Lecture 9:
Control Statements (cont)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 12th, 2010

4.9 Formulating Algorithims: Sentinel-
Controlled Repetition (cont.)

« The variable average is declared to be of type double
to capture the fractional result of our calculation.

« total and gradeCounter are both integer variables.

 Recall that dividing two integers results in integer division,
In which any fractional part of the calculation is lost (i.e.,
truncated).

* In the following statement the division occurs first—the
result’s fractional part is lost before 1t’s assigned to
average:

e average = total / gradeCounter;

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

4.9 Formulating Algorithims: Sentinel-
Controlled Repetition (cont.)

« To perform a floating-point calculation with integers,
create temporary floating-point values.

» Unary cast operator accomplishes this task.

* The cast operation
static_cast<double>(total) creates a
temporary floating-point copy of its operand in
parentheses.

— Known as explicit conversion.
— The value stored in total is still an integer.

 An alternative cast operation: (double) (total)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

4.9 Formulating Algerithms: Sentinel-
Controlled Repetition (cont.)

 The calculation now consists of a floating-point value
divided by the integer gradeCounter.

— The compiler knows how to evaluate only expressions in
which the operand types of are identical.

— Compiler performs promotion (also called implicit
conversion) on selected operands.

— In an expression containing values of data types 1nt and
double, C++ promotes 1nt operands to doub1e values.

 Cast operators are available for use with every data
type and with class types as well.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

4,10 Formulating Algorithms: Nested
Control Statements

« Consider the following problem statement:

— A college offers a course that prepares students for the state licensing
exam for real es-tate brokers. Last year, ten of the students who
completed this course took the exam. The college wants to know how
well 1ts students did on the exam. You’ve been asked to write a
program to summarize the results. You’ve been given a list of these 10
students. Next to each name is written a 1 if the student passed the
exam or a 2 if the student failed.

— Your program should analyze the results of the exam as follows:

— 1.Input each test result (i.e., a 1 or a 2). Display the prompting message
“Enter result” each time the program requests another test result.

— 2.Count the number of test results of each type.

— 3.Display a summary of the test results indicating the number of
students who passed and the number who failed.

— 4.1f more than eight students passed the exam, print the message
“Bonus to instructor!”

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

4.10 Formulating Algorithims: Nested

Control Statements (cont.)

 After reading the problem statement carefully, we make the
following observations:

Must process test results for 10 students. A counter-controlled loop
can be used because the number of test results is known in advance.

Each test result is a number—either a 1 or a 2. Each time the
program reads a test result, the program must determine whether the
numberisa 1l ora 2. We test for a 1 in our algorithm. If the number
is not a 1, we assume that it’s a 2. (Exercise 4.20 considers the
consequences of this assumption.)

Two counters keep track of the exam results—one to count the
number of students who passed and one to count the number of
students who failed.

After the program has processed all the results, it must decide
whether more than eight students passed the exam.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

| Initialize passes to zero
2 [nitialize failures to zero
3 [nitialize student counter to one
4
5 While student counter is less than or equal to 10
6 Prompt the user to enter the next exam result
7 Input the next exam result
8
9 If the student passed
10 Add one to passes
1 Else
12 Add one to failures
13
14 Add one to student counter
15
16 Print the number of passes
17 Print the number of failures
18
19 [f'more than eight students passed
20 Print “Bonus to instructor!”

Fig. 4.15 | Pseudocode for examination-results problem.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

VoOo~NoNNDE WN =—

10
11
12
13
14
15
16
17
18
19
20

// Fig. 4.16: fig04_16.cpp

// Examination-results problem: Nested control statements.
#include <iostream>

using namespace std;

int main()
{
// initializing variables in declarations
int passes = 0; // number of passes
int failures = 0; // number of failures
int studentCounter = 1; // student counter
int result; // one exam result (1 = pass, 2 = fail)

// process 10 students using counter-controlled Toop
while (studentCounter <= 10)
{

// prompt user for input and obtain value from user

cout << "Enter result (1 = pass, 2 = fail): ";
cin >> result; // input result

Fig. 4.16 | Examination-results problem: Nested control statements. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21 // if...else nested in while

22 if (result == 1) // if result is 1,

23 passes = passes + 1; // increment passes;

