Lecture 30:
Standard Template Library

(STL)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 18t, 2010

22.1 Introeduction to the Standard
Template Library (STL)

 We’ve repeatedly emphasized the importance of
software reuse.

» Recognizing that many data structures and algorithms
are commonly used, the C++ standard committee
added the Standard Template Library (STL) to the
C++ Standard Library.

« The STL defines powerful, template-based, reusable
components that implement many common data
structures and algorithms used to process those data
structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

22.1 Introeduction to the Standard
Template Library (STL) (Cont.)

As you’ll see, the STL was conceived and
designed for performance and flexibility.

This chapter introduces the STL and discusses Its
three key components—containers (popular
templatized data structures), Iterators and
algorithms.

The STL containers are data structures capable of
storing objects of almost any data type (there are
some restrictions).

We’ll see that there are three styles of container
classes—first-class containers, adapters and near
containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Performance Tip 22.1

For any particular application, several different STL
containers might be appropriate. Select the most appro-
priate container that achieves the best performance (i.e.,
balance of speed and size) for that application. Efficiency

was a crucial consideration in the STL’s design.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

Performance Tip 22.2

Standard Library capabilities are implemented to oper-
ate efficiently across many applications. For some appli-
cations with unique performance requirements, it might

be necessary to write your own customized implementa-
tions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.1 Introeduction to the Standard
Template Library (STL) (Cont.)

Each STL container has associated member functions.

A subset of these member functions is defined in all
STL containers.

We illustrate most of this common functionality In
our examples of STL containers vector (a
dynamically resizable array which we introduced in
Chapter 7), 11st (a doubly linked list) and deque (a
double-ended queue, pronounced “deck™).

We introduce container-specific functionality In
examples for each of the other STL containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.1 Introduction to the Standard
Template Library (STL) (Cont.)

STL iterators, which have properties similar to those of
pointers, are used by programs to manipulate the STL-
container elements.

In fact, standard arrays can be manipulated by STL
algorithms, using standard pointers as iterators.

We’ll see that manipulating containers with iterators 1s
convenient and provides tremendous expressive power
when combined with STL algorithms—in some cases,
reducing many lines of code to a single statement.

There are five categories of iterators, each of which we
discuss in Section 22.1.2 and use throughout this chapter.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.1 Introduction to the Standard
Template Library (STL) (Cont.)

STL algorithms are functions that perform such common
data manipulations as searching, sorting and comparing
elements (or entire containers).

The STL provides approximately 70 algorithms.
Most of them use I1terators to access container elements.

Each algorithm has minimum requirements for the types of
Iterators that can be used with it.

We’ll see that each first-class container supports specific
Iterator types, some more powerful than others.

A container’s supported iterator type determines whether
the container can be used with a specific algorithm.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.1 Introeduction to the Standard
Template Library (STL) (Cont.)

Iterators encapsulate the mechanism used to access
container elements.

This encapsulation enables many of the STL
algorithms to be applied to several containers without
regard for the underlying container implementation.

As long as a container’s Iterators support the
minimum requirements of the algorithm, then the
algorithm can process that container’s elements.

This also enables you to create new algorithms that
can process the elements of multiple container types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.1 Introeduction to the Standard
Template Library (STL) (Cont.)

In Chapter 20, we stud
We built linked lists, ©

led data structures.
ueues, stacks and trees.

We carefully wove lin

K 0bjects together with pointers.

Pointer-based code Is complex, and the slightest omission or
oversight can lead to serious memory-access violations and
memory-leak errors with no compiler complaints.

Implementing additional data structures, such as deques,
priority queues, sets and maps, requires substantial extra

work.

