visual C++ is an “integrated” system, which means that the user can create and

edit files, compile individual files, build the project and execute in normal mode or debug

mode, all from within the same application. Like most WINDOWS applications, there is

a command bar across the top of the screen. When a “Windows console” application is

opened or created. A frame on the left side of the window is created in which the user

can view the parts of the project in either “class” view or “file” view. In EECS 231,

probably the most convenient mode is file view. In file view, the user can add source

files, header files and other files to be used in the project (e.g., external DLLs, etc.). By

double clicking a file, the user can open the file in the Visual C++ editor. The currently

active file can be compiled. The project can be built and executed. During execution or

debugging, a new window is opened in which the user types standard input (cin) and sees

standard output (cout). If the user specifies debugging instead of normal execution,

various other windows open up inside the Visual C++ frame which allow the user to

specifiy execution (execute one line, step into a function, run to the next breakpoint, etc.)

and to view and modify variables in the program.

 5

The GCC/C++ compiler

 GCC stands for “GNU Compiler Collection”. As its name states, GCC is a

collection of compilers for several programming languages, and C++ is just one of them.

That‟s why the GNU C++ compiler is referred to as the GCC/C++ compiler. GCC is the

standard C/C++ compiler on UNIX-style systems.

 As with most UNIX utilities, a compiler in the GCC collection is invoked by

typing a command line to the shell. GCC assumes the files will be in the current working

directory, so before invoking a GCC compiler the user must navigate to the directory

containing the files.

 Once you are in the correct directory, the simplest way to compile a single C++

file, say filename.cpp, is by typing the following command at the prompt:

g++ filename.cpp

GCC attempts to perform all three steps in the build process – preprocess, compile, and

link. If the source code had no errors in it (i.e., no syntactic errors or unresolved external

references), the command above will create an executable file in the working directory

called filename.out. To actually run the program, simply type at the command prompt

./filename.out. NOTE: Header files are NOT included on the command line; the

preprocessor will find and process them automatically.

 If your program does have syntax errors, no .out file will be created. Instead, the

compiler will generate informative messages telling what errors it found and on which

lines of the file they were found. For example, if it displays the following message:

%mumbo> g++ filename.cpp

filename.cpp: In function main()

filename.cpp: 4: ‘i' undeclared (first use of this function)

%mumbo>

it means that in the function main() of your program, at line #4, your program uses the

variable „i‟ whose type was never specified before.

The GCC compiler accepts several additional options. Here are the most common ones.

-ggdb:
g++ -ggdb filename.cpp

The -ggdb option includes extra information in the .out file to allow that file to be

"debugged" using the GDB debugger.

 6

-Wall
g++ -Wall filename.cpp

The -Wall flag instructs the compiler to display ALL the warning messages you may

get that describe possible errors in your source code. If warnings are the only

messages you receive when you compile your source code, an executable will still be

created. Only if there are ERROR messages will an executable not be created. GCC,

like many C++ systems, will attempt to fix or overlook small differences with the

standard C/C++ syntax. Sometimes this is ok because the fix is what you meant

anyway. Other times the warning indicates something the programmer truly forgot or

did wrong. Using –Wall will allow you to detect such warnings ahead and decide if

they are really errors or not.

-c

Compile the source files, but do not link. The linking stage simply is not done. The

ultimate output is in the form of an object file for each source file. By default, the

object file name for a source file is made by replacing the suffix .cpp with .o. This

option is useful when working in a multi-file project but working on one of the cpp

files. It allows you to check for typos and syntax errors in that file without trying to

build the whole project.

-o

The -o flag is one of the more useful ones. This flag will allow you to rename the

executable file from something other than filename.out. To use the -o option, place

it after the source code file(s) and other options, followed by the name you wish to

give the executable. For example, to compile a source code file named filename.cpp

into an executable file called myproject, or myproject.exe type the following

command:

g++ filename.cpp -o myproject

Doing so will create the executable myproject that you would type at the command

prompt to run your program.

It is possible to use more than one flag at once when you compile. Except for the –o

option, most options are typed after the g++ command and before the list of source files.

For example, let's say you entered the following g++ command:

g++ -ggdb -Wall filename.cpp -o filename

This command will compile the source code file filename.cpp, include the necessary

information so that the executable can be used with the GDB debugger (-ggdb), will show

 7

all warning messages when compiled (-Wall), and will create the executable into a file

called myproject (-o myproject).

 As previously noted, most C++ programs are contained in several source and

header files. GCC allows the user to build the entire project in one command by

processing multiple source files on the line. (Remember, header files are NOT listed on

the command line.) The format is:

 g++ [options] source_file_1 source_file_2 source_file_3...

If the –o option is not used, the executable file will be given the same name as the last

source file. For example, suppose a program is contained in 3 files: project.cpp

contains the main() function, functions.h contains the prototypes for functions that

your program uses, and functions.cpp contains the implementations for those

functions. To compile these 3 files into one executable, type at the prompt:

g++ functions.cpp project.cpp

The above command will then compile the two source files and create one executable

called project.out. Finally, just as with single-file programs, you can add options flags

when you compile:

g++ -ggdb -Wall functions.cc project.cc -o myproject

This command will compile the two source files functions.cc and project.cc so that

the executable can be used with the GDB debugger (-ggdb), all compilation warnings will

be displayed (-Wall), and the executable file will be called myproject (-o myproject).

