Lecture 25:
Strings &
Recursion

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 10%, 2010

18.6 string Characteristics (cont.)

« The program declares empty string stringl (line 11) and
passes it to function printStatistics (line 14).

« Function printStatistics (lines 42-48) takes a reference
to a const string as an argument and outputs
— capacity (using member function capacity),

— maximum size (using member function max_s1ze), size (using member
function s1ze),

— length (using member function 1ength) and
— whether the string is empty (using member function empty).

 Asize and length of O indicate that there are no characters stored
inastring.

When the initial capacity is O and characters are placed into the

string, memory is allocated to accommodate the new
characters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Performance Tip 18.1
" To minimize the number of times memory is allocated
and deallocated, some string class implementations
provide a default capacity that is larger than the length
of the string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

18.6 string Characteristics (cont.)

Line 30 uses the overloaded += operator to
concatenate a 46-character-long string to stringl.

The capacity has increased to 63 elements and the
length is now 50.

Line 35 uses member function resize to increase the
length of stringl by 10 characters.

The additional elements are set to null characters.

The output shows that the capacity has not changed
and the length is now 60.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18.7 Finding Substrings and Characiers
ina string

« Class string provides const member

functions for finding substrings and characters
inastring.

 Figure 18.6 demonstrates the find functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 18.6: Figl8_06.cpp

// Demonstrating the string find member functions.
#include <iostream>

#include <string>

using namespace std;

int main()

{
string stringl("noon is 12 pm; midnight is not.");
int Tocation;

// find "is" at location 5 and 24

cout << "Original string:\n" << stringl
<< "\n\n(find) \"is\" was found at: " << stringl.find("is")
<< "\n(rfind) \"is\" was found at: " << stringl.rfind("is");

// find 'o' at Tocation 1

location = stringl.find_first_of("misop"”);

cout << "\n\n(find_first_of) found '" << stringl[location]
<< "' from the group \"misop\" at: " << Tocation;

Fig. 18.6 | Demonstrating the string find functions. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// find 'o' at Tocation 29

location = stringl.find_Tlast_of("misop”);

cout << "\n\n(find_Tast_of) found '" << stringl[Tlocation]
<< """ from the group \"misop\" at: " << Tlocation;

// find '1" at Tocation 8

location = stringl.find_first_not_of("noi spm”);

cout << "\n\n(find first not of) '" << stringl[location]
<< "' is not contained in \"noi spm\" and was found at:
<< location;

"

// find '.' at Tocation 12

location = stringl.find_first_not_of("12noi spm");

cout << "\n\n(find first not of) '" << stringl[location]
<< "' is not contained in \"12noi spm\" and was "

"

<< "found at: << location << endl;
// search for characters not in stringl
lTocation = stringl.find_first_not_of(
"noon is 12 pm; midnight is not.");
cout << "\nfind_first_not_of(\"noon is 12 pm; midnight is not.\")

<< " returned: " << location << endl;

} // end main

Fig. 18.6 | Demonstrating the string find functions. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Original string:
noon is 12 pm; midnight is not.

(find) "is" was found at: 5
(rfind) "is" was found at: 24

(find_first_of) found 'o' from the group "misop" at: 1

(find_last_of) found 'o' from the group "misop" at: 29

(find_first_not_of) '1l' is not contained in "noi spm” and was found at: 8
(find_first_not_of) '.' is not contained in "12noi spm”™ and was found at: 12

find_first_not_of("noon is 12 pm; midnight is not.") returned: -1

Fig. 18.6 | Demonstrating the string find functions. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

8.7 Finding Subsirings and Characiers
in @ string (cont.)

 Line 14 attempts to find "1s" in stringl
using function £ 1nd.

—If "1s" is found, the subscript of the starting
location of that string iIs returned.

— If the string is not found, the value
string: :npos (a public static constant
defined in class string) is returned.

— This value is returned by the string f1nd-
related functions to indicate that a substring or
character was not found in the string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

8.7 Finding Subsirings and Characiers
in @ string (cont.)

e Line 15 uses member function r f 1nd to search
stringl backward (i.e., right-to-left).

 If "1s" is found, the subscript location is
returned.

« |If the string is not found, string: : npos is
returned.

 [Note: The rest of the find functions presented
In this section return the same type unless
otherwise noted.]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

8.7 Finding Substrings and Characiers
in @ string (cont.)

Line 18 uses member function find_first_of to locate the
first occurrence in stringl of any character in "misop".

— The searching is done from the beginning of stringl.

Line 23 uses member function find_last_of to find the
last occurrence in stringl of any character in "misop".
— The searching is done from the end of stringl.

Line 28 uses member function find_first_not_of to find
the first character in stringl not contained in "'no-
spm'.

— Searching is done from the beginning of stringl.

Line 34 uses member function find_first_not_of to
find the first character not contained in "'12no1 spm".

