


• Looking up a phone number, accessing a website 
and checking the definition of a word in a 
dictionary all involve searching large amounts of 
data.

• Searching algorithms all accomplish the same 
goal—finding an element that matches a given 
search key, if such an element does, in fact, exist.

• The major difference is the amount of effort they 
require to complete the search.

• One way to describe this effort is with Big O 
notation.
– For searching and sorting algorithms, this is 

particularly dependent on the number of data elements.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• In Chapter 7, we discussed the linear search 

algorithm, which is a simple and easy-to-

implement searching algorithm.

• We’ll now discuss the efficiency of the linear 

search algorithm as measured by Big O 

notation.

• Then, we’ll introduce a searching algorithm 

that is relatively efficient but more complex to 

implement.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



• Suppose an algorithm simply tests whether the first element of a vector is 
equal to the second element of the vector.

• If the vector has 10 elements, this algorithm requires only one comparison.

• If the vector has 1000 elements, the algorithm still requires only one 
comparison.

• In fact, the algorithm is independent of the number of vector elements.

• This algorithm is said to have a constant runtime, which is represented in 
Big O notation as O(1).

• An algorithm that is O(1) does not necessarily require only one 
comparison.

• O(1) just means that the number of comparisons is constant—it does not 
grow as the size of the vector increases.

• An algorithm that tests whether the first element of a vector is equal to any 
of the next three elements will always require three comparisons, but in Big 
O notation it’s still considered O(1).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



• O(1) is often pronounced ―on the order of 1‖ or more simply 
―order 1.‖ 

• An algorithm that tests whether the first element of a vector is 
equal to any of the other elements of the vector requires at most n 
– 1 comparisons, where n is the number of elements in the vector.

• If the vector has 10 elements, the algorithm requires up to nine 
comparisons.

• If the vector has 1000 elements, the algorithm requires up to 999 
comparisons.

• As n grows larger, the n part of the expression ―dominates,‖ and 
subtracting one becomes inconsequential.

• Big O is designed to highlight these dominant terms and ignore 
terms that become unimportant as n grows.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



• An algorithm that requires a total of n – 1 

comparisons is said to be O(n).

• An O(n) algorithm is referred to as having a 

linear runtime.

• O(n) is often pronounced ―on the order of n‖ 

or more simply ―order n.‖ 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



• Now suppose you have an algorithm that tests whether any 
element of a vector is duplicated elsewhere in the vector.

• The first element must be compared with every other element in 
the vector.

• The second element must be compared with every other element 
except the first (it was already compared to the first).

• The third element must be compared with every other element 
except the first two.

• In the end, this algorithm will end up making (n – 1) + (n – 2) + 
… + 2 + 1 or n2/2 – n/2 comparisons.

• As n increases, the n2 term dominates and the n term becomes 
inconsequential.

• Again, Big O notation highlights the n2 term, leaving n2/2.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



• Big O is concerned with how an algorithm’s runtime grows in relation to the 
number of items processed.

• Suppose an algorithm requires n2 comparisons.

• With four elements, the algorithm will require 16 comparisons; with eight 
elements, 64 comparisons.

• With this algorithm, doubling the number of elements quadruples the number 
of comparisons.

• Consider a similar algorithm requiring n2/2 comparisons.

• With four elements, the algorithm will require eight comparisons; with eight 
elements, 32 comparisons.

• Again, doubling the number of elements quadruples the number of 
comparisons.

• Both of these algorithms grow as the square of n, so Big O ignores the constant, 
and both algorithms are considered to be O(n2), which is referred to as 
quadratic runtime and pronounced ―on the order of n-squared‖ or more simply 
―order n-squared.‖ 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



• When n is small, O(n2) algorithms will not noticeably affect 
performance.

• As n grows, you’ll start to notice the performance 
degradation.

• An O(n2) algorithm running on a million-element vector 
would require a trillion ―operations‖ (where each could 
actually require several machine instructions to execute).

– This could require a few hours to execute.

• A billion-element vector would require a quintillion 
operations, a number so large that the algorithm could take 
decades! Unfortunately, O(n2) algorithms tend to be easy to 
write.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



• In this chapter, you’ll see algorithms with 

more favorable Big O measures.

• These efficient algorithms often take a bit 

more cleverness and effort to create, but their 

superior performance can be worth the extra 

effort, especially as n gets large and as 

algorithms are compounded into larger 

programs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



• The linear search algorithm runs in O(n) time.

• The worst case in this algorithm is that every element must be 
checked to determine whether the search key exists in the vector.

• If the size of the vector is doubled, the number of comparisons 
that the algorithm must perform is also doubled.

• Linear search can provide outstanding performance if the element 
matching the search key happens to be at or near the front of the 
vector.

• But we seek algorithms that perform well, on average, across all 
searches, including those where the element matching the search 
key is near the end of the vector.

