Lecture 21:
Classes: A Deeper Look

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 3, 2010



=]

10.8 Composition: Objecis as Members
of Classes

« Composition
— Sometimes referred to as a has-a relationship

— A class can have objects of other classes as
members

* An object’s constructor can pass arguments to
member-object constructors via member
Initializers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



Software Engineering Observation 10.5
A common form of software reusability is composition, in
which a class has objects of other classes as members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



Software Engineering Observation 10.6

s Member objects are constructed in the order in which
they’re declared in the class definition (not in the order
they’re listed in the constructor’s member initializer list)
and before their enclosing class objects (sometimes called
host objects) are constructed.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



1 // Fig. 10.10: Date.h
2 // Date class definition; Member functions defined in Date.cpp
3 #ifndef DATE_H
4 #define DATE_H
5
6 class Date
7 {
8 public:
9 static const int monthsPerYear = 12; // number of months in a year
10 Date( int = 1, int = 1, int = 1900 ); // default constructor
11 void print() const; // print date in month/day/year format
12 ~Date(); // provided to confirm destruction order
I3 private:
14 int month; // 1-12 (January-December)
15 int day; // 1-31 based on month
16 int year; // any vyear
17
18 // utility function to check if day is proper for month and year
19 int checkDay( int ) const;
20 }; // end class Date
21
22 #endif
Fig. 10.10 | Date class definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



VoOo~NGOWNbh WN=—

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 10.11: Date.cpp

// Date class member-function definitions.
#include <iostream>

#include "Date.h"™ // include Date class definition
using namespace std;

// constructor confirms proper value for month; calls
// utility function checkDay to confirm proper value for day
Date::Date( int mn, int dy, int yr )
{
if ( mn > 0 & mn <= monthsPerYear ) // validate the month
month = mn;
else
{
month = 1; // invalid month set to 1
cout << "Invalid month (" << mn << ") set to 1.\n";
} // end else

year = yr; // could validate yr
day = checkDay( dy ); // validate the day

// output Date object to show when its constructor is called

cout << "Date object constructor for date ";

Fig. 10.11 | Date class member-function definitions. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

print();
cout << endl;
} // end Date constructor

// print Date object in form month/day/year
void Date::print() const
{

cout << month << '/' << day << '/' << year;
} // end function print

// output Date object to show when 1its destructor is called
Date::~Date()

{

cout << "Date object destructor for date ";
print();
cout << endl;

} // end ~Date destructor

// utility function to confirm proper day value based on
// month and year; handles leap years, too
int Date::checkDay( int testDay ) const
{
static const int daysPerMonth[ monthsPerYear + 1 ] =
{ o0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

Fig. 10.11 | Date class member-function definitions. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



48
49
50
51
52
53
54
55
56
57
58
59
60

// determine whether testDay is valid for specified month
if ( testDay > 0 &% testDay <= daysPerMonth[ month ] )
return testDay;

// February 29 check for Tleap year

if ( month == 2 && testDay == 29 && ( year % 400 == 0 ||
(year % 4 == 0 && year % 100 !'=0 ) ) )
return testDay;

cout << "Invalid day (" << testDay << ") set to 1.\n";
return 1; // Teave object in consistent state if bad value
} // end function checkDay

Fig. 10.11 | Date class member-function definitions. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.



VoOo~NGOWNbh WN=—

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

// Fig. 10.12: Employee.h

// Employee class definition showing composition.
// Member functions defined in Employee.cpp.
#ifndef EMPLOYEE_H

#define EMPLOYEE_H

#include <string>
#include "Date.h" // include Date class definition
using namespace std;

class Employee
{
public:
Employee( const string &, const string &,
const Date &, const Date & );
void print() const;
~Employee(); // provided to confirm destruction order
private:
string firstName; // composition: member object
string lastName; // composition: member object
const Date birthDate; // composition: member object
const Date hireDate; // composition: member object
}; // end class Employee

#endif

Fig. 10.12 | Employee class dEﬁnit@@@M‘iﬂﬁl PRERUASEHGERtion, Inc. All Rights Reserved.



