

• Pointers also enable pass-by-reference and can

be used to create and manipulate dynamic data

structures that can grow and shrink, such as

linked lists, queues, stacks and trees.

• This chapter explains basic pointer concepts

and rein-forces the intimate relationship

among arrays and pointers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• A pointer contains the memory address of a

variable that, in turn, contains a specific value.

• In this sense, a variable name directly

references a value, and a pointer indirectly

references a value.

• Referencing a value through a pointer is called

indirection.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

• The declaration
• int *countPtr, count;

declares the variable countPtr to be of type int * (i.e.,
a pointer to an int value) and is read (right to left),
―countPtr is a pointer to int.‖
– Variable count in the preceding declaration is declared to be an
int, not a pointer to an int.

– The * in the declaration applies only to countPtr.

– Each variable being declared as a pointer must be preceded by an
asterisk (*).

• When * appears in a declaration, it isn’t an operator; rather,
it indicates that the variable being declared is a pointer.

• Pointers can be declared to point to objects of any data type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

• Pointers should be initialized either when they’re

declared or in an assignment.

• A pointer may be initialized to 0, NULL or an address

of the corresponding type.

• A pointer with the value 0 or NULL points to nothing

and is known as a null pointer.

– NULL is equivalent to 0, but in C++, 0 is used by

convention.

• The value 0 is the only in-teger value that can be

assigned directly to a pointer variable without first

casting the integer to a pointer type.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

• The address operator (&) is a unary operator that
obtains the memory address of its operand.

• Assuming the declarations
• int y = 5; // declare variable y
int *yPtr; // declare pointer variable
yPtr

the statement
• yPtr = &y; // assign address of y to yPtr

assigns the address of the variable y to pointer
variable yPtr.

• Figure 8.2 shows a schematic representation of
memory after the preced-ing assignment.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

• Figure 8.3 shows another pointer representation in memory
with integer variable y stored at memory location 600000
and pointer variable yPtr stored at memory location
500000.

• The operand of the address operator must be an lvalue; the
address operator cannot be applied to constants or to
expressions that do not result in references.

• The * operator, commonly referred to as the indirection
operator or dereferencing operator, returns a synonym for
the object to which its pointer operand points.
– Called dereferencing a pointer

• A dereferenced pointer may also be used on the left side of
an assignment.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• The & and * operators are inverses of one

another.

• Figure 8.5 lists the precedence and

associativity of the operators introduced to this

point.

• The address (&) and dereferencing operator (*)

are unary operators on the third level.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• There are three ways in C++ to pass arguments to a

function—pass-by-value, pass-by-reference with reference

arguments and pass-by-reference with pointer arguments.

• In this section, we explain pass-by-reference with pointer

arguments.

• Pointers, like references, can be used to modify one or more

variables in the caller or to pass pointers to large data

objects to avoid the overhead of passing the objects by

value.

• In C++, you can use pointers and the indirection operator

(*) to accomplish pass-by-reference.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• In the function header and in the prototype for a function
that expects a one-dimensional array as an argument,
pointer notation may be used.

• The compiler does not differentiate between a function that
receives a pointer and a function that receives a one-
dimensional array.

– The function must ―know‖ when it’s receiving an array or simply a
single variable which is being passed by reference.

• When the compiler encounters a function parameter for a
one-dimensional array of the form int b[], the compiler
converts the parameter to the pointer notation int *b.

– Both forms are interchangeable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

• The unary operator sizeof determines the size of an

array (or of any other data type, variable or constant)

in bytes during program compilation.

• When applied to the name of an ar-ray, the sizeof
operator returns the total number of bytes in the array

as a value of type size_t.

• When applied to a pointer parameter in a function that

receives an array as an argument, the sizeof
operator returns the size of the pointer in bytes—not

the size of the array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• The number of elements in an array also can be determined

using the results of two sizeof operations.

• Consider the following array decla-ration:

• double realArray[22];

• To determine the number of elements in the ar-ray, the

following expression (which is evaluated at compile time)

can be used:

• sizeof realArray / sizeof(realArray[0])

• The expression determines the number of bytes in array

realArray and divides that value by the number of bytes

used in memory to store the array’s first element.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

• Operator sizeof can be applied to any

expression or type name.

• When sizeof is applied to a variable name

(which is not an array name) or other

expression, the num-ber of bytes used to store

the specific type of the expression’s value is

returned.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• Pointers are valid operands in arithmetic expressions,

assignment expressions and comparison expressions.

• pointer arithmetic—certain arithmetic operations may

be performed on pointers:

– increment (++)

– decremented (--)

– an integer may be added to a pointer (+ or +=)

– an integer may be subtracted from a pointer (- or -=)

– one pointer may be subtracted from another of the same

type

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• Assume that array int v[5] has been

declared and that its first element is at memory

location 3000.

• Assume that pointer vPtr has been initialized

to point to v[0] (i.e., the value of vPtr is

3000).

• Figure 8.16 diagrams this situation for a

machine with four-byte integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• In conventional arithmetic, the addition 3000
+ 2 yields the value 3002.

– This is normally not the case with pointer

arithmetic.

– When an integer is added to, or subtracted from, a

pointer, the pointer is not simply incremented or

decremented by that integer, but by that integer

times the size of the object to which the pointer

refers.

– The number of bytes depends on the object’s data

type. ©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

• Pointer variables pointing to the same array may be

subtracted from one another.

• For example, if vPtr contains the address 3000 and

v2Ptr contains the address 3008, the statement
• x = v2Ptr - vPtr;

• would assign to x the number of array elements from

vPtr to v2Ptr—in this case, 2.

• Pointer arithmetic is meaningless unless performed

on a pointer that points to an array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

• A pointer can be assigned to another pointer if both

pointers are of the same type.

• Otherwise, a cast operator (normally a

reinterpret_cast; discussed in Section 17.8)

must be used to convert the value of the pointer on

the right of the assignment to the pointer type on the

left of the assignment.

– Exception to this rule is the pointer to void (i.e., void *).

• All pointer types can be assigned to a pointer of type

void * without casting.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

36©1992-2010 by Pearson Education, Inc. All Rights Reserved.