• If a program needs to perform many searches on large vectors, it 
may be better to implement a different, more efficient algorithm, 
such as the binary search which we present in the next section.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



• The binary search algorithm is more efficient than the 

linear search algorithm, but it requires that the vector 

first be sorted.

• This is only worthwhile when the vector, once sorted, 

will be searched a great many times—or when the 

searching application has stringent performance 

requirements.

• The first iteration of this algorithm tests the middle 

element in the vector.

• If this matches the search key, the algorithm ends.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



• Assuming the vector is sorted in ascending order, then if the search key 
is less than the middle element, the search key cannot match any 
element in the second half of the vector and the algorithm continues 
with only the first half of the vector (i.e., the first element up to, but not 
including, the middle element).

• If the search key is greater than the middle element, the search key 
cannot match any element in the first half of the vector and the 
algorithm continues with only the second half of the vector (i.e., the 
element after the middle element through the last element).

• Each iteration tests the middle value of the remaining portion of the 
vector.

• If the element does not match the search key, the algorithm eliminates 
half of the remaining elements.

• The algorithm ends either by finding an element that matches the 
search key or by reducing the subvector to zero size.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



• Line 29 initializes the location of the found element to -
1—the value that will be returned if the search key is not 
found.

• Lines 31–51 loop until low is greater than high (this 
occurs when the element is not found) or location does 
not equal -1 (indicating that the search key was found).

• Line 43 tests whether the value in the middle element is 
equal to searchElement.
– If so, line 44 assigns middle to location.

– Then the loop terminates and location is returned to the caller.

• Each iteration of the loop tests a single value (line 43) and 
eliminates half of the remaining values in the vector (line 46 
or 48).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



• In the worst-case scenario, searching a sorted 
vector of 1023 elements will take only 10 
comparisons when using a binary search.

• Repeatedly dividing 1023 by 2 (because, after 
each comparison, we can eliminate from 
consideration half of the remaining vector) and 
rounding down (because we also remove the 
middle element) yields the values 511, 255, 127, 
63, 31, 15, 7, 3, 1 and 0.

• The number 1023 (210 – 1) is divided by 2 only 10 
times to get the value 0, which indicates that there 
are no more elements to test.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



• Dividing by 2 is equivalent to one comparison in the binary 
search algorithm.

• Thus, a vector of 1,048,575 (220 – 1) elements takes a maximum 
of 20 comparisons to find the key, and a vector of about one 
billion elements takes a maximum of 30 comparisons to find the 
key.

• This is a tremendous improvement in performance over the linear 
search.

• For a one-billion-element vector, this is a difference between an 
average of 500 million comparisons for the linear search and a 
maximum of only 30 comparisons for the binary search! The 
maximum number of comparisons needed for the binary search 
of any sorted vector is the exponent of the first power of 2 greater 
than the number of elements in the vector, which is represented 
as log2 n.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



• All logarithms grow at roughly the same rate, 

so in Big O notation the base can be omitted.

• This results in a Big O of O(log n) for a binary 

search, which is also known as logarithmic 

runtime and pronounced ―on the order of log 

n‖ or more simply ―order log n.‖ 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27



• Sorting data (i.e., placing the data into some 

particular order, such as ascending or descending) is 

one of the most important computing applications.

• The choice of algorithm affects only the runtime and 

memory use of the program.

• The next section examines the efficiency of selection 

sort and insertion sort algorithms using Big O 

notation.

• The last algorithm—merge sort, which we introduce 

in this chapter—is much faster but is more difficult to 

implement.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28



• Selection sort is an easy-to-implement, but inefficient, 
sorting algorithm.
– The first iteration of the algorithm selects the smallest 

element in the vector and swaps it with the first element.

– The second iteration selects the second-smallest element 
(which is the smallest element of the remaining elements) 
and swaps it with the second element.

– The algorithm continues until the last iteration selects the 
second-largest element and swaps it with the second-to-last 
element, leaving the largest element in the last index.

– After the ith iteration, the smallest i elements of the vector 
will be sorted into increasing order in the first i elements of 
the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



• The selection sort algorithm iterates n – 1 times, each 

time swapping the smallest remaining element into its 

sorted position.

• Locating the smallest remaining element requires n –

1 comparisons during the first iteration, n – 2 during 

the second iteration, then n – 3, … , 3, 2, 1.

• This results in a total of n(n – 1)/2 or (n2 – n)/2 

comparisons.

• In Big O notation, smaller terms drop out and 

constants are ignored, leaving a final Big O of O(n2).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



– The algorithm’s first iteration takes the second element in 

the vector and, if it’s less than the first element, swaps it 

with the first element.

– The second iteration looks at the third element and inserts it 

into the correct position with respect to the first two 

elements, so all three elements are in order.

– At the ith iteration of this algorithm, the first i elements in 

the original vector will be sorted.

• Insertion sort iterates n – 1 times, inserting an 

element into the appropriate position in the elements 

sorted so far.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



• For each iteration, determining where to insert the element 
can require comparing the element to each of the preceding 
elements—n – 1 comparisons in the worst case.