VoOoO~NONND WN =

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 10.13: Employee.cpp

// Employee class member-function definitions.
#include <iostream>

#include "Employee.h"™ // Employee class definition
#include "Date.h" // Date class definition

using namespace std;

// constructor uses member initializer Tist to pass initializer
// values to constructors of member objects
Employee: :Employee( const string &first, const string &last,
const Date &dateOfBirth, const Date &dateOfHire )
: firstName( first ), // initialize firstName
TastName( last ), // initialize TastName
birthDate( dateOfBirth ), // initialize birthDate
hireDate( dateOfHire ) // initialize hireDate

// output Employee object to show when constructor is called
cout << "Employee object constructor: "
<< firstName << ' ' << TastName << endl;
} // end Employee constructor

Fig. 10.13 | Employee class member-function definitions, including constructor
with a member initializer list. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

10



22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

// print Employee object
void Employee::print() const

{

mn m

cout << TastName << ", << firstName <<
hireDate.print();
cout << " Birthday: ";
birthDate.print();
cout << endl;

} // end function print

mn m

Hired: ";

// output Employee object to show when 1its destructor 1is called
Employee: :~Employee()
{

cout << "Employee object destructor:

mn n

<< lastName << ", << firstName << endl;
} // end ~Employee destructor

Fig. 10.13 | Employee class member-function definitions, including constructor
with a member initializer list. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

11



10.8 Composition: Objects as Merbers
of Classes (cont.)

* As you study class Date (Fig. 10.102, notice that
the class doés not provide a constructor that
receives a parameter of type Date.

 Why can the Emp loyee constructor’s member
initializer list initialize the b1 rthDate and
h1reDate objects by passing Date object’s to
their Date constructors?

« The compiler provides each class with a default
copy constructor that copies each data member of
the constructor’s argument object into the
corresponding member of the object being
Initialized.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19

// Fig. 10.14: figl0_14.cpp

// Demonstrating composition--an object with member objects.
#include <iostream>

#include "Employee.h" // Employee class definition

using namespace std;

int main()
{
Date birth( 7, 24, 1949 );
Date hire( 3, 12, 1988 );
EmpToyee manager( "Bob"™, "Blue", birth, hire );

cout << endl;
manager.print(Q;

cout << "\nTest Date constructor with invalid values:\n";
Date lastDayOff( 14, 35, 1994 ); // invalid month and day
cout << endl;

} // end main

Fig. 10.14 | Demonstrating composition—an object with member objects. (Part |

of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13



Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988

Employee object constructor: Bob Blue
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Test Date constructor with invalid values:
Invalid month (14) set to 1.

Invalid day (35) set to 1.

Date object constructor for date 1/1/1994

Date object destructor for date 1/1/1994
Employee object destructor: Blue, Bob

Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949
Date object destructor for date 3/12/1988
Date object destructor for date 7/24/1949

There are actually five constructor
calls when an EmpTloyee is
constructed—two calls to the
string class’s constructor (lines
12-13 of Fig. 10.13), two callsto the
Date class’s default copy
constructor (lines 14—15 of

Fig. 10.13) and the call to the
Employee class’s constructor.

Fig. 10.14 | Demonstrating composition—an object with member objects. (Part 2

of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

14



0.3 Composition: Objecis as Members
of Classes (cont.)

» If a member object is not initialized through a
member 1nitializer, the member object’s
default constructor will be called implicitly.

 Values, If any, established by the default
constructor can be overrid-den by set
functions.

« However, for complex initialization, this

approach may require significant additional
work and time.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



Common Programming Error 10.6

A compilation error occurs if a member object is not ini-
tialized with a member initializer and the member 0b-
ject’s class does not provide a default constructor (i.e., the
member object’s class defines one or more constructors,
but none is a default constructor).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



. Performance Tip 10.2

Initialize member objects explicitly through member ini-
tializers. This eliminates the overhead of “doubly initial-
izing” member objects—once when the member object’s
default constructor is called and again when set func-
tions are called in the constructor body (or later) to ini-
tialize the member object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17



Software Engineering Observation 10.7

If a class member is an object of another class, making
that member object pub1ic does not violate the
encapsulation and hiding of that member object s
private members. But, it does violate the
encapsulation and hiding of the containing class’s
implementation, so member objects of class types should
still be private, like all other data members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18



10.4 Tr1end Funetions and Triend
Classes

A friend function of a class is defined outside that
class’s scope, yet has the right to access the non-
pub11c (and pub11c) members of the class.

