Lecture 8:
Control Statements (cont)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 9, 2010

4.6 17...21se Double-Selection
Statement

1f...else double-selection statement
— specifies an action to perform when the condition is true and a different action
to perform when the condition is false.
The following pseudocode prints “Passed” if the student’s grade 1s
greater than or equal to 60, or “Failed” if the student’s grade is less than
60.

—If student’s grade is greater than or equal to 60
Print “Passed”

Else
Print “Failed”

In either case, after printing occurs, the next pseudocode statement in
sequence 1s “performed.”

The preceding pseudocode If... Else statement can be written in C++ as

if (grade >= 60)
cout << "Passed";

else _
cout << "Failed";

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

[grade < 60] [grade >= 60)]
N\ =

~@~<

Fig. 4.5 | if..el1se double-selection statement activity diagram.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

« Nested If...else statements test for multiple cases by
placing 1f...e1se selection statements inside other
1f...else selection statements.

—If student’s grade is greater than or equal to 90
Print “A”
Else
If student’s grade is greater than or equal to 80
Print “B”
Else
If student’s grade is greater than or equal to 70
Print “C”
Else
If student’s grade is greater than or equal to 60
Print “D”
Else
Print “F”

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

4.6 17...e1se Double-Selection
Statement (cont.)

« This pseudocode can be written in C++ as
iﬁ"(studentGrade >= 90) // 90 and above gets

: cout << "A";
else
if (studentGrade >= 80) // 80-89 gets "B"
] cout << B,
else
if (studentGrade >= 70) // 70-79 gets "C"
1Sgout << "'c";
e
1f (studentGrade >= 60) // 60-69 gets

cout << "D";
else // less than 60 gets "F"
cout << F
« If studentGrade is greater than or equal to 90, the first four
conditions are true, but only the output statement after the first
test executes. Then, the program skips the e 1 se-part of the
“outermost” 1T...e1se statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

4.6 17...e1se Double-Selection
Statement (cont.)

Most write the preceding 1T...e1se statement as

e if (studentGrade >= 90) // 90 and above gets
IIAII
cout << "A"

else if (studentGrade >= 80) // 80-89 gets "B"
cout << "B"

else if (studentGrade >= 70) // 70-79 gets "C"
cout << "C"

else if (studentGrade >= 60) // 60-69 gets "D"
cout << '"D"

else // less than 60 gets "F"
cout << "F";

The two forms are identical except for the spacing and
Indentation, which the compiler ignores.

The latter form is popular because it avoids deep indentation of
the code to the right, which can force lines to wrap.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

4.6 1T...e1se Double-Selection
Statement (cont.)

« The C++ compiler always associates an e 1 se with the
immediately preceding 1T unless told to do otherwise by
the placement of braces ({ and }).

» This behavior can lead to what’s referred to as the dangling-

else problem.
eif (x> 5)
if (y > 5)
cout << "x and y are > 5";
else
cout << "'x 1s <= 5";
appears to indicate that if x is greater than 5, the nested 1T

statement determines whether y is also greater than 5.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

The compiler actually interprets the statement as
e if (x> 5)

if Cy > 5)
cout << "x and y are > 5";
else

cout << "x i1s <= 5";

To force the nested 1 T...else statement to execute as intended,
use:

o'-i[f(X>5)
if Cy > 5)
, cout << "x and y are > 5";
else

cout << "x is <= 5";

Braces ({ }) indicate that the second 1 f statement is in the bod
of the first 1 f and that the e1se is associated with the first 1 f.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

4.6 1T...else Double-Selection
Statement (cont.)

» Just as a block can be placed anywhere a
single statement can be placed, 1t’s also
possible to have no statement at all—called a
null statement (or an empty statement).

« The null state-ment is represented by placing a
semicolon (;) where a statement would
normally be.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

4.7 wh1ile Repetition Statement

A repetition statement (also called a looping statement or a
loop) allows you to specify that a program should repeat an
action while some condition remains true.

— While there are more items on my shopping list
Purchase next item and cross it off my list

* “There are more items on my shopping list” 1s true or false.

— If true, “Purchase next item and cross it off my list” 1s performed.
» Performed repeatedly while the condition remains true.
— The statement contained in the While repetition statement

constitutes the body of the While, which can be a single statement
or a block.