24 else // else result is not 1, so
25 failures = failures + 1; // increment failures

26

27 // increment studentCounter so loop eventually terminates
28 studentCounter = studentCounter + 1;

29 } // end while

30

31 // termination phase; display number of passes and failures
32 cout << "Passed " << passes << "\nFailed " << failures << endl;
33

34 // determine whether more than eight students passed

35 if (passes > 8)

36 cout << "Bonus to instructor!" << endl;

37 } // end main

Fig. 4.16 | Examination-results problem: Nested control statements. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

result
result
result
result
result
result
result
result
result
result

Passed 9
Failed 1
Bonus to instructor!

(1
(1
(1
(1
(1
(1
(1
(1
(1
(1

pass,
pass,
pass,
pass,
pass,
pass,
pass,
pass,
pass,
pass,

NMNNNNNNNNN

fail):
fail):
fail):
fail):
fail):
fail):
fail):
fail):
fail):
fail):

L el)

Fig. 4.16 | Examination-results problem: Nested control statements. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10

4.10 Formulating Algorithims: Nested
Control Statements (cont.)

« C++ allows variable initialization to be
Incorporated into declarations.

« The 1T...else statement (lines 22-25) for
processing each result is nested in the whi 1e
statement.

« The 1T statement in lines 35-36 determines
whether more than eight students passed the
exam and, if so, outputs the message "Bonus
to instructor!’.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

4.11 Assignment Operaiors

C++ provides several assignment operators for abbreviating assignment
expressions.

The += operator adds the value of the expression on the right of the
operator to the value of the variable on the left of the operator and
stores the result in the variable on the left of the operator.

Any statement of the form
« variable = variable operator expression;

In which the same variable appears on both sides of the assignment
operator and operator is one of the binary operators + -, * /,or %
(or others we’ll discuss later in the text), can be written in the form

« variable operator= expression
Thus the assignment ¢ += 3 adds 3 to C.

Figure 4.17 shows the arithmetic assignment operators, sample
expressions using these operators and explanations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

Assignment Sample

operator expression Explanation Assigns
6

+= C += 7 c=c+ 7 10to c

— d -= 4 d=d - 4 ltod

= 2 Be 5 e=¢e* 5 20toe

/= £ /=3 f=Ff/3 2t f

%= g %= 9 g=9%9 Jtog

Fig. 4.17 | Arithmetic assignment operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

4.12 lherement and Decrement
Operators

« C++ also provides two unary operators for
adding 1 to or subtracting 1 from the value of a
numeric variable.

« These are the unary increment operator, ++,
and the unary decrement operator, —-, which
are summarized in Fig. 4.18.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

Sample
Operator expression Explanation

++ preincrement ~ ++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postincrement ~ a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

— predecrement --b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postdecrement b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.18 | Increment and decrement operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

Good Programming Practice 4.9

m Unlike binary operators, the unary increment and decre-
ment operators should be placed next to their operands,
with no intervening spaces.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

OoOo~NSNUNDh WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 4.19: fig04_19.cpp

// Preincrementing and postincrementing.
#include <iostream>

using namespace std;

int main()

{

int c;

// demonstrate postincrement

c=25; // assign 5 to ¢

cout << ¢ << endl; // print 5

cout << c++ << endl; // print 5 then postincrement
cout << c << endl; // print 6

cout << endl; // skip a line

// demonstrate preincrement

c =5; // assign 5 to ¢

cout << ¢ << endl; // print 5

cout << ++C << endl; // preincrement then print 6
cout << c << endl; // print 6

} // end main

Fig. 4.19 | Preincrementing and postincrementing. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17

Fig. 4.19 | Preincrementing and postincrementing. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18

4.12 Inherement and Decrement
Operators (cont.)

* When you increment (++) or decrement (--) a variable in a
statement by itself, the preincrement and postincrement
forms have the same effect, and the predecrement and
postdecrement forms have the same effect.

 It’s only when a variable appears in the context of a larger
expression that preincrementing the variable and
postincrementing the variable have different effects (and
similarly for predecrementing and post-decrementing).