Standalone functions, entire classes or member
functions of other classes may be declared to be
friends of another class.

Using friend functions can enhance performance.
Friendship is granted, not taken.

The friendship relation is neither symmetric nor
transitive.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19



Software Engineering Observation 10.8
Even though the prototypes for friend functions appear
in the class definition, friends are not member functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



Software Engineering Observation 10.9
Member access notions of private, protected and
public are not relevant to friend declarations, so
friend declarations can be placed anywhere in a class

definition.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21



E Good Programming Practice 10. |

Place all friendship declarations first inside the class def-

inition’s body and do not precede them with any access

specifier.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



Software Engineering Observation 10.10

Some people in the OOP community feel that
“friendship” corrupts information hiding and weakens
the value of the object-oriented design approach. In this
text, we identify several examples of the responsible use of

[riendship.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



1 // Fig. 10.15: figl0_15.cpp

2 // Friends can access private members of a class.
3 #include <iostream>

4 using namespace std;

5

6 // Count class definition

7 class Count

8 {

9 friend void setX( Count &, int ); // friend declaration
10 public:

11 // constructor

12 Count()

13 : xC0) // initialize x to O
14 {

15 // empty body

16 } // end constructor Count

17

18 // output X

19 void print() const
20 {
21 cout << X << endl;
22 } // end function print

Fig. 10.15 | Friends can access private members of a class. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



23

private:

24 int x; // data member

25 }; // end class Count

26

27 // function setX can modify private data of Count

28 // because setX is declared as a friend of Count (line 9)
29 void setX( Count &c, int val )

30 {

31 c.X = val; // allowed because setX is a friend of Count
32 1} // end function setX

33

34 1int main(Q)

35 {

36 Count counter; // create Count object

37

38 cout << "counter.x after instantiation: ";

39 counter.print();

40

41 setX( counter, 8 ); // set x using a friend function
42 cout << "counter.x after call to setX friend function: ";
43 counter.print();

44 1} // end main
Fig. 10.15 | Friends can access private members of a class. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25



counter.x after instantiation: O
counter.x after call to setX friend function: 8

Fig. 10.15 | Friends can access private members of a class. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



10.5 Using the ths Pointer

How do member functions know which object’s data
members to manipulate? Every object has access to its own
address through a pointer called this (a C++ keyword).

The th1is pointer is not part of the object itself.

— The th1s pointer is passed (by the compiler) as an implicit
argument to each of the object’s non-static member functions.

Obijects use the this pointer implicitly or explicitly to

reference their data members and member functions.

The type of the th1is pointer depends on the type of the

object and whether the member function in which this is

used iIs declared const.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

27



oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20

// Fig. 10.16: figl0_16.cpp

// Using the this pointer to refer to object members.
#include <iostream>

using namespace std;

class Test

{

public:
Test( int = 0 ); // default constructor
void print() const;

private:
int x;

}; // end class Test

// constructor
Test::Test( int value )
: x( value ) // initialize x to value
{
// empty body
} // end constructor Test

Fig. 10.16 | this pointer implicitly and explicitly accessing an object’s members.
(Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

28



21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

// print x using implicit and explicit this pointers;
// the parentheses around *this are required
void Test::print() const

{

// implicitly use the this pointer to access the member x

cout << X = << X;

// explicitly use the this pointer and the arrow operator
// to access the member x

cout << "\n this->x = " << this->x;

// explicitly use the dereferenced this pointer and
// the dot operator to access the member x

cout << "\n(*this).x = " << ( *this ).x << endl;
} // end function print

int main(Q)

{
Test testObject( 12 ); // instantiate and initialize testObject

testObject.print();
} // end main

Fig. 10.16 | this pointer implicitly and explicitly accessing an object’s members.
(Part 2 of 3_) ©1992-2010 by Pearson Education, Inc. All Rights Reserved.

