

• The C++ standard libraries provide an extensive set of
input/output capabilities.

• C++ uses type-safe I/O.

• Each I/O operation is executed in a manner sensitive to the
data type.

• If an I/O member function has been de-fined to handle a
particular data type, then that member function is called to
handle that data type.

• If there is no match between the type of the actual data and a
function for handling that data type, the compiler generates an
error.

• Thus, improper data cannot ―sneak‖ through the system.

• Users can specify how to perform I/O for objects of user-
defined types by overloading the stream insertion operator
(<<) and the stream extraction operator (>>).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

• C++ I/O occurs in streams, which are sequences of bytes.

• In input operations, the bytes flow from a device (e.g., a keyboard, a disk
drive, a network connection, etc.) to main memory.

• In output operations, bytes flow from main memory to a device (e.g., a
display screen, a printer, a disk drive, a network connection, etc.).

• An application associates meaning with bytes.

• The system I/O mechanisms should transfer bytes from devices to memory
(and vice versa) consistently and reliably.

• Such transfers often involve some mechanical motion, such as the rotation
of a disk or a tape, or the typing of keystrokes at a keyboard.

• The time these transfers take is typically much greater than the time the
processor requires to manipulate data internally.

• Thus, I/O operations require careful planning and tuning to ensure optimal
performance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

• C++ provides both ―low-level‖ and ―high-level‖ I/O capabilities.

• Low-level I/O capabilities (i.e., unformatted I/O) specify that
some number of bytes should be transferred device-to-memory or
memory-to-device.

• In such transfers, the individual byte is the item of interest.

• Such low-level capabilities provide high-speed, high-volume
transfers but are not particularly convenient.

• Programmers generally prefer a higher-level view of I/O (i.e.,
formatted I/O), in which bytes are grouped into meaningful units,
such as integers, floating-point numbers, characters, strings and
user-defined types.

• These type-oriented capabilities are satisfactory for most I/O
other than high-volume file processing.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• The C++ iostream library provides hundreds of I/O
capabilities.

• Several header files contain portions of the library interface.

• Most C++ programs include the <iostream> header file,
which declares basic services required for all stream-I/O
operations.

• The <iostream> header file defines the cin, cout,
cerr and clog objects, which correspond to the standard
input stream, the standard output stream, the unbuffered
standard error stream and the buffered standard error
stream, respectively.

• Both unformatted- and formatted-I/O services are provided.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• The <iomanip> header declares services useful for

performing formatted I/O with so-called

parameterized stream manipulators, such as setw
and setprecision.

• The <fstream> header declares services for user-

controlled file processing.

• C++ implementations generally contain other I/O-

related libraries that provide sys-tem-specific

capabilities, such as the controlling of special-purpose

devices for audio and video I/O.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• The iostream library provides many templates for
handling common I/O operations.

• Class template basic_istream supports stream-input
operations, class template basic_ostream supports stream-
output operations, and class template basic_iostream
supports both stream-input and stream-output operations.
– Each template has a predefined template specialization that enables
char I/O.

– In addition, the iostream library provides a set of typedefs
that provide aliases for these template specializations.

– The typedef specifier declares synonyms (aliases) for previously
defined data types.

– Creating a name using typedef does not create a data type;
typedef creates only a type name that may be used in the
program.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• The typedef istream represents a specialization of

basic_istream that enables char input.

• The typedef ostream represents a specialization of

basic_ostream that enables char output.

• The typedef iostream represents a specialization

of basic_iostream that enables both char input

and output.

• We use these typedefs throughout this chapter.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• Predefined object cin is an istream instance and

is said to be ―connected to‖ (or attached to) the

standard input device, which usually is the keyboard.

• The >> operator is overloaded to input data items of

fundamental types, strings and pointer values.

• The predefined object cout is an ostream instance

and is said to be ―connected to‖ the standard out-put

device, which usually is the display screen.

• The << operator is overloaded to output data items of

fundamental types, strings and pointer values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• The predefined object cerr is an ostream instance and is
said to be ―connected to‖ the standard error device, normally
the screen.

• Outputs to object cerr are unbuffered, implying that each
stream insertion to cerr causes its output to appear
immediately—this is appropriate for notifying a user promptly
about errors.

• The predefined object clog is an instance of the ostream
class and is said to be ―connected to‖ the standard error device.

• Outputs to clog are buffered.

• This means that each insertion to clog could cause its output
to be held in a buffer until the buffer is filled or until the buffer
is flushed.

• Buffering is an I/O performance-enhancement technique
discussed in operating-systems courses.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• Formatted and unformatted output capabilities

are provided by ostream.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

• The << operator has been overloaded to output a

char * as a null-terminated string.