— Searching is done from the end of stringl.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

8.7 Finding Subsirings and Characiers
in @ string (cont.)

 Lines 40-41 use member function
find_first_not_of to find the first
character not contained in "'noon 1s 12
pm; midnight 1s not.".
— In this case, the string being searched contains
every character specified in the string argument.

— Because a character was not found,
string: :npos (which has the value -1 in this

case) Is returned.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

8.6 Replacing Characters in a stir1ng

 Figure 18.7 demonstrates stri1ng member
functions for replacing and erasing characters.

 Line 20 uses string member function erase
to erase everything from (and including) the
character in position 62 to the end of
stringl.

 [Note: Each newline character occupies one
element in the string]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

1 // Fig. 18.7: Figl8_07.cpp

2 // Demonstrating string member functions erase and replace.
3 #include <iostream>

4 #include <string>

5 using namespace std;

6

7 1int mainQ

8 {

9 // compiler concatenates all parts into one string

10 string stringl("The values in any left subtree”

11 "\nare less than the value in the"

12 "\nparent node and the values in"

13 "\nany right subtree are greater"

14 "\nthan the value 1in the parent node");

15

16 cout << "Original string:\n" << stringl << endl << endl;
17

18 // remove all characters from (and including) Tocation 62
19 // through the end of stringl
20 stringl.erase(62);
21
22 // output new string
23 cout << "Original string after erase:\n" << stringl
24 << "\n\nAfter first replacement:\n";

Fig. 18.7 | Demonstrating functions erase and replace. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

14

25

26 int position = stringl.find(" "); // find first space
27

28 // replace all spaces with period

29 while (position != string::npos)

30 {

31 stringl.replace(position, 1, ".");

32 position = stringl.find(" ", position + 1);

33 Y // end while

34

35 cout << stringl << "\n\nAfter second replacement:\n";
36

37 position = stringl.find("."); // find first period
38

39 // replace all periods with two semicolons

40 // NOTE: this will overwrite characters

41 while (position != string::npos)

42 {

43 stringl.replace(position, 2, "oooxox;;yyy", 5, 2);
44 position = stringl.find(".", position + 1);

45 } // end while

46

47 cout << stringl << endl;

48 1} // end main

Fig. 18.7 | Demonstrating functions erase and replace. (Part 2 of 3.)
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

Original string:

The values in any left subtree
are less than the value in the
parent node and the values in

any right subtree are greater
than the value in the parent node

Original string after erase:
The values in any left subtree
are less than the value in the

After first replacement:
The.values.in.any.left.subtree
are.less.than.the.value.in.the

After second replacement:
The;;alues;;n;;ny;;eft;;ubtree
are;;ess;;han;;he;;alue;;n;;he

Fig. 18.7 | Demonstrating functions erase and replace. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

16

18.8 Replacing Characters in a String
(cont.)

* Lines 26-33 use T1nd to locate each
occurrence of the space character.

 Each space is then replaced with a period by a
call to stri1ng member function replace.
 Function replace takes three arguments:

— the subscript of the character in the string at
which replacement should begin,

— the number of characters to replace and
— the replacement string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

18.6 Replacing Characters in a stiring
(cont.)

* Lines 3745 use function T1nd to find every period and
another overloaded function replace to replace every
period and its following character with two semicolons.

« The arguments passed to this version of replace are
— the subscript of the element where the replace operation begins,
— the number of characters to replace,

— a replacement character string from which a substring is selected to
use as replacement characters,

— the element in the character string where the replacement substring
begins and

— the number of characters in the replacement character string to use.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

18.9 Inserting Characters into a String

« Class string provides member functions for inserting
characters into a string.

« Figure 18.8 demonstrates the string insert
capabilities.

 Line 19 uses string member function insert to insert
string2’s content before element 10 of stringl.

« Line 22 uses 1nsert to insert string4 before
string3’s element 3.

— The last two arguments specify the starting and last element of
string4 that should be inserted.

— Using string: : npos causes the entire string to be inserted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 18.8: Figl8_08.cpp

// Demonstrating class string insert member functions.
#include <iostream>

#include <string>

using namespace std;

int main()

{

string stringl("beginning end");
string string2("middle ");

string string3("12345678");
string string4("xx");

cout << "Initial strings:\nstringl: "
<< "\nstring2: " << string2 << "\nstring3:
<< "\nstring4: << string4 << "\n\n";

<< stringl

<< string3

m

// insert "middle" at Tocation 10 1in stringl
stringl.insert(10, string2);

// insert "xx" at location 3 1in string3
string3.insert(3, string4, 0, string::npos);

Fig. 18.8 | Demonstrating the string insert member functions. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

24 cout << "Strings after insert:\nstringl: " << stringl
25 << "\nstring2: " << string2 << "\nstring3: " << string3
26 << "\nstring4: " << string4 << endl;

27 1} // end main

Initial

stringl:
string2:
string3:
string4:

Strings

strings:
beginning end
middle
12345678

XX

after insert:

stringl: beginning middle end
string2: middle
string3: 123xx45678
string4: xx
Fig. 18.8 | Demonstrating the string insert member functions. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

18.10

Conversion te C-Style Pointer-
Based char * Strings

« Class string provides member functions for converting
string class objects to C-style pointer-based strings.