29



X = 12
this->x = 12
(*this).x = 12

Fig. 10.16 | this pointer implicitly and explicitly accessing an object’s members.
(Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



Common Programming Error 10.7

Attempting to use the member selection operator (. ) with
a pointer to an object is a compilation error—the dot
member selection operator may be used only with an lval-
ue such as an object’s name, a reference to an object or a
dereferenced pointer to an object.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

31



10.5 Using the th1s Pointer (cont.)

 Another use of the th1is pointer is to enable
cascaded member-function calls

— Invoking multiple functions in the same statement

* The program of Figs. 10.17-10.19 modifies
class T1me’s set functions set77me,
setHour, set-Minuteand setSecond
such that each returns a reference to a 77me
object to enable cascaded member-function
calls.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



Ooe~NGOWNbh WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 10.17: Time.h
// Cascading member function calls.

// Time class definition.

// Member functions defined in Time.cpp.
#ifndef TIME H

#define TIME_H

class Time
{
public:
Time( int = 0, int = 0, int = 0 ); // default constructor

// set functions (the Time & return types enable cascading)
Time &setTime( int, int, int ); // set hour, minute, second
Time &setHour( int ); // set hour

Time &setMinute( int ); // set minute

Time &setSecond( int ); // set second

// get functions (normally declared const)
int getHour() const; // return hour

int getMinute() const; // return minute
int getSecond() const; // return second

Fig. 10.17 | Time class definition modified to enable cascaded member-function

calls. (Part I of 2.) ©1992-2010 by Pearson Education, Inc. All Rights Reserved.

33



24

25 // print functions (normally declared const)
26 void printUniversal() const; // print universal time
27 void printStandard() const; // print standard time
28 private:
29 int hour; // 0 - 23 (24-hour clock format)
30 int minute; // 0 - 59
31 int second; // 0 - 59
32 }; // end class Time
33
34 #endif
Fig. 10.17 | Time class definition modified to enable cascaded member-function

calls

. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34



VoOoO~NONND WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 10.18: Time.cpp

// Time class member-function definitions.
#include <jostream>

#include <iomanip>

#include "Time.h" // Time class definition
using namespace std;

// constructor function to initialize private data;
// calls member function setTime to set variables;
// default values are 0 (see class definition)
Time::Time( int hr, int min, int sec )
{

setTime( hr, min, sec );
} // end Time constructor

// set values of hour, minute, and second
Time &Time::setTime( int h, int m, int s ) // note Time & return
{
setHour( h );
setMinute( m );
setSecond( s );
return *this; // enables cascading
} // end function setTime

Fig. 10.18 | Time class member-function definitions modified to enable cascaded

35



24

25 // set hour value

26 Time &Time::setHour( int h ) // note Time & return

27 {

28 hour = ( h>= 0&% h <24 ) ? h: 0; // validate hour

29 return *this; // enables cascading

30 1} // end function setHour

31

32 // set minute value

33 Time &Time::setMinute( int m ) // note Time & return

34 {

35 minute = (m>=0& m < 60 ) ? m: 0; // validate minute
36 return *this; // enables cascading

37 1} // end function setMinute

38

39 // set second value

40 Time &Time::setSecond( int s ) // note Time & return

4

42 second = ( s >=0 &% s <60 ) ? s : 0; // validate second
43 return *this; // enables cascading

44 } // end function setSecond

45
Fig. 10.18 | Time class member-function definitions modified to enable cascaded

member-function calls. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36



46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

// get hour value
int Time::getHour() const
{
return hour;
} // end function getHour

// get minute value
int Time::getMinute() const
{ -
return minute;
} // end function getMinute

// get second value
int Time::getSecond() const
{
return second;
} // end function getSecond

Fig. 10.18 | Time class member-function definitions modified to enable cascaded

member-function calls. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

37



64 // print Time in universal-time format (HH:MM:SS)
65 void Time::printUniversal() const

66 {
67 cout << setfill( '0" ) << setw( 2 ) << hour << ":"
68 << setw( 2 ) << minute << ":" << setw( 2 ) << second;