— Eventually, the condition will become false, the repetition will
terminate, and the first pseudocode statement after the repetition
statement will execute.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10

4.7 wh11le Repeiition Statement (cont.)

» Consider a program segment designed to find the first
power of 3 larger than 100. Suppose the integer
variable product has been initialized to 3.

« When the following wh1 1e repetition statement

finishes executing, product contains the result:
e int product = 3;

while (product <= 100)
product = 3 * product;

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

Common Programming Error 4.5

Not providing, in the body of a whi 1e statement, an ac-
tion that eventually causes the condition in the while to
become false normally results in a logic error called an in-
finite loop, in which the repetition statement never ter-
minates. 1his can make a program appear to “hang” or
“freeze” if the loop body does not contain statements that
interact with the user.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

A
merge ~_ _
/—‘-n-
decisi k
easion ~ . _ N [product <= 100]
~ / >
[product > 100] R S
. LY
Corresponding C++ statement:
product = 3 * product;

Fig. 4.6 | while repetition statement UML activity diagram.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

Formulating Algerithims: Counters-
Conirolled Repetition

 Consider the following problem statement:

— A class of ten students took a quiz. The grades (integers in
the range 0 to 100) for this quiz are available to you.

Calculate and display the total of all student grades and the
class average on the quiz.

« The class average is equal to the sum of the grades
divided by the number of students.

« The algorithm for solving this problem on a computer

must input each of the grades, calculate the average
and print the result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

4.8 Formulating Algorithims: Counter-
Controlled Repetition (cont.)

« \We use counter-controlled repetition to input
the grades one at a time.

— This technique uses a variable called a counter to
control the number of times a group of statements
will execute (also known as the number of
iterations of the loop).

— Often called definite repetition because the number
of repetitions Is known before the loop begins exe-
cut-ing.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

Software Engineering Observation 4.3
Experience has shown that the most difficult part of
solving a problem on a computer is developing the
algorithm for the solution. The process of producing a

working C++ program from the algorithm is typically
straightforward.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

16

Set total to zero
Set grade counter to one

While grade counter is less than or equal ro ten
Prompt the user to enter the next grade
Input the next grade
Add the grade into the total
Add one to the grade counter

O~NonNnh WN =

10 Set the class average to the total divided by ten
L1 Print the total of the grades for all students in the class
12 Print the class average

Fig. 4.7 | Pseudocode for solving the class average problem with counter-controlled
repetition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17

4.8 Formulating Algorithms: Counters-
Controlled Repetition (cont.)

« A total i1s a variable used to accumulate the sum of
several values.

« A counter is a variable used to count—in this case,
the grade counter indicates which of the 10 grades Is
about to be entered by the user.

 Variables used to store totals are normally initialized
to zero before being used in a program; otherwise, the
sum would in-clude the previous value stored in the
total’s memory location.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage()
{
cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
<< endl;
} // end function displayMessage

// determine class average based on 10 grades entered by user
void GradeBook::determineClassAverage()
{
int total; // sum of grades entered by user
int gradeCounter; // number of the grade to be entered next
int grade; // grade value entered by user
int average; // average of grades

// initialization phase
total = 0; // initialize total
gradeCounter = 1; // initialize loop counter

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook
source code file. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

53
54
55
56
37
38
39
60
61
62
63
64
65
66
67
68

// processing phase
while (gradeCounter <= 10) // loop 10 times
{
cout << "Enter grade: "™; // prompt for input
cin >> grade; // input next grade
total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter by 1
} // end while

// termination phase

average = total / 10; // integer division yields integer result

// display total and average of grades
cout << "\nTotal of all 10 grades is " << total << endl;
cout << "Class average is " << average << endl;

} // end function determineClassAverage

Fig. 4.9 | Class average problem using counter-controlled repetition: GradeBook
source code file. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

4.8 Formulating Algerithims: Counter-
Controlled Repetition (cont.)

« Counter variables are normally initialized to zero or
one, depending on their use.