• Each individual repetition statement runs in O(n) time.

• For determining Big O notation, nested statements mean 
that you must multiply the number of comparisons.

• For each iteration of an outer loop, there will be a certain 
number of iterations of the inner loop.

• In this algorithm, for each O(n) iteration of the outer loop, 
there will be O(n) iterations of the inner loop, resulting in a 
Big O of O(n * n) or O(n2).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



• Merge sort is an efficient sorting algorithm but is conceptually 
more complex than selection sort and insertion sort.

• The merge sort algorithm sorts a vector by splitting it into two 
equal-sized subvectors, sorting each subvector then merging 
them into one larger vector.

• Merge sort performs the merge by looking at the first element in 
each vector, which is also the smallest element in the vector.

• Merge sort takes the smallest of these and places it in the first 
element of the larger, sorted vector.

• If there are still elements in the subvector, merge sort looks at the 
second element in that subvector (which is now the smallest 
element remaining) and compares it to the first element in the 
other subvector.

• Merge sort continues this process until the larger vector is filled.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



• The implementation of merge sort in this example is 

recursive.

• The base case is a vector with one element.

• A one-element vector is, of course, sorted, so merge sort 

immediately returns when it’s called with a one-element 

vector.

• The recursion step splits a vector of two or more elements 

into two equal-sized subvectors, recursively sorts each 

subvector, then merges them into one larger, sorted vector.

– If there is an odd number of elements, one subvector is one element 

larger than the other.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



• Figure 19.5 defines class MergeSort, and lines 22–25 of 
Fig. 19.6 define the sort function.

• Line 24 calls function sortSubVector with 0 and size
– 1 as the arguments.
– These arguments correspond to the beginning and ending indices of 

the vector to be sorted, causing sortSubVector to operate on 
the entire vector.

– Function sortSubVector is defined in lines 28–52.

– Line 31 tests the base case.

– If the size of the vector is 0, the vector is already sorted, so the 
function simply returns immediately.

– If the size of the vector is greater than or equal to 1, the function 
splits the vector in two, recursively calls function 
sortSubVector to sort the two subvectors, then merges them.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



• Line 46 recursively calls function sortSubVector
on the first half of the vector, and line 47 recursively 

calls function sortSubVector on the second half 

of the vector.

• When these two function calls return, each half of the 

vector has been sorted.

• Line 50 calls function merge (lines 55–99) on the 

two halves of the vector to combine the two sorted 

vectors into one larger sorted vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



• Lines 70–78 in function merge loop until the program reaches 
the end of either subvector.

• Line 74 tests which element at the beginning of the vectors is 
smaller.

• If the element in the left vector is smaller, line 75 places it in 
position in the combined vector.

• If the element in the right vector is smaller, line 77 places it in 
position in the combined vector.

• When the while loop has completed (line 78), one entire 
subvector is placed in the combined vector, but the other 
subvector still contains data.

• Line 80 tests whether the left vector has reached the end.

• If so, lines 82–83 fill the combined vector with the elements of 
the right vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43



• If the left vector has not reached the end, then the 

right vector must have reached the end, and lines 87–

88 fill the combined vector with the elements of the 

left vector.

• Finally, lines 92–93 copy the combined vector into 

the original vector.

• Figure 19.7 creates and uses a MergeSort object.

• The output from this program displays the splits and 

merges performed by merge sort, showing the 

progress of the sort at each step of the algorithm.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49



• Merge sort is a far more efficient algorithm than either insertion sort or 
selection sort.

• Consider the first (nonrecursive) call to function sortSubVector
(line 24).

• This results in two recursive calls to function sortSubVector with 
subvectors each approximately half the size of the original vector, and a 
single call to function merge.

• This call to function merge requires, at worst, n – 1 comparisons to fill 
the original vector, which is O(n).

• The two calls to function sortSubVector result in four more 
recursive calls to function sortSubVector—each with a subvector 
approximately one-quarter the size of the original vector—and two 
calls to function merge.

• These two calls to function merge each require, at worst, n/2 – 1 
comparisons, for a total number of comparisons of O(n).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50



• This process continues, each call to sortSubVector
generating two additional calls to sortSubVector and a 
call to merge, until the algorithm has split the vector into 
one-element subvectors.

• At each level, O(n) comparisons are required to merge the 
subvectors.

• Each level splits the size of the vectors in half, so doubling 
the size of the vector requires one more level.

• Quadrupling the size of the vector requires two more levels.

• This pattern is logarithmic and results in log2 n levels.

• This results in a total efficiency of O(n log n).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51



• Figure 19.8 summarizes the searching and 

sorting algorithms we cover in this book and 

lists the Big O for each.

• Figure 19.9 lists the Big O categories we’ve 

covered in this chapter along with a number of 

values for n to highlight the differences in the 

growth rates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54



55©1992-2010 by Pearson Education, Inc. All Rights Reserved.