• To output the address, you can cast the char * to a

void * (this can be done to any pointer variable).

• Figure 15.3 demonstrates printing a char * variable

in both string and address formats.

• The address prints as a hexadecimal (base-16)

number, which might differ among computers.

• To learn more about hexadecimal numbers, read

Appendix D.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

• We can use the put member function to output characters.

• For example, the statement
• cout.put('A');

• displays a single character A.

• Calls to put may be cascaded, as in the statement
• cout.put('A').put('\n');

• which outputs the letter A followed by a newline character.

• As with <<, the preceding statement executes in this manner, because
the dot operator (.) associates from left to right, and the put member
function returns a reference to the ostream object (cout) that
received the put call.

• The put function also may be called with a numeric expression that
represents an ASCII value, as in the following statement

• cout.put(65);

• which also out-puts A.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

• Formatted and unformatted input capabilities are provided by istream.

• The stream extraction operator (>>) normally skips white-space characters
(such as blanks, tabs and newlines) in the input stream; later we’ll see how
to change this behavior.

• After each input, the stream extraction operator returns a reference to the
stream object that received the extraction message (e.g., cin in the
expression cin >> grade).

• If that reference is used as a condition, the stream’s overloaded void *
cast operator function is implicitly invoked to convert the reference into a
non-null pointer value or the null pointer based on the success or failure of
the last input operation.
– A non-null pointer converts to the bool value true to indicate success and

the null pointer converts to the bool value false to indicate failure.

• When an attempt is made to read past the end of a stream, the stream’s
overloaded void * cast operator returns the null pointer to indicate end-of-
file.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

• The get member function with no arguments inputs one character from
the desig-nated stream (including white-space characters and other
nongraphic characters, such as the key sequence that represents end-of-
file) and returns it as the value of the function call.

• This version of get returns EOF when end-of-file is encoun-tered on
the stream.

• Figure 15.4 demonstrates the use of member functions eof and get on
input stream cin and member function put on output stream cout.

• The user enters a line of text and presses Enter followed by end-of-file
(<Ctrl>-z on Microsoft Windows systems, <Ctrl>-d on UNIX and
Macintosh systems).

• This program uses the version of istream member function get that
takes no arguments and returns the character being input (line 15).

• Function eof returns true only after the program attempts to read
past the last character in the stream.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• The get member function with a character-reference argument inputs
the next character from the input stream (even if this is a white-space
character) and stores it in the character ar-gument.

• This version of get returns a reference to the istream object for
which the get member function is being invoked.

• A third version of get takes three arguments—a character array, a size
limit and a delimiter (with default value '\n').

• This version reads characters from the input stream.

• It either reads one fewer than the specified maximum number of
characters and terminates or terminates as soon as the delimiter is read.

• A null character is inserted to terminate the input string in the character
array used as a buffer by the pro-gram.

• The delimiter is not placed in the character array but does remain in the
input stream (the delimiter will be the next character read).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• Figure 15.5 compares input using stream

extraction with cin (which reads characters

until a white-space character is encountered)

and input using cin.get.

• The call to cin.get (line 22) does not

specify a delimiter, so the default '\n'
character is used.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• Member function getline operates similarly to the

third version of the get member function and inserts

a null character after the line in the character array.

• The getline function removes the delimiter from

the stream (i.e., reads the character and discards it),

but does not store it in the character ar-ray.

• The program of Fig. 15.6 demonstrates the use of the

getline member function to input a line of text

(line 13).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• The ignore member function of istream reads and discards a
designated number of characters (the default is one) or terminates
upon encountering a designated delimiter (the default is EOF,
which causes ignore to skip to the end of the file when reading
from a file).

• The putback member function places the previous character
obtained by a get from an input stream back into that stream.

– This function is useful for applications that scan an input stream
looking for a field beginning with a specific character.

– When that character is input, the application returns the character to the
stream, so the character can be included in the input data.

• The peek member function returns the next character from an
input stream but does not remove the character from the stream.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

• C++ offers type-safe I/O.

• The << and >> operators are overloaded to accept
data items of specific types.

• If unexpected data is processed, various error bits
are set, which the user may test to determine
whether an I/O operation succeeded or failed.

• If operator << has not been overloaded for a user-
defined type and you attempt to input into or
output the contents of an object of that user-
defined type, the compiler reports an error.

• This enables the program to ―stay in control.‖

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• Unformatted input/output is performed using the read and write member
functions of istream and ostream, respectively.

• Member function read inputs bytes to a character array in memory;
member function write outputs bytes from a character array.

• These bytes are not formatted in any way.

• They’re input or output as raw bytes.

• The read member function inputs a designated number of characters into
a character array.