 An uninitialized variable contains a “garbage” value
(also called an undefined value)—the value last
stored in the memory location reserved for that
variable.

e The variables grade and average (for the user
Input and calculated average, respectively) need not
be 1initialized before they’re used—their values will
be assigned as they’re input or calculated later in the
function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

Common Programming Error 4.6
Not initializing counters and totals can lead to logic er-
rors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

Error-Prevention Tip 4.2

Initialize each counter and total, either in its declara-
tion or in an assignment statement. 1otals are normally
initialized to 0. Counters are normally initialized to 0
or 1, depending on how they’re used.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23

m Good Programming Practice 4.7
Declare each variable on a separate line with its own
comment for readability.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

4.8 Formulating Algorithims: Counter-
Controlled Repetition (cont.)

» The averaging calculation performed in
response to the function call in line 12 of
Fig. 4.10 produces an integer result.

 Dividing two integers results in integer

division—any fractional part of the calculation
IS lost (i.e., truncated).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

Common Programming Error 4.7

Assuming that integer division rounds (rather than trun-
cates) can lead to incorrect results. For example, 7 + 4,
which yields 1.75 in conventional arithmetic, truncates
to 1 in integer arithmetic, rather than rounding to 2.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

4.9 Formulating Algerithms: Sentinel-
Controlled Repetition

* Let’s generalize the class average problem.

— Develop a class average program that processes grades for an
arbitrary number of students each time it’s run.

» The program must process an arbitrary number of grades.
— How can the program determine when to stop the input of grades?

« Can use a special value called a sentinel value (also called a
signal value, a dummy value or a flag value) to indicate
“end of data entry.”

 Sentinel-controlled repetition is often called indefinite
repetition
— the number of repetitions is not known in advance.

« The sentinel value must not be an acceptable input value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

Common Programming Error 4.9
Choosing a sentinel value that is also a legitimate data
value is a logic error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

O~NonNnh WN =

L]

10
11
12

Initialize total to zero
Initialize counter to zero

Prompt the user to enter the first grade
Input the first grade (possibly the sentinel)

While the user has not yet entered the sentinel

Adld this grade into the running total
Add one to the grade counter

Prompt the user to enter the next grade
Input the next grade (possibly the sentinel)

13 [f the counter is not equal to zero

14 Set the average to the total divided by the counter

15 Print the total of the grades for all students in the class

16 Print the class average

17 else

18 Print “No grades were entered”
Fig. 4.11 | Class average problem pseudocode algorithm with sentinel-controlled
repetition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

29

Common Programming Error 4.10
An attempt to divide by zero normally causes a fatal run-

time error.

Error-Prevention Tip 4.3

When performing division by an expression whose value
could be zero, explicitly test for this possibility and han-
dle it appropriately in your program (such as by printing
an error message) rather than allowing the fatal error to
occur.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

4.9 Formulating Algorithims: Sentinel-
Controlled Repetition (cont.)

« An averaging calculation is likely to produce a number with
a decimal point—a real number or floating-point number
(e.g., 7.33, 0.0975 or 1000.12345).

- Type 1nt cannot represent such a number.

 C++ provides several data types for storing floating-point
numbers in memory, including float and double.

« Compared to f1oat variables, doub1e variables can
typically store numbers with larger magnitude and finer
detail

— more digits to the right of the decimal point—also known as the
number’s precision.

- Cast operator can be used to force the averaging calculation
to produce a floating-point numeric result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

COVOO~NOGOWVNLEWN =

oO~NONDh WN -

19
20
21
22

// Fig. 4.13: GradeBook.cpp

// Member-function definitions for class GradeBook that solves the
// class average program with sentinel-controlled repetition.
#include <iostream>

#include <iomanip> // parameterized stream manipulators

#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument
GradeBook: :GradeBook(string name)
{
setCourseName(name); // validate and store courseName
1 // end GradeBook constructor

// function to set the course name;

// ensures that the course name has at most 25 characters

void GradeBook::setCourseName(string name)

{
if (name.length() <= 25) // if name has 25 or fewer characters

courseName = name; // store the course name in the object

else // if name 1is longer than 25 characters
{ // set courseName to first 25 characters of parameter name

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook
source code file. (Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

32

42
43
44
45
46
47
48
49
50
51
52
53

// determine class average based on 10 grades entered by user
void GradeBook::determineClassAverage()

{

int total; // sum of grades entered by user

int gradeCounter; // number of grades entered

int grade; // grade value

double average; // number with decimal point for average

// initialization phase
total = 0; // initialize total
gradeCounter = 0; // initialize loop counter

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook
source code file. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

33

54
55
56
57
58
39
60
61
62
63
64
65
66
67
68
69

// processing phase
// prompt for input and read grade from user

cout << "Enter grade or -1 to quit: ";

cin >> grade; // input grade or sentinel value

// Toop until sentinel value read from user
while (grade != -1) // while grade is not -1

{

total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user

cout << "Enter grade or -1 to quit: ";
cin >> grade; // input grade or sentinel value

Y // end while

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook
source code file. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34

70 // termination phase

71 if (gradeCounter != 0) // if user entered at least one grade...