* Figure 4.20 shows the precedence and associativity of the
operators introduced to this point.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

Common Programming Error 4.14

Attempting to use the increment or decrement operator
on an expression other than a modifiable variable name
or reference, e.g., writing ++(X + 1), is a syntax error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

9.2

Essentials of Counter-Centrolled
Repetition

« Counter-controlled repetition requires

— 1
— 1
— 1

ne name of a control variable (or loop counter)
ne initial value of the control variable

ne loop-continuation condition that tests for the

final value of the control variable (i.e., whether
looping should continue)

— the increment (or decrement) by which the control
variable is modified each time through the loop.

* In C++, 1t’s more precise to call a declaration
that also reserves memory a definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

1 // Fig. 5.1: fig05_01.cpp

2 // Counter-controlled repetition.

3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 int counter = 1; // declare and initialize control variable
9

10 while (counter <= 10) // loop-continuation condition
11 {

12 cout << counter << " ";

13 counter++; // increment control variable by 1

14 } // end while

15

16 cout << endl; // output a newline

17 1} // end main

12345678910

Fig. 5.1 | Counter-controlled repetition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

Common Programming Error 5.1

Floating-point values are approximate, so controlling
counting loops with floating-point variables can result in
imprecise counter values and inaccurate tests for termi-
nation.

Error-Prevention Tip 5.1
Control counting loops with integer values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

5.3 Tor Repetition Statement

The for repetition statement specifies the counter-
controlled repetition details in a single line of code.

The initialization occurs once when the loop Is encountered.

The condition is tested next and each time the body
completes.

T
T
T

ne body executes if the condition is true.
ne increment occurs after the body executes.

nen, the condition is tested again.

If there is more than one statement in the body of the for,
braces are required to enclose the body of the loop.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

1 // Fig. 5.2: fig05_02.cpp

2 // Counter-controlled repetition with the for statement.
3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 // for statement header includes initialization,
9 // loop-continuation condition and increment.

10 for (int counter = 1; counter <= 10; counter++)
11 cout << counter << " ";
12
13 cout << endl; // output a newline

14 } // end main

12345678910

Fig. 5.2 | Counter-controlled repetition with the for statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

Control Required Final value of control Required
for variable semicolon variable for which semicolon
keyword name separator the condition is true separator

VNS

for (int counter = 1; counter <= 10; counter++)

N -
[nitial value of f _ Increment of
control variable Loop-continuation control variable
condition

Fig. 5.3 | for statement header components.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

26

5.3 Tor Repetiiion Statement (cont.)

The general form of the for statement is

o for (initiaglization; loopContinuationCondition; increment)
statement

where the initialization expression initializes the loop’s control variable,

loopContinuationCondition determines whether the loop should continue executing
and increment increments the control variable.

In most cases, the Tor statement can be represented by an equivalent while
statement, as follows:

o Initiglization,
while (loopContinuationCondition)

statement
Increment,

/

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

5.3 Tor Repetition Statement (cont.)

f the Initialization expression declares the

control variable, the control variable can be
used only in the body of the for statement—

t
t

ne control variable will be unknown outside
ne for statement.

"his restricted use of the control variable name

1s known as the variable’s scope.

» The scope of a variable specifies where It can
be used In a program.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

Common Programming Error 5.3

When the control variable is declared in the initializa-
tion section of the for statement, using the control vari-
able after the body is a compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

5.3 Tor Repetition Statement (cont.)

» The three expressions in the for statement
header are optional (but the two semicolon
separators are required).

* If the loopContinuationCondition Is omitted, C++
assumes that the condition is true, thus creating
an infinite loop.

* One might omit the initialization expression if the
control variable is initialized earlier in the
program.

* One might omit the increment expression If the
Increment Is calculated by statements in the body
of the for or if no increment is needed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

5.3 Tor Repetiiion Statement (cont.)

« The increment expression in the for statement acts
as a stand-alone statement at the end of the body of
the for.

* The expressions

e counter = counter + 1
counter += 1
++counter
counter++

« are all equivalent in the incrementing portion of the
for statement’s header (when no other code appears

there).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

Common Programming Error 5.5

Placing a semicolon immediately to the right of the right
parenthesis of a for header makes the body of that for
statement an empty statement. This is usually a logic er-
ror.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

32

5.3 Tor Repetition Statement (cont.)

 The Initialization, loop-continuation condition
and increment expressions of a for statement
can contain arithmetic expressions.