• If fewer than the designated number of characters are read, failbit is
set.

• Section 15.8 shows how to determine whether failbit has been set.

• Member function gcount reports the number of characters read by the last
input operation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• Figure 15.7 demonstrates istream member

functions read and gcount, and ostream
member function write.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

• We can control the precision of floating-point numbers (i.e., the
number of digits to the right of the decimal point) by using either
the setprecision stream manipulator or the precision
member function of ios_base.

• A call to either of these sets the precision for all subse-quent
output operations until the next precision-setting call.

• A call to member function precision with no argument
returns the current precision setting (this is what you need to use
so that you can restore the original precision eventually after a
―sticky‖ setting is no longer needed).

• The program of Fig. 15.9 uses both member function
precision (line 22) and the setprecision manipula-tor
(line 31) to print a table that shows the square root of 2, with
precision varying from 0 to 9.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

• The width member function (of base class ios_base) sets the field width
(i.e., the number of character positions in which a value should be output or the
maximum number of characters that should be input) and returns the previous
width.

• If values output are narrower than the field width, fill characters are inserted as
padding.

• A value wider than the designated width will not be truncated—the full number
will be printed.

• The width function with no argument returns the current setting.

• Figure 15.10 demonstrates the use of the width member function on both
input and output.

• On input into a char array, a maximum of one fewer characters than the width
will be read.

• Remem-ber that stream extraction terminates when nonleading white space is
encountered.

• The setw stream manipulator also may be used to set the field width.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

• C++ provides data type bool, whose values may be
false or true, as a preferred alternative to the old style
of using 0 to indicate false and nonzero to indicate
true.

• A bool variable outputs as 0 or 1 by default.

• However, we can use stream manipulator boolalpha to set
the output stream to display bool values as the strings
"true" and "false".

• Use stream manipulator noboolalpha to set the output
stream to display bool values as integers (i.e., the default
setting).

• The program of Fig. 15.20 demonstrates these stream
manipulators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

• The state of a stream may be tested through bits in class
ios_base.

• The eofbit is set for an input stream after end-of-file is encoun-
tered.

• A program can use member function eof to determine whether
end-of-file has been encountered on a stream after an attempt to
extract data beyond the end of the stream.

• The failbit is set for a stream when a format error occurs on
the stream and no characters are input (e.g., when you attempt to
read a number and the user enters a string).
– When such an error occurs, the characters are not lost.

• The fail member function reports whether a stream operation
has failed.

• Usually, recovering from such errors is possible.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

• The badbit is set for a stream when an error occurs that results in the
loss of data.

• The bad member function reports whether a stream operation failed.
– Generally, such serious fail-ures are nonrecoverable.

• The goodbit is set for a stream if none of the bits eofbit, failbit
or bad-bit is set for the stream.

• The good member function returns true if the bad, fail and eof
functions would all return false.

• I/O operations should be performed only on ―good‖ streams.

• The rdstatemember function returns the stream’s error state.

• The preferred means of testing the state of a stream is to use member
functions eof, bad, fail and good—using these func-tions does not
require you to be familiar with particular status bits.

• The clear member function is used to restore a stream’s state to
―good,‖ so that I/O may proceed on that stream.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

• The program of Fig. 15.22 demonstrates member functions

rdstate, eof, fail, bad, good and clear.

• The operator! member function of basic_ios returns

true if the badbit is set, the failbit is set or both are

set.

• The operator void * member function returns false
(0) if the badbit is set, the failbit is set or both are

set.

• These functions are use-ful in file processing when a

true/false condition is being tested under the control of

a se-lection statement or repetition statement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

• Storage of data in memory is temporary.

• Files are used for data persistence—permanent reten-tion of
data.

• Computers store files on secondary storage devices, such as
hard disks, CDs, DVDs, flash drives and tapes.

• In this chapter, we explain how to build C++ programs that
create, update and process data files.

• We consider both sequential files and random-access files.

• We compare formatted-data file processing and raw-data
file processing.

• We examine techniques for input of data from, and output
of data to, string streams rather than files in Chapter 18,
Class string and String Stream Processing.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

• Ultimately, all data items that digital computers process are
reduced to combinations of zeros and ones.

– It’s simple and economical to build electronic devices that can
assume two stable states—one state represents 0 and the other
represents 1.

• The smallest data item that computers support is called a bit

– Short for ―binary digit‖—a digit that can assume one of two values

– Each data item, or bit, can assume either the value 0 or the value 1.

• Computer circuitry performs various simple bit
manipulations, such as examining the value of a bit, setting
the value of a bit and reversing a bit (from 1 to 0 or from 0
to 1).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

• Programming with data in the low-level form of bits is
cumbersome.