An advantage of the STL Is that you can reuse the STL
containers, Iterators and algorithms to implement common
data representations and manipulations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

Software Engineering Observation 22.2

Avoid reinventing the wheel; program with the reusable
components of the C++ Standard Library. STL includes
many of the most popular data structures as containers
and provides various popular algorithms to process data
in these containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

% Error-Prevention Tip 22.1

) When programming pointer-based data structures and
algorithms, we must do our own debugging and testing
to be sure our data structures, classes and algorithms
function properly. It's easy to make errors when manip-
ulating pointers at this low level. Memory leaks and
memory-access violations are common in such custom
code. The prepackaged, templatized containers of the
STL are sufficient for most programmers. Using the STL
helps you reduce testing and debugging time. One cau-
tion is that, for large projects, template compile time can
be significant.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

22.1.71 Intreduetion to Contalhers

« The STL container types are shown In
Fig. 22.1.

« The containers are divided into three major
categories—sequence containers, associative
containers and container adapters.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

Sequence containers

vector Rapid insertions and deletions at back.
Direct access to any element.

deque Rapid insertions and deletions at front or back.
Direct access to any element.

list Doubly linked list, rapid insertion and deletion anywhere.

Associative containers

set Rapid lookup, no duplicates allowed.

multiset Rapid lookup, duplicates allowed.

(tdap One-to-one mapping, no duplicates allowed, rapid key-based
lookup.

multimap One-to-many mapping, duplicates allowed, rapid key-based
lookup.

Container adapters

stack Last-in, first-out (LIFO).

Fig. 22.1 | Standard Library container classes. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

queue First-in, first-out (FIFO).

priority_queue Highest-priority element is always the first element out.

Fig. 22.1 | Standard Library container classes. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

22.9.1 Introduection to Containers (Cont.)

- The sequence containers represent linear data structures,
such as vectors and linked lists.

» Assoclative containers are nonlinear containers that
typically can locate elements stored in the containers
quickly.

— Such containers can store sets of values or key/value pairs.

» The sequence containers and associative containers are
collectively referred to as the first-class containers.

» As we saw in Chapter 20, stacks and queues actually are
constrained versions of sequential containers.

» For this reason, STL Iimplements stacks and queues as
container adapters that enable a program to view a
sequential container In a constrained manner.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

22.9.1 Introduection to Containers (Cont.)

« Most STL containers provide similar functionality.

« Many generic operations, such as member function size,
apply to all containers, and other operations apply to subsets
of similar containers.

 This encourages extensibility of the STL with new classes.

» Figure 22.2 describes the functions common to all Standard
Library containers.

» [Note: Overloaded operators operator<, operator<=,
operator>, operator>=, operator==and
operator!=are not provided for priority_queues.]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

default constructor A constructor to create an empty container. Normally, each container
has several constructors that provide different initialization methods
for the container.

copy constructor A constructor that initializes the container to be a copy of an existing
container of the same type.

destructor Destructor function for cleanup after a container is no longer needed.

empty Returns true if there are no elements in the container; otherwise,
returns false.

insert Inserts an item in the container.

size Returns the number of elements currently in the container.

operator= Assigns one container to another.

operator< Returns true if the first container is less than the second container;

otherwise, returns false.

operator<= Returns true if the first container is less than or equal to the second
container; otherwise, returns false.

operators> Returns true if the first container is greater than the second con-
tainer; otherwise, returns false.

Fig. 22.2 | Common member functions for most STL containers. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

operators= Returns true if the first container is greater than or equal to the sec-
ond container; otherwise, returns false.

operator== Returns true if the first container is equal to the second container;
otherwise, returns false.

operator!= Returns true if the first container is not equal to the second con-
tainer; otherwise, returns false.

swap Swaps the elements of two containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

» The header files for each of the Standard
Library containers are shown in Fig. 22.3.

e The contents of these header files are all In
namespace std.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

<vector>

<list>

<deque>

<queue> Contains both queue and priority_queue.
<stack>

<map> Contains both map and multimap.