 The “increment” of a for statement can be

negative, in which case the loop actually
counts downward.

» |If the loop-continuation condition is initially
false, the body of the for statement is not
performed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

Error-Prevention Tip 5.2

Although the value of the control variable can be
changed in the body of a for statement, avoid doing so,
because this practice can lead to subtle logic errovs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

5.4 Examples Using the Tor Statement

« Vary the control variable from 1 to 100 in increments of 1.
e for (int i = 1; 1 <= 100; i++)
« Vary the control variable from 100 down to 1 in decrements of 1.
e for (int 1 = 100; 1 >= 1; 1--)
 Vary the control variable from 7 to 77 in steps of 7.
e for (int 1 =7; 1 <=77; 1 +=7)
 Vary the control variable from 20 down to 2 in steps of -2.
e for (int 1 = 20; 1 >=2; 1 -=2)
« Vary the control variable over the following sequence of values: 2,
5,8,11,14,17.
e for (int 1 =2; 1 <= 17; 1 += 3)

 Vary the control variable over the following sequence of values:
99, 88, 77, 66, 55.
e for (int i = 99; 1 >= 55; 1 -= 11)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

1 // Fig. 5.5: fig05_05.cpp

2 // Summing integers with the for statement.

3 #include <iostream>

4 using namespace std;

5

6 int main(Q)

7 {

8 int total = 0; // initialize total

9

10 // total even integers from 2 through 20

11 for (int number = 2; number <= 20; number += 2)
12 total += number;

13

14 cout << "Sum is " << total << endl; // display results
I5 } // end main

Sum is 110

Fig. 5.5 | Summing integers with the for statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

5.5 do...wh1 | e Repetition Statement

e Similar to the wh1 1 e statement.

« The do...wh1 le statement tests the loop-
continuation con-dition after the loop body executes;
therefore, the loop body always executes at least
once.

* It’s not necessary to use braces in the do...while
statement If there iIs only one statement in the body.

— Most programmers include the braces to avoid confusion
between the whi1e and do...wh1 1e statements.

« Mustend a do...wh1i 1e statement with a semicolon.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

Ooe~NGOWNbh WN =

10
11
12
13
14
15
16
17

// Fig. 5.7: fig05_07.cpp

// do...while repetition statement.
#include <iostream>

using namespace std;

int main()

{

int counter = 1; // initialize counter

do
{

cout << counter << " "; // display counter
counter++; // increment counter

} while (counter <= 10); // end do...while

cout << endl; // output a newline
1 // end main

12345678910

Fig. 5.7 | do...while repetition statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

38

5.7 sw1tch Multiple-Selection Statement

« The switch multiple-selection statement
performs many different actions based on the
possible values of a variable or expression.

 Each action is associated with the value of a
constant integral expression (i.e., any
combination of character and integer con-
stants that evaluates to a constant integer
value).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

aCount; //
bCount; //
cCount; //
dCount; //
fCount; //

|

2

3

4

5

6

7

8

9 {

10 public:
11

12

13

14

15

16

17 private:
18

19 int
20 int
21 int
22 int
23 int
24

// Fig. 5.9: GradeBook.h

// Definition of class GradeBook that counts A, B, C, D and F grades.
// Member functions are defined in GradeBook.cpp

#include <string> // program uses C++ standard string class

using namespace std;

count
count
count
count
count

// GradeBook class definition
class GradeBook

GradeBook(string); // constructor initializes course name

void setCourseName(string); // function to set the course name
string getCourseName(); // function to retrieve the course name
void displayMessage(); // display a welcome message

void inputGrades(); // input arbitrary number of grades from user
void displayGradeReport(); // display a report based on the grades

string courseName; // course name for this GradeBook

of A grades
of B grades
of C grades
of D grades
of F grades

}: // end class GradeBook

Fig. 5.9 | GradeBook class definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

40

VoOoO~NONND WN =

10
11
12
13
14
15
16
17
18
19

// Fig. 5.10: GradeBook.cpp
// Member-function definitions for class GradeBook that