• It’s preferable to program with data in forms such as
decimal digits (0–9), letters (A–Z and a–z) and special
symbols (e.g., $, @, %, &, * and many others).

• Digits, letters and special symbols are referred to as
characters.

• The set of all characters used to write programs and
represent data items on a particular computer is called that
computer’s character set.

• Every character in a computer’s character set is represented
as a pattern of 1s and 0s.

• Bytes are composed of eight bits.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

• You create programs and data items with

characters; computers manipulate and process

these characters as patterns of bits.

• Each char typically occupies one byte.

• C++ also provides data type wchar_t, which

can occupy more than one byte

– to support larger character sets, such as the

Unicode® character set; for more information on

Unicode®, visit www.unicode.org

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

• Just as characters are composed of bits, fields are
composed of characters.

• A field is a group of characters that conveys some
meaning.
– For example, a field consisting of uppercase and

lowercase letters can represent a person’s name.

• Data items processed by computers form a data
hierarchy (Fig. 17.1), in which data items become
larger and more complex in structure as we
progress from bits, to characters, to fields and to
larger data aggregates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59

• Typically, a record (which can be represented as a

class in C++) is composed of several fields (called

data members in C++).

– Thus, a record is a group of related fields.

• A file is a group of related records.

• To facilitate retrieving specific records from a file, at

least one field in each record is chosen as a record

key.

• A record key identifies a record as belonging to a

particular person or entity and distinguishes that

record from all others.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60

• There are many ways of organizing records in a file.

• A common type of organization is called a sequential

file, in which records typically are stored in order by

a record-key field.

• Most businesses use many different files to store data.

• A group of related files often are stored in a database.

• A collection of programs designed to create and

manage databases is called a database management

system (DBMS).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61

• C++ views each file as a sequence of bytes (Fig. 17.2).

• Each file ends ei-ther with an end-of-file marker or at a
specific byte number recorded in an operating-system-main-
tained, administrative data structure.

• When a file is opened, an object is created, and a stream is
associated with the object.

• In Chapter 15, we saw that objects cin, cout, cerr and
clog are created when <iostream> is included.

• The streams associated with these objects provide
communication channels between a program and a particular
file or device.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63

• To perform file processing in C++, header files

<iostream> and <fstream> must be included.

• Header <fstream> includes the definitions for the

stream class templates basic_ifstream (for file

input), basic_ofstream (for file output) and

basic_fstream (for file input and output).

• Each class template has a predefined template

specialization that enables char I/O.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64

• The <fstream> library provides typedef aliases for
these template specializations.

• The typedef ifstream represents a specialization of
basic_ifstream that enables char input from a file.

• The typedef ofstream represents a specialization of
basic_ofstream that enables char output to files.

• The typedef fstream represents a specialization of
basic_fstream that enables char input from, and
output to, files.

• Files are opened by creating objects of these stream
template specializations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65

• These templates ―derive‖ from class templates

basic_istream, basic_ostream and

basic_iostream, respectively.

• Thus, all member func-tions, operators and

manipulators that belong to these templates (which

we described in Chapter 15) also can be applied to

file streams.

• Figure 17.3 summarizes the inheritance relationships

of the I/O classes that we’ve discussed to this point.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66

• C++ imposes no structure on a file.

• Thus, a concept like that of a ―record‖ does not exist in a C++ file.

• You must structure files to meet the application’s requirements.

• Figure 17.4 creates a sequential file that might be used in an accounts-
receivable system to help manage the money owed by a company’s
credit clients.

• For each client, the program obtains the client’s account number, name
and balance (i.e., the amount the client owes the company for goods
and services received in the past).

• The data obtained for each client constitutes a record for that client.

• The ac-count number serves as the record key.

• This program assumes the user enters the records in account number
order.
– In a comprehensive accounts receivable system, a sorting capability would be

provided to eliminate this restriction.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 67

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69

• In Fig. 17.4, the file is to be opened for output, so an ofstream object is
created.

• Two arguments are passed to the object’s constructor—the filename and the
file-open mode (line 12).

• For an ofstream object, the file-open mode can be either ios::out to output
data to a file or ios::app to append data to the end of a file (without
modifying any data already in the file).

• Existing files opened with mode ios::out are truncated—all data in the file
is discarded.

• If the specified file does not yet exist, then the ofstream object creates the
file, using that filename.

• The ofstream constructor opens the file—this estab-lishes a ―line of
communication‖ with the file.

• By default, ofstream objects are opened for output, so the open mode is not
required in the constructor call.

• Figure 17.5 lists the file-open modes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 70

71©1992-2010 by Pearson Education, Inc. All Rights Reserved.

