Lecture 17:
Pointers

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
April 26', 2010

6.1 Introduction

 Pointers also enable pass-by-reference and can
be used to create and manipulate dynamic data
structures that can grow and shrink, such as
linked lists, queues, stacks and trees.

 This chapter explains basic pointer concepts
and rein-forces the intimate relationship
among arrays and pointers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

8.2 Peointer Variable Declarations and
Initialization

* A pointer contains the memory address of a
variable that, in turn, contains a specific value.

* In this sense, a variable name directly
references a value, and a pointer indirectly
references a value.

» Referencing a value through a pointer is called
Indirection.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

8.2 Pointer Variable Declarations and
Initialization (cont.)

« The declaration
e int *countPtr, count;
declares the variable countPtr to be of type 1nt * (i.e.,
a pointer to an 1nt value) and is read (right to left),
“countPtr isapointerto 1nt.”

— Varilable count in the preceding declaration iIs declared to be an
1nt, not a pointer to an 1nt.

— The * in the declaration applies only to countPtr.

— Each variable being declared as a pointer must be preceded by an
asterisk (*).

« When * appears in a declaration, it isn’t an operator; rather,
It indicates that the variable being declared is a pointer.

 Pointers can be declared to point to objects of any data type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

8.2 Polinter Variable Declarations and
Initialization (cont.)

* Pointers should be 1mitialized either when they’re
declared or in an assignment.

« A pointer may be initialized to O, NULL or an address
of the corresponding type.

A pointer with the value O or NULL points to nothing
and iIs known as a null pointer.
— NULL is equivalent to O, but in C++, O is used by
convention.
« The value O is the only in-teger value that can be
assigned directly to a pointer variable without first
casting the integer to a pointer type.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

8.3 Pointer Operators

« The address operator (&) iIs a unary operator that
obtains the memory address of its operand.

» Assuming the declarations

eint y = 5; // declare variable y .
12% *yPtr; // declare pointer variable
yPtr

the statement
e yPtr = &y; // assign address of y to yPtr

assigns the address of the variable y to pointer
variable yPtr.

* Figure 8.2 shows a schematic representation of
memory after the preced-ing assignment.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

Poinier Operators (cont.)

Figure 8.3 shows another pointer representation in memory
with integer variable y stored at memory location 600000
and pointer variable yPtr stored at memory location
500000.

The operand of the address operator must be an Ivalue; the
address operator cannot be applied to constants or to
expressions that do not result in references.

The * operator, commonly referred to as the indirection
operator or dereferencing operator, returns a synonym for
the object to which its pointer operand points.

— Called dereferencing a pointer

A dereferenced pointer may also be used on the left side of
an assignment.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

yPtr y
Tocation location
500000 SUUy I 600000 > I

Fig. 8.3 | Representation of y and yPtr in memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

Common Programming Error 8.2

Dereferencing an uninitialized pointer could cause a fa-
tal execution-time error, or it could accidentally modify
important data and allow the program to run to comple-
tion, possibly with incorrect results.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 8.3
An attempt to dereference a variable that is not a pointer
is a compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

Common Programming Error 8.4
Dereferencing a null pointer is often a fatal execution-
time error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

VoOoO~NONND WN =

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 8.4: fig08_04.cpp

// Pointer operators & and *.
#include <iostream>

using namespace std;

int main()

{

int a; // a is an integer

int *aPtr; // aPtr is an int * which is a pointer to an integer

a=7; // assigned 7 to a
aPtr = &a; // assign the address of a to aPtr

cout << "The address of a is " << &a

<< "\nThe value of aPtr is " << aPtr;
cout << "\n\nThe value of a is " << a

<< "\nThe value of *aPtr is " << *aPtr;

cout << "\n\nShowing that * and & are inverses of "

mn

<< "each other.\n&*aPtr = << &*aPtr
<< "\n*&aPtr = " << *&aPtr << endl;

} // end main

Fig. 8.4 | Pointer operators & and *. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12

The address of a is 0012F580
The value of aPtr is 0012F580

The value of a is 7
The value of *aPtr is 7

Showing that * and & are inverses of each other.
&*aPtr = 0012F580
*&aPtr = 0012F580

Fig. 8.4 | Pointer operators & and *. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

6.3 Pointer Operators (cont.)

« The & and * operators are inverses of one
another.

 Figure 8.5 lists the precedence and
assoclativity of the operators introduced to this
point.

« The address (&) and dereferencing operator (*)
are unary operators on the third level.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

8.4 Pass-by-Reference with Pointers

* There are three ways in C++ to pass arguments to a
function—pass-by-value, pass-by-reference with reference
arguments and pass-by-reference with pointer arguments.