// uses a switch statement to count A, B, C, D and F grades.
#include <iostream>
#include "GradeBook.h" // include definition of class GradeBook
using namespace std;

// constructor initializes courseName with string supplied as argument;

// initializes counter data members to O
GradeBook: :GradeBook(string

{
setCourseName (
aCount = 0; //
bCount = 0; //
cCount = 0; //
dCount = 0; //
fCount = 0; //

name); //
initialize
initialize
initialize
initialize
initialize

name)

validate and store courseName

count
count
count
count
count

} // end GradeBook constructor

of A grades
of B grades
of C grades
of D grades
of F grades

to
to
to
to
to

O OO OO

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part |

of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

// display a welcome message to the GradeBook user
void GradeBook: :displayMessage()
{

// this statement calls getCourseName to get the

// name of the course this GradeBook represents

cout << "Welcome to the grade book for\n" << getCourseName() << "!\n"
<< endl;

} // end function displayMessage

// input arbitrary number of grades from user; update grade counter
void GradeBook: :inputGrades()

{

int grade; // grade entered by user

cout << "Enter the letter grades.” << end]
<< "Enter the EOF character to end input.” << endl;

// loop until user types end-of-file key sequence
while ((grade = cin.get()) != EOF)
{

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 3

of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

42

39
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

// determine which grade was entered
switch (grade) // switch statement nested in while

{

case 'A': //
case 'a': //

grade was uppercase A
or lowercase a

aCount++; // increment aCount

necessary to exit switch

grade was uppercase B
or lowercase b

bCount++; // increment bCount

break; //
case 'B': //
case 'b': //
break; //
case 'C': //

case 'c': //

exit switch

grade was uppercase C
or lowercase c

cCount++; // increment cCount

break; //
case 'D': //
case 'd': //

exit switch

grade was uppercase D
or lowercase d

dCount++; // increment dCount

break; //

exit switch

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 4

of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

82 case 'F': // grade was uppercase F

83 case 'f': // or lowercase f

84 fCount++; // increment fCount

85 break; // exit switch

86

87 case '\n': // 1ignore newlines,

88 case '\t': // tabs,

89 case ' ': // and spaces in input

20 break; // exit switch

91

92 default: // catch all other characters

93 cout << "Incorrect letter grade entered.”
94 << " Enter a new grade." << endl;

95 break; // optional; will exit switch anyway
96 } // end switch

97 } // end while

98 1} // end function inputGrades

99

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 5
of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

100 // display a report based on the grades entered by user
101 void GradeBook::displayGradeReport()

102 {

103 // output summary of results

104 cout << "\n\nNumber of students who received each letter grade:"
105 << "\nA: " << aCount // display number of A grades

106 << "\nB: " << bCount // display number of B grades

107 << "\nC: " << cCount // display number of C grades

108 << "\nD: " << dCount // display number of D grades

109 << "\nF: " << fCount // display number of F grades

110 << endl;

111 } // end function displayGradeReport

Fig. 5.10 | GradeBook class uses switch statement to count letter grades. (Part 6
of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

OoOo~NSNUNDh WN =

10
11
12
13

// Fig. 5.11: fig05_11.cpp
// Create GradeBook object, input grades and display grade report.
#include "GradeBook.h"™ // include definition of class GradeBook

int main()
{
// create GradeBook object
GradeBook myGradeBook("CS101 C++ Programming');

myGradeBook.displayMessage(); // display welcome message

myGradeBook.inputGrades(); // read grades from user

myGradeBook.displayGradeReport(); // display report based on grades
} // end main

a
B
C

Welcome to the grade book for
CS101 C++ Programming!

Enter the letter grades.
Enter the EOF character to end 1input.

Fig. 5.11 | Creating a GradeBook object and calling its member functions. (Part |

of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

46

ncorrect letter grade entered. Enter a new grade.

>T P2O0OHMA=-hQ >N

umber of students who received each Tetter grade:

N
A
B:
C:
D
F

RN wWN W

Fig. 5.11 | Creating a GradeBook object and calling its member functions. (Part 2
of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

47

5.7 sw1itch Multiple-Selection Statement
(cont.)

« The cin.get () function reads one character from the keyboard.