- As mentioned earlier, unlike pointer-based strings, strings are
not necessarily null terminated.

» These conversion functions are useful when a given function
takes a pointer-based string as an argument.

- Figure 18.9 demonstrates conversion of strings to pointer-
based strings.

« The string stringlisinitialized to "STRINGS", ptrlis
initialized to 0 and 1ength is initialized to the length of
stringl.

« Memory of sufficient size to hold a pointer-based string
equivalent of string stringl is allocated dynamically and
attached to char pointer ptr2.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21

// Fig. 18.9: Figl8_09.cpp

// Converting to C-style strings.
#include <iostream>

#include <string>

using namespace std;

int main()

{

string stringl("STRINGS"); // string constructor with char® arg
const char *ptrl = 0; // initialize *ptrl

int Tength = stringl.length();

char *ptr2 new char[length + 1 1; // including null

// copy characters from stringl into allocated memory
stringl.copy(ptr2, length, 0); // copy stringl to ptr2 char®
ptr2[length] = '"\0'; // add null terminator

cout << "string stringl is " << stringl
<< "\nstringl converted to a C-Style string is
<< stringl.c_str() << "\nptrl is ";

m

Fig. 18.9 | Converting strings to C-style strings and character arrays. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

23

22
23
24
25
26
27
28
29
30
31
32
33
34

// Assign to pointer ptrl the const char * returned by
// function data(). NOTE: this 1is a potentially dangerous
// assignment. If stringl is modified, pointer ptrl can
// become invalid.

ptrl = stringl.dataQ);

// output each character using pointer
for (int i = 0; i < length; i++)
cout << *(ptrl + i); // use pointer arithmetic
cout << "\nptr2 is " << ptr2 << endl;
delete [] ptr2; // reclaim dynamically allocated memory
} // end main

string stringl is STRINGS

stringl converted to a C-Style string is STRINGS
ptrl is STRINGS

ptr2 is STRINGS

Fig. 18.9 | Converting strings to C-style strings and character arrays. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

24

18.11 Conversion to C-Style Pointers-
Based char * Strings (cont.)

 Line 15 uses string member function copy to copy
object stringl into the char array pointed to by
ptr2.

 Line 16 manually places a terminating null character
In the array pointed to by ptr2.

 Line 20 uses function c_str to obtain a const
char * that points to a null terminated C-style string
with the same content as stringl.

« The pointer is passed to the stream insertion operator
for output.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

18.12 Conversion o C-Style Pointer-
Based char * Strings (cont.)

« Line 26 assigns the const char * ptrl a pointer returned by
class string member function data.

« This member function returns a non-null-terminated C-style
character array.

« We do not modify string stringl in this example.

« If stringl were to be modified (e.g., the string’s dynamic
memory changes its address due to a member function call such
as stringl.insert(0, "abcd");), ptril could become
Invalid—which could lead to unpredictable results.

« Lines 29-30 use pointer arithmetic to output the character array
pointed to by ptrl.

* Inlines 3233, the C-style string pointed to by ptr2 is output
and the memory allocated for ptr2 is deleted to avoid a
memory leak.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

Common Programming Error 18.4
Not terminating the charvacter array returned by data
with a null character can lead to execution-time errors.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

g Good Programming Practice 18.1
Whenever possible, use the more robust string class 0b-
jects rather than C-style pointer-based strings.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

18.13 lterators

Class string provides iterators for forward and
backward traversal of strings.

Iterators provide access to individual characters with
syntax that is similar to pointer operations.

Iterators are not range checked.

In this section we provide “mechanical examples™ to
demonstrate the use of iterators.

We discuss more robust uses of Iterators In
Chapter 22, Standard Template Library (STL).

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

29

18.13 lierators (cont.)

Figure 18.10 demonstrates iterators.

Lines 9-10 declare string stringl and
string::const_iterator 1teratorl.

A const_iterator is an iterator that cannot modify the
string—in this case the string through which it’s
iterating.

Iterator 1teratorl is initialized to the beginning of
stringl with the string class member function begin.