* In this section, we explain pass-by-reference with pointer
arguments.

 Pointers, like references, can be used to modify one or more
variables in the caller or to pass pointers to large data
objects to avoid the overhead of passing the objects by
value.

« In C++, you can use pointers and the indirection operator
(*) to accomplish pass-by-reference.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

COVOO~NOGOWVNLEWN =

N=0WVOO~NOTUNIWN =—

// Fig. 8.6: fig08_06.cpp

// Pass-by-value used to cube a variable’s value.
#include <iostream>

using namespace std;

int cubeByValue(int); // prototype

int main()

{

int number = 5;

LA}

cout << "The original value of number s << humber;
number = cubeByValue(number); // pass number by value to cubeByValue
cout << "\nThe new value of number is " << number << endl;

} // end main

// calculate and return cube of integer argument
int cubeByValue(int n)
{
return n * n * n; // cube local variable n and return result
} // end function cubeByValue

Fig. 8.6 | Pass-by-value used to cube a variable’s value. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

16

The original value of number is 5
The new value of number is 125

Fig. 8.6 | Pass-by-value used to cube a variable’s value. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

1 // Fig. 8.7: fig08_07.cpp

2 // Pass-by-reference with a pointer argument used to cube a
3 // variable’s value.

4 #include <iostream>

5 using namespace std;

6

7 void cubeByReference(int *); // prototype

8

9 1int mainQ)

10 {

11 int number = 5;

12

13 cout << "The original value of number is " << number;

14

15 cubeByReference(&number); // pass number address to cubeByReference
16

17 cout << "\nThe new value of number is " << number << endl;
I8 1} // end main

19
20 // calculate cube of *nPtr; modifies variable number in main
21 void cubeByReference(int *nPtr)
22 {
23 *nPtr = *nPtr * *nPtr * *nPtr; // cube *nPtr
24 1} // end function cubeByReference

Fig. 8.7 | Pass-by-reference with a pointer argument used to cube a variable’s value.
(Part | of 7)) ©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18

The original value of number is 5
The new value of number is 125

Fig. 8.7 | Pass-by-reference with a pointer argument used to cube a variable’s value.
(Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

8.4 Pass-by-Reference with Pointers
(cont.)

* In the function header and in the prototype for a function
that expects a one-dimensional array as an argument,
pointer notation may be used.

« The compiler does not differentiate between a function that
receives a pointer and a function that receives a one-
dimensional array.

— The function must “know” when it’s receiving an array or simply a
single variable which is being passed by reference.

* When the compiler encounters a function parameter for a
one-dimensional array of the form int b[], the compiler
converts the parameter to the pointer notation 1nt *b.

— Both forms are interchangeable.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

8.7 s1zeoT Operator

« The unary operator s1zeof determines the size of an
array (or of any other data type, variable or constant)
In bytes during program compilation.

« When applied to the name of an ar-ray, the s1zeof
operator returns the total number of bytes in the array
as a value of type s1ze_t.

» When applied to a pointer parameter in a function that
receives an array as an argument, the sizeot
operator returns the size of the pointer in bytes—not
the size of the array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

Common Programming Error 8.7

Using the sizeof operator in a function to find the size
in bytes of an array parameter results in the size in bytes
of a pointer, not the size in bytes of the array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

VoOo~NGOWNbh WN=—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 8.14: fig08_14.cpp

// Sizeof operator when used on an array name
// returns the number of bytes in the array.
#include <iostream>

using namespace std;

size_t getSize(double *); // prototype

int main()

{
double array[20]; // 20 doubles; occupies 160 bytes on our system

cout << "The number of bytes in the array is " << sizeof(array);

cout << "\nThe number of bytes returned by getSize is "
<< getSize(array) << endl;

} // end main

// return size of ptr
size_t getSize(double *ptr)
{
return sizeof(ptr);
} // end function getSize

Fig. 8.14 | sizeof operator when applied to an array name returns the number of
bytes in the array. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23

The number of bytes in the array is 160
The number of bytes returned by getSize is 4

Fig. 8.14 | sizeof operator when applied to an array name returns the number of
bytes in the array. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

8.7 s1zeoT Operaior (cont.)

The number of elements in an array also can be determined
using the results of two s1zeof operations.