« Normally, characters are stored in variables of type char; how-ever,
characters can be stored in any integer data type, because types short,
1nt and 1ong are guaranteed to be at least as big as type char.

« Can treat a character either as an integer or as a character, depending on
Its use.

« For example, the state-ment

e cout << "The character (" << 'a' << ") has the value "
<< static_cast< int > ('a') << endl;

 prints the character a and its integer value as follows:
e The character (a) has the value 97

* The integer 97 1s the character’s numerical representation in the
computer.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

switch Multiple-Selection Statement
(cont.)

» Generally, assignment statements have the value that
IS assigned to the variable on the left side of the =.

e EOF stands for “end-of-file”. Commonly used as a
sentinel value.

— However, you do not type the value —1, nor do you type the
letters EOF as the sentinel value.

— You type a system-dependent keystroke combination that
means “end-of-file” to indicate that you have no more data
to enter.

e EOF is a symbolic integer constant defined in the
<1ostream> header file.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

- Portability Tip 5.1
The keystroke combinations for entering end-of-file are
system dependent.

- Portability Tip 5.2
Testing for the symbolic constant EOF rather than -1
makes programs more portable. The ANSI/ISO C stan-
dard, from which C++ adopts the definition of EOF,
states that EOF is a negative integral value, so EOF could
have different values on different systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

50

5.8 switch Mulitiple-Selection Statement
(cont.)

« The switch statement consists of a series of case
labels and an optional default case.

« When the flow of control reaches the sw1 tch, the
program evaluates the expression in the parentheses.

— The controlling expression.

« The switch statement compares the value of the
controlling expression with each case label.

 If a match occurs, the program executes the statements
for that case.

» The break statement causes program control to
proceed with the first statement af-ter the switch.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

5.8 switch Multiple-Selection Statement

(cont.)

 Listing cases consecutively with no statements between

them en

ables the cases to perform the same set of

Statements.

» Each case can have multiple statements.

— The sw1itch selection statement does not require braces around
multiple statements in each case.

« Without break statements, each time a match occurs in the

switc
cases

n, the statements for that case and subsequent
execute until a break statement or the end of the

switc

N 1S encountered.

— Referred to as “falling through” to the statements in subsequent
cases.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

Common Programming Error 5.8
Forgetting a break statement when one is needed in a
switch statement is a logic error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

Common Programming Error 5.9

Omitting the space between the word case and the in-
tegral value being tested in a switch statement—e.g.,
writing case3: instead of case 3:—is a logic error.
The swi tch statement will not perform the appropriate
actions when the controlling expression has a value of 3.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

|
| N\

switch Muliiple-Selection Statement
(cont.)

* |f no match occurs between the controlling
expression’s value and a case label, the
default case executes.

e If no match occurs in a sw1itch statement that
does not contain a default case, program
control continues with the first statement after
the sw1tch.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

Common Programming Error 5.11
Specifying a nonconstant integral expression in a
switch’s case label is a syntax error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

switch Multiple-Selection Statement
(cont.)

« C++ has flexible data type sizes (see Appendix C, Fundamental
Types).
« C++ provides several integer types.

« The range of integer values for each type depends on the
particular computer’s hardware.

- In addition to the types 1nt and char, C++ provides the types
short (an abbreviation of short int) and long (an
abbreviation of Tong 1nt).

« The minimum range of values for short integers is 32,768 to
32,767.

 For the vast majority of integer calcula-tions, 1ong integers are
sufficient.

« The minimum range of values for 1ong integers is —
2,147,483,648 to 2,147,483,647.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

5.8 switch Mulitiple-Selection Statement

(cont.)

« On most computers, 1nts are equivalent either
to short orto long.

« The range of values for an 1nt is at least the
same as that for short integers and no larger
than that for 1ong integers.

« The data type char can be used to represent
any of the characters in the computer’s
character set.

* |t also can be used to represent small integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58

. Portability Tip 5.3
Because ints can vary in size between systems, use long
integers if you expect to process integers outside the range

—32,768 to 32,767 and you'd like to run the program

on several different computer systems.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

59

Performance Tip 5.3
If memory is at a premium, it might be desirable to use
smaller integer sizes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

61