69 1} // end function printUniversal

70

71 // print Time in standard-time format (HH:MM:SS AM or PM)
72 void Time::printStandard() const

73 {

74 cout << ( C hour == 0 || hour == 12 ) ? 12 : hour % 12 )

75 << """ << setfill( '0" ) << setw( 2 ) << minute

76 << """ << setw( 2 ) << second << ( hour < 12 ? " AM" : " PM" );

77 } // end function printStandard

Fig. 10.18 | Time class member-function definitions modified to enable cascaded

member-function calls. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

38



1 // Fig. 10.19: figl0_19.cpp

2 // Cascading member-function calls with the this pointer.
3 #include <iostream>

4 #include "Time.h" // Time class definition

5 using namespace std;

6

7 dint mainQ

8 {

9 Time t; // create Time object

10

11 // cascaded function calls

12 t.setHour( 18 ).setMinute( 30 ).setSecond( 22 );
13

14 // output time in universal and standard formats
15 cout << "Universal time: ";

16 t.printUniversal();

17

18 cout << "\nStandard time: ";

19 t.printStandard();
20
21 cout << "\n\nNew standard time: ";
22

Fig. 10.19 | Cascading member-function calls with the this pointer. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

39



23 // cascaded function calls
24 t.setTime( 20, 20, 20 ).printStandard();
25 cout << endl;

26 } // end main

Universal time: 18:30:22
Standard time: 6:30:22 PM

New standard time:

8:20:20 PM

Fig. 10.19 | Cascading member-function calls with the this pointer. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

40



10.6 static Class Members

* In certain cases, only one copy of a variable
should be shared by all objects of a class.

e A static data member is used for these and
other reasons.

* Such a variable represents “class-wide”
Information.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41



<53 Performance Tip 10.3
27 Use static data members to save storage when a single

copy of the data for all objects of a class will suffice.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



10.6 static Class Members (cont.)

Although they may seem like global variables, a class’s stat1c data
members have class scope.

stati1c members can be declared public, private or
protected.

,(A)\fundamental-type static data member is initialized by default to

If you want a different initial value, a static data member can be
Initialized once.

A static const data member of 1nt or enum type can be
Initialized in its declaration in the class definition.

All other stat1ic data members must be defined at global namespace
scope and can be initialized only in those definitions.

If a stat1c data member is an object of a class that provides a default
constructor, the static data member need not be initialized because
its default constructor will be called.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43



10.6 static Class Members (cont.)

A class’s private and protected stat1c members are
normally accessed through the class’s pub11c member
functions or friends.

A class’s stat1c members exist even when no objects of that
class exist.

To access a pub11c static class member when no objects of
the class exist, prefix the class name and the binary scope
resolution operator (: :) to the name of the data member.

Toaccess a private or protected static class member
when no objects of the class exist, provide a public static
member function and call the function by prefix-ing its name
with the class name and binary scope resolution operator.

A static member function is a service of the class, not of a
specific object of the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



Software Engineering Observation 10.11

A class’s static data members and static member
Sfunctions exist and can be used even if no objects of that
class have been instantiated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45



Common Programming Error 10.8

Its a compilation error to include keyword static in
the definition of a static data member at global
namespace scope.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



1 // Fig. 10.20: Employee.h

2 // Employee class definition with a static data member to
3 // track the number of Employee objects in memory

4 #ifndef EMPLOYEE H

5 #define EMPLOYEE H

6

7 #include <string>

8 using namespace std;

9

10 class Employee

1 {

12 public:

13 Employee( const string &, const string & ); // constructor
14 ~Employee(); // destructor

I5 string getFirstName() const; // return first name

16 string getlLastName() const; // return last name

17

18 // static member function

19 static int getCount(); // return number of objects instantiated
20 private:
21 string firstName;
22 string TastName;

Fig. 10.20 | Employee class definition with a static data member to track the

nunﬂmrofEmp1oyeeobmcminrnemonLgPanI of 2.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved.