Consider the following array decla-ration:

e« double realArray[22];
To determine the number of elements in the ar-ray, the
following expression (which is evaluated at compile time)

can be used:
o sizeof realArray / sizeof(realArray[O])

The expression determines the number of bytes in array
realArray and divides that value by the number of bytes
used 1n memory to store the array’s first element.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

VoOoO~NONND WN =

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 8.15: fig08_15.cpp

// Demonstrating the sizeof operator.
#include <iostream>

using namespace std;

int main()

{

char c; // variable of type char

short s; // variable of type short

int i; // variable of type int

long 1; // variable of type long

float f; // variable of type float

double d; // variable of type double

long double 1d; // variable of type Tong double
int array[20]1; // array of int

int *ptr = array; // variable of type int *

cout << "sizeof c = << sizeof c

<< "\tsizeof(char) = " << sizeof(char)
<< "\nsizeof s = " << sizeof s

<< "\tsizeof(short) = " << sizeof(short)
<< "\nsizeof 1 = " << sizeof i

Fig. 8.15 | sizeof operator used to determine standard data type sizes. (Part | of

2)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

26

23 << "\tsizeof(int) = " << sizeof(int)

24 << "\nsizeof 1 = " << sizeof 1

25 << "\tsizeof(long) = " << sizeof(long)

26 << "\nsizeof f = " << sizeof f

27 << "\tsizeof(float) = " << sizeof(float)
28 << "\nsizeof d = " << sizeof d

29 << "\tsizeof(double) = " << sizeof(double)
30 << "\nsizeof 1d = " << sizeof 1d

31 << "\tsizeof(long double) = " << sizeof(Tong double)
32 << "\nsizeof array = " << sizeof array

33 << "\nsizeof ptr = " << sizeof ptr << endl;
34 1} // end main

sizeof c = 1 sizeof(char) =1

sizeof s = 2 sizeof(short) = 2

sizeof i = 4 sizeof(int) = 4

sizeof 1 = 4 sizeof(long) = 4

sizeof f = 4 sizeof(float) = 4

sizeof d = 8 sizeof(double) = 8

sizeof 1d = 8 sizeof(long double) = 8

sizeof array = 80

sizeof ptr = 4

Fig. 8.15 | sizeof operator used to determine standard data type sizes. (Part 2 of

2))

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

27

8.7 s1zeoT Operaior (cont.)

 Operator s1zeof can be applied to any
expression or type name.

« When s1zeof is applied to a variable name
(which is not an array name) or other
expression, the num-ber of bytes used to store
the specific type of the expression’s value 1s
returned.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

28

Pointer Expressions and Pointer
Arithimetic

 Pointers are valid operands In arithmetic expressions,
assignment expressions and comparison expressions.

* pointer arithmetic—certain arithmetic operations may
be performed on pointers:
— Increment (++)
— decremented (--)
— an integer may be added to a pointer (+ or +=)
— an integer may be subtracted from a pointer (- or -=)

— one pointer may be subtracted from another of the same
type

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

|ocation
3000 3004 3008 3012 3016

v[0] wv[1]l v[2] v[3] v[4]

K

pointer variable vPtr

Fig. 8.16 | Amay v and a pointer variable int *vPtr that points to v.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

©9)

« Assume that array 1nt v[5] has been

declared and that its first element is at memory
location 3000.

« Assume that pointer vPtr has been initialized
to pointto v[0] (i.e., the value of vPtr is
3000).

 Figure 8.16 diagrams this situation for a
machine with four-byte integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

5.6 Pointer Expressions and Pointer
Arithmetic (cont.)

« In conventional arithmetic, the addition 3000
+ 2 yields the value 3002.

— This iIs normally not the case with pointer
arithmetic.

— When an integer is added to, or subtracted from, a
pointer, the pointer is not simply incremented or
decremented by that integer, but by that integer
times the size of the object to which the pointer
refers.

— The number of bytes depends on the object’s data

type . ©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

|ocation
3000 3004 3008 3012 3016

v[0]

pointer variable vPtr

Fig. 8.17 | Pointer vPtr after pointer arithmetic.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

0/0)

8.8 Pointer Expressions and Pointer
Arithmetic (cont.)

 Pointer variables pointing to the same array may be
subtracted from one another.

« For example, if vPtr contains the address 3000 and
v2Ptr contains the address 3008, the statement
e X = V2Ptr - vPtr;
« would assign to x the number of array elements from
VPtr to v2Ptr—in this case, 2.

 Pointer arithmetic is meaningless unless performed
on a pointer that points to an array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

Pointer Expressions and Pointer
Arithimetic (cont.)

(O,

A pointer can be assigned to another pointer if both
pointers are of the same type.

» Otherwise, a cast operator (normally a
reinterpret_cast; discussed in Section 17.8)
must be used to convert the value of the pointer on
the right of the assignment to the pointer type on the
left of the assignment.

— Exception to this rule is the pointer to void (i.e., void *).

 All pointer types can be assigned to a pointer of type
vo1d * without casting.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