72 {

73 // calculate average of all grades entered

74 average = static_cast< double >(total) / gradeCounter;

75

76 // display total and average (with two digits of precision)

77 cout << "\nTotal of all " << gradeCounter << " grades entered is "
78 << total << endl;

79 cout << "Class average is " << setprecision(2) << fixed << average
80 << endl;

81 Y} // end if

82 else // no grades were entered, so output appropriate message

83 cout << "No grades were entered” << endl;

84 } // end function determineClassAverage

Fig. 4.13 | Class average problem using sentinel-controlled repetition: GradeBook
source code file. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

4.9 Formulating Algorithims: Sentinel-
Conirolled Repetition (cont.)

« The call to setprecision in line 79 (with an argument of 2)
indicates that doub 1 e values should be printed with two
digits of precision to the right of the decimal point (e.g.,
92.37).

— Parameterized stream manipulator (argument in parentheses).
— Programs that use these must include the header <iomanip>.

« end]l is a nonparameterized stream manipulator and does not
require the <1omanip> header file.

« |If the precision is not specified, floating-point values are
normally output with six digits of precision.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (cont.)

 Stream manipulator fixed indicates that floating-point
values should be output in fixed-point format, as
opposed to scientific notation.

 Fixed-point formatting is used to force a floating-
point number to display a specific number of digits.

« Specifying fixed-point formatting also forces the
decimal point and trailing zeros to print, even if the
value iIs a whole number amount, such as 88.00.

— Without the fixed-point formatting option, such a value
prints in C++ as 88 without the trailing zeros and decimal
point.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

4.9 Formulating Algorithms: Sentinel-
Conirolled Repetition (cont.)

» When the stream manipulators f1xed and
setprecision are used in a program, the
printed value Is rounded to the number of decimal
positions indicated by the value passed to
setprecision (e.g., the value 2 in line 79),
although the value in memory re-mains unaltered.

* It’s also possible to force a decimal point to
appear by using stream manipulator showpoint.

— If showpo1int is specified without 1 xed, then
trailing zeros will not print.

— Both can be found in header <i1ostream>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

Welcome to the grade book for
CS101 C++ Programming

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of all 3 grades entered 1is 257
Class average is 85.67

Fig. 4.14 | Class average problem using sentinel-controlled repetition: Creating a
GradeBook object and invoking its determineClassAverage member function. (Part
20f2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

39

4.9 Formulating Algorithms: Sentinel-
Controlled Repetition (cont.)

 Notice the block in the wh1 Te loop in Fig. 4.13.

« Without the braces, the last three statements in the
body of the loop would fall outside the loop,

causing the computer to interpret this code
Incorrectly, as follows:

/4_1oop until sentinel value read from user
while (1grade = -1)

total = total + grade; // add grade to total
gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
cout << "Enter grade or -1 to quit: ";
cin >> grade;

 This would cause an infinite loop in the program

If the user did not input —1 for the first grade (in
line 57).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

Common Programming Error 4.11

Omitting the braces that delimit a block can lead to logic
errors, such as infinite loops. To prevent this problem,
some programmers enclose the body of every control state-
ment in braces, even if the body contains only a single

statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41

4.9 Formulating Algorithims: Sentinel-
Controlled Repetition (cont.)

 Variables of type float represent single-precision
floating-point numbers and have seven significant digits on
most 32-bit systems.

 Variables of type doub1e represent double-precision
floating-point numbers.

— These require twice as much memory as float variables and
provide 15 significant digits on most 32-bit systems

— Approximately double the precision of f1oat variables

« C++ treats all floating-point numbers in a program’s source
code as doub1e values by default.

— Known as floating-point constants.
 Floating-point numbers often arise as a result of division.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

Common Programming Error 4.12

Using floating-point numbers in a manner that assumes
they re represented exactly (e.g., using them in compari-
sons for equality) can lead to incorrect results. Floating-
point numbers are represented only approximately.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

44