Two versions of begin exist—one that returns an
1terator for iterating through a non-const string
and a const version that returns a const_1iterator for
iterating through a const string.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

oo ~NSUNhE WN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23

// Fig. 18.10: Figl8_10.cpp

// Using an iterator to output a string.
#include <iostream>

#include <string>

using namespace std;

int main()

{

string stringl("Testing iterators”);
string::const_iterator iteratorl = stringl.begin();
cout << "stringl = " << stringl

<< "\n(Using iterator iteratorl) stringl is: ";

// iterate through string

while (iteratorl != stringl.end())

{
cout << *iteratorl; // dereference iterator to get char
iteratorl++; // advance iterator to next char

} // end while

cout << endl;

} // end main

Fig. 18.10 | Using an iterator to output a string. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

31

stringl = Testing iterators
(Using iterator iteratorl) stringl is: Testing iterators

Fig. 18.10 | Using an iterator to output a string. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

18.13 lierators (cont.)

e Lines 16—20 use iterator 1teratorlto
“walk through” stringl.

 Class string member function end returns
an 1terator (oraconst_iterator) for
the position past the last element of stringl.

» Each element is printed by dereferencing the
iterator much as you’d dereference a pointer,
and the iterator iIs advanced one position using
operator ++.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

18.13 lierators (cont.)

« Class string provides member functions rend and
rbegin for accessing individual string characters
in reverse from the end of a string toward the
beginning.

« Member functions rend and rbegin return
reverse_1lteratorsor const_reverse_iterators
(based on whether the string is non-const or
const).

« We’ll use Iterators and reverse Iterators more in
Chapter 22.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34

Error-Prevention Tip 18.1
Use string member function at (rather than iterators)
when you want the benefit of range checking.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

Good Programming Practice 18.2
E When the operations involving the iterator should not
modify the data being processed, use a
const_iterator. This is another example of employ-
ing the principle of least privilege.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

6.19 Reecursion

» Arrecursive function is a function that calls itself, either directly,
or indirectly (through another function).

* Recursive problem-solving approaches have a number of
elements in common.

A recursive function is called to solve a problem.

The function actu-ally knows how to solve only the simplest case(s), or
so-called base case(s).

If the func-tion is called with a base case, the function simply returns a
result.

If the function is called with a more complex problem, it typically
divides the problem into two conceptual pieces—a piece that the
function knows how to do and a piece that it does not know how to do.

This new problem looks like the original, so the function calls a copy of
itself to work on the smaller problem—this is referred to as a recursive
call and is also called the recursion step.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

6.19 Recursion (cont.)

* The recursion step often includes the key-word
return, because its result will be combined
with the portion of the problem the function
knew how to solve to form the result passed
back to the original caller, possibly ma1in.

* The recursion step executes while the original
call to the function 1s still “open,” 1.e., 1t has
not yet finished executing.

 The recursion step can result in many more
SUCH recurSIVELALS .o cocion, ne.m s resones .

6.19 Recursion (cont.)

The factorial of a nonnegative integer n, written

n! (and pronounced “n factorial”), is the product
on - (n - 141) - (n - 2) - .. - 1

with 1! equal to 1, and 0! defined to be 1.

The factorial of an integer, number, greater than
or equal to O, can be calculated iteratively
(nonrecursively) by using a loop.

A recursive definition of the factorial function is
arrived at by observing the follow-ing algebraic
relationship:

on! = n - (n - 1)/

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

Final value = 120

5! 5!
51 =5 %24 =120 is returned
5 % 41 5 % 4]
4l =4%*6=24is returned
4 * 3| 4 * 3|
31=3*2=06]s returned
g & 2 3 % 210
20=2* | =2is returned
2 * 1! 2 % 1!
| returned
_1| _1|

(a) Procession of recursive calls. (b) Values returned from each recursive call.

Fig. 6.28 | Recursive evaluation of 5!,

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

40

COVOO~NOGOWVNLEWN =

VoO~NSONUND WN =

20
21
22
23
24

// Fig. 6.29: fig06_29.cpp

// Demonstrating the recursive function factorial.
#include <iostream>

#include <iomanip>

using namespace std;

unsigned Tong factorial(unsigned Tong); // function prototype

int main()
{
// calculate the factorials of 0 through 10
for (int counter = 0; counter <= 10; counter++)
cout << setw(2) << counter << "! = " << factorial(counter)
<< endl;
} // end main

// recursive definition of function factorial
unsigned Tong factorial(unsigned long number)
{
if (number <= 1) // test for base case
return 1; // base cases: 0! =1 and 1! =1
else // recursion step
return number * factorial(number - 1);
¥ // end function factorial

Fig. 6.29 | Demonstrating the recursive function factorial. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41

ol =1

1! =1

2! =2

3 = 6

4! = 24

5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800

Fig. 6.29 | Demonstrating the recursive function factorial. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

Common Programming Error 6.16

Either omitting the base case, or writing the recursion
step incorrectly so that it does not converge on the base
case, causes “infinite” recursion, eventually exhausting

memory. This is analogous to the problem of an infinite
loop in an iterative (nonrecursive) solution.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

44