47



23
24
25
26
27
28

// static data

static int count; // number of objects instantiated

}; // end class Employee

#endif

Fig. 10.20 | Employee class definition with a static data member to track the
number of EmpTloyee objects in memory. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

48



// Fig. 10.21: Employee.cpp

// Employee class member-function definitions.
#include <iostream>

#include "Employee.h"™ // Employee class definition
using namespace std;

// define and initialize static data member at global namespace scope
int Employee::count = 0; // cannot include keyword static

VoOoO~NONND WN =

10 // define static member function that returns number of
I1 // Employee objects instantiated (declared static in Employee.h)
12 1int Employee::getCount()

13 {

14 return count;

I5 } // end static function getCount
16

1T // constructor initializes non-static data members and
I8 // increments static data member count
19 Employee::Employee( const string &first, const string &last )

20 : firstName( first ), lastName( last )
21 {
22 ++count; // increment static count of employees

Fig. 10.21 | Employee class member-function definitions. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

49



"

23 cout << "Employee constructor for " << firstName

24 << ' ' << lastName << " called." << endl;
25 1} // end Employee constructor
26

27 // destructor deallocates dynamically allocated memory
28 Employee::~Employee()

29 {

30 cout << "~Employee() called for " << firstName
31 << ' ' << TastName << endl;

32 --count; // decrement static count of employees
33 1} // end ~Employee destructor

34

35 // return first name of employee
36 string Employee::getFirstName() const

37 {

38 return firstName; // return copy of first name
39 1} // end function getFirstName

40

41 // return last name of employee

42 string Employee::getLastName() const

43 {

44 return lastName; // return copy of last name
45 1} // end function getLastName

Fig. 10.21 | Employee class member-function definitions. (Part 2 of 2.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50



Ooe~NGOWNbh WN =

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 10.22: figl0 22.cpp

// static data member tracking the number of objects of a class.
#include <iostream>

#include "Employee.h" // Employee class definition

using namespace std;

int main()
{
// no objects exist; use class name and binary scope resolution
// operator to access static member function getCount
cout << "Number of employees before instantiation of any objects is
<< Employee::getCount() << endl; // use class name

// the following scope creates and destroys
// Employee objects before main terminates
{
Employee el( "Susan”, "Baker" );
Employee e2( "Robert"™, "Jones" );

// two objects exist; call static member function getCount again

// using the class name and the binary scope resolution operator

cout << "Number of employees after objects are instantiated is "
<< Employee::getCount();

Fig. 10.22 | static data member tracking the number of objects of a class. (Part |

of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

51



24

25 cout << "\n\nEmployee 1: "

26 << el.getFirstName() << " " << el.getLastName()

27 << "\nEmployee 2: "

28 << e2.getFirstName() << " " << e2.getlLastName() << "\n\n";
29 } // end nested scope in main

30

31 // no objects exist, so call static member function getCount again
32 // using the class name and the binary scope resolution operator
33 cout << "\nNumber of employees after objects are deleted is "

34 << Employee::getCount() << endl;

35 } // end main

Fig. 10.22 | static data member tracking the number of objects of a class. (Part 2
of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52



Number of employees before instantiation of any objects is 0
Employee constructor for Susan Baker called.

Employee constructor for Robert Jones called.

Number of employees after objects are instantiated is 2

Employee 1: Susan Baker
Employee 2: Robert Jones

~EmpToyee() called for Robert Jones
~Employee() called for Susan Baker

Number of employees after objects are deleted is 0

Fig. 10.22 | static data member tracking the number of objects of a class. (Part 3
of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

53



10.6 static Class Members (cont.)

« A member function should be declared static ifit
does not access non-static data members or non-
static member functions of the class.

« A static member function does not have a this
pointer, because static data members and
static member functions exist independently of
any ob-jects of a class.

« The th1s pointer must refer to a specific object of
the class, and when a static member function is

called, there might not be any objects of its class Iin
memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54



Common Programming Error 10.9
Using the this pointer in a static member function
is a compilation error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55



3 Common Programming Error 10.10

Al Declaring a static member function const is a com-
pilation error. The const qualifier indicates that a
function cannot modify the contents of the object in
which it operates, but static member functions exist
and operate independently of any objects of the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56



Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

57