<set> Contains both set and multiset.
<valarray>

<bitset>

Fig. 22.3 | Standard Library container header files.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

Performance Tip 22.3

STL generally avoids inheritance and virtual func-
tions in favor of using generic programming with tem-
plates to achieve better execution-time performance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

a0l Portability Tip 22.1
\,\1 Programming with STL will enhance the portability of
your code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

22.9.1 Introduection to Containers (Cont.)

* When preparing to use an STL container, it’s important to ensure
that the type of element being stored in the container supports a
minimum set of functionality.

« When an element Is inserted into a container, a copy of that
element is made.

» For this reason, the element type should provide its own copy
constructor and assignment operator.

 [Note: This is required only if default memberwise copy and
default memberwise assignment do not perform proper copy and
assignment operations for the element type.]

» Also, the associative containers and many algorithms require
elements to be compared.

 For this reason, the element type should provide an equality
operator (==) and a less-than operator (<).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

gz Software Engineering Observation 22.3

The STL containers do not require their elements to be
comparable with the equality and less-than operators
unless a program uses a container member function that
must compare the container elements (e.g., the sort
function in class 11st). Some pre-standard C++
compilers are not capable of ignoring parts of a template
that are not used in a particular program. On compilers
with this problem, you may not be able to use the STL
containers with objects of classes that do not define
overloaded less-than and equality operators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

22.9.2 Intreduetion to lterators

Iterators have many features in common with pointers and
are used to point to the elements of first-class containers
(and for a few other purposes, as we’ll see).

Iterators hold state information sensitive to the particular
containers on which they operate; thus, iterators are
Implemented appropriately for each type of container.

Certain iterator operations are uniform across containers.

For example, the dereferencing operator (*) dereferences an
Iterator so that you can use the element to which it points.

The ++ operation on an iterator moves it to the next element
of the container (much as incrementing a pointer into an
array aims the pointer at the next element of the array).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

22.9.2 Introduetion to lterators (Cont.)

« STL first-class containers provide member
functions begin and end.

 Function begin returns an iterator pointing to
the first element of the container.

 Function end returns an iterator pointing to the
first element past the end of the container (an
clement that doesn’t exist).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

22.9.2 Introduction to lterators (Cont.)

- If iterator 1 points to a particular element, then
++1 points to the “next” element and *1 refers to
the element pointed to by 1.

» The iterator resulting from end is typically used
In an equality or mequallty comparison to
determine whether the “moving iterator” (1 in this
case) has reached the end of the container.

« An object of type 1terator refersto a
container element that can be modified.

» An object of type const_iterator refersto a
container element that cannot be modified.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

22.9.2 Intreduetion to lterators (Cont.)

 Je use 1terators with sequences
ranges) .

» These sequences can be In containers, or they can be
Input sequences or output sequences.

« The program of Fig. 22.5 demonstrates input from the
standard input (a sequence of data for input into a
program), using an 1stream_i1terator, and output to
the standard output (a sequence of data for output
from a program), using an ostream_iterator.

« The program Inputs two Integers from the user at the
keyboard and displays the sum of the integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

4 #include <iterator> // ostream_iterator and istream_iterator
5 using namespace std;

6

7 1int mainQ)

8 {

9 cout << "Enter two integers: ";

10

11 // create istream_iterator for reading int values from cin
12 istream_iterator< int > inputInt(cin);

13

14 int numberl = *inputInt; // read int from standard input
15 ++inputInt; // move iterator to next input value

16 int number2 = *inputlnt; // read int from standard input
17

18 // create ostream_iterator for writing int values to cout
19 ostream_iterator< int > outputInt(cout);
20

Fig. 22.5 | Inputand output stream iterators. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

30

*outputInt = numberl + number2; // output result to cout

24 } // end main

Enter two integers: 12 25
The sum is: 37

Fig. 22.5 | Inputand output stream iterators. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

22.9.2 Introduetion to lterators (Cont.)

« Line 12 creates an 1stream_1iterator thatis capable
of extracting (inputting) 1nt values in a type-safe manner
from the standard input object c1n.

 Line 14 dereferences iterator TnputInt to read the first
integer from c1n and assigns that integer to numberl.

« The dereferencing operator * applied to ThputInt gets
the value from the stream associated with TnputInt; this
IS similar to dereferencing a pointer.

 Line 15 positions iterator TnputInt to the next value in
the Input stream.

 Line 16 inputs the next integer from 1nputInt and
assigns it to number?2.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

22.9.2 Introduetion to lterators (Cont.)

« Line 19 creates an ostream_1iterator thatis capable
of inserting (outputting) 1nt values in the standard output
object cout.

* Line 22 outputs an integer to cout by assigning to
*outputInt the sum of numberl and number?.

* Notice the use of the dereferencing operator * to use
*outputInt asan lvalue in the assignment statement.

 If you want to output another value using outputInt, the
Iterator must be incremented with ++ (both the prefix and
postfix increment can be used, but the prefix form should be
preferred for performance reasons).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

input Used to read an element from a container. An input iterator can move
only in the forward direction (i.e., from the beginning of the container
to the end) one element at a time. Input iterators support only one-pass
algorithms—the same input iterator cannot be used to pass through a
sequence twice.

onutput Used to write an element to a container. An output iterator can move
only in the forward direction one element at a time. Output iterators
support only one-pass algorithms—the same output iterator cannot be
used to pass through a sequence twice.

Sforward Combines the capabilities of input and output iterators and retains their
position in the container (as state information).

bidirectional Combines the capabilities of a forward iterator with the ability to move
in the backward direction (i.e., from the end of the container toward the
beginning). Bidirectional iterators support multipass algorichms.

random access Combines the capabilities of a bidirectional iterator with the ability to
directly access any element of the container, i.e., to jump forward or
backward by an arbitrary number of elements.

Fig. 22.6 | Iterator categories.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

22.9.2 Introduetion to lterators (Cont.)

» The iterator category that each container supports B
determines whether that container can be used with specific
algorithms in the STL.

- Containers that support random-access iterators can be used
with all algorithms in the STL.

« As we’ll see, pointers into arrays can be used in place of
iterators in most STL algorithms, including those that
require random-access Iterators.

* Figure 22.8 shows the iterator category of each of the STL
containers.

» The first-class containers (vectors, deques, 11sts,
sets, multisets, maps and multimaps), strings
and arrays are all traversable with iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

Software Engineering Observation 22.4

Using the “weakest iterator” that yields acceptable
performance helps produce maximally reusable
components. For example, if an algorithm requires only
forward iterators, it can be used with any container that
supports forward iterators, bidirectional iterators or
random-access iterators. However, an algorithm that

requires random-access iterators can be used only with
containers that have random-access iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

36

forward

bidirectional

random access

Fig. 22.7 | lterator category hierarchy.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

Sequence containers (first class)

vector random access
deque random access
list bidirectional

Associative containers (first class)

set bidirectional
multiset bidirectional
map bidirectional
multimap bidirectional
Container adapters
stack no iterators supported
queue no iterators supported
priority_queue no iterators supported

Fig. 22.8 | lterator types supported by each container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

38

22.9.2 Introduction to lterators (Cont.)

 Figure 22.9 shows the predefined iterator
typedefs that are found in the class
definitions of the STL containers.

« Not every typedef is defined for every
container.

« We use const versions of the 1terators for
traversing read-only containers.

e \We use reverse Iterators to traverse containers
IN the reverse direction.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

iterator forward read/write

const_iterator forward read
reverse_iterator backward read/write
const_reverse_iterator backward read

Fig. 22.9 | lterator typedefs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

40

Error-Prevention Tip 22.3

Operations performed on a const_iterator return
const references to prevent modification to elements of
the container being manipulated. Using
const_iterators where appropriate is another ex-

ample of the principle of least privilege.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

41

22.9.2 Intreduetion to lterators (Cont.)

» Figure 22.10 shows some operations that can
be performed on each iterator type.

» The operations for each Iiterator type include
all operations preceding that type in the figure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

All iterators

++p Preincrement an iterator.

p++ Postincrement an iterator.

Input iterators

*p Dereference an iterator.

p=pl Assign one iterator to another.

p == pl Compare iterators for equality.

p !=pl Compare iterators for inequality.
Output iterators

*p Dereference an iterator.

p = pl Assign one iterator to another.
Forward iterators Forward iterators provide all the functionality of both input iterators

and output iterators.

Fig. 22.10 | Iterator operations for each type of iterator. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

Bidirectional iterators

==p Predecrement an iterator.

p-- Postdecrement an iterator.

Random-access iterators

p =i Increment the iterator p by i positions.

p--i Decrement the iterator p by i positions.

priori+p Expression value is an iterator positioned at p incremented by i posi-
tions.

p-i Expression value is an iterator positioned at p decremented by i posi-
tions.

p-pl Expression value is an integer representing the distance between two
elements in the same container.

pli] Return a reference to the element offset from p by i positions

p < pl Return true if iterator p is less than iterator p1 (i.e., iterator p is before

iterator pl in the container); otherwise, return false.

Fig. 22.10 | lterator operations for each type of iterator. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

p <= pl Return true if iterator p is less than or equal to iterator p1 (i.c., iterator
p is before iterator p1 or at the same location as iterator p1 in the con-
tainer); otherwise, return false.

p > pl Return true if iterator p is greater than iterator pl (i.e., iterator p is
after iterator pl in the container); otherwise, return false.

p >= pl Return true if iterator p is greater than or equal to iterator p1 (i.e., iter-
ator p is after iterator pl or at the same location as iterator pl in the
container); otherwise, return false.

Fig. 22.10 | Iterator operations for each type of iterator. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

45

22.9.3 Introeduection to Algorithms

STL algorithms can be used generically across a variety of
containers.

STL provides many algorithms you’ll use frequently to
manlpulate containers.

Inserting, deleting, searching, sorting and others are
appropriate for some or all of the STL containers.

The STL includes approximately 70 standard algorithms.

The algorithms operate on container elements only
Indirectly through iterators.

Many algorithms operate on sequences of elements defined
by pairs of iterators—one pointing to the first element of the
seqguence and one pointing to one element past the last
element.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

22.1.8 Introduetion to Algorithis (Cont.)

 Algorithms often return iterators that indicate the
results of the algorithms.

« Algorithm f1nd, for example, locates an element
and returns an iterator to that element.

« If the element is not found, 1 nd returns the “one
past the end” iterator that was passed in to define the
end of the range to be searched, which can be tested
to determine whether an element was not found.

« The T1nd algorithm can be used with any first-class
STL container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

22.1.3 Introduection to Algorithims (Cont.)

« STL algorithms create yet another opportunity
for reuse—using the rich collection of popular
algorithms can save you much time and effort.

« |f an algorithm uses less powerful iterators, the
algorithm can also be used with containers that
support more powerful iterators.

« Some algorithms demand powerful iterators;
e.g., sort demands random-access iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

Software Engineering Observation 22.5

The STL is extensible. It’s straightforward to add new
algorithms and to do so without changes to STL
containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

Software Engineering Observation 22.6

The STL is implemented concisely. The algorithms are
separated from the containers and operate on elements of
the containers only indirectly through iterators. This
separation makes it easier to write generic algorithms
applicable to many container classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

50

Software Engineering Observation 22.7
STL algorithms can operate on STL containers and on
pointer-based, C-like arrays.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

mry Portability Tip 22.2
1998| Because STL algorithms process containers only indirect-
ly through iterators, one algorithm can often be used with
many different containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

22.1.8 Intreduction te Algeorithims (Cont.)

* Figure 22.11 shows many of the mutating-
sequence algorithms—i.e., the algorithms that
result in modifications of the containers to

which the algorithms are applied.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

copy partition replace_copy stable_partition

copy_backward random_shuffle replace_copy_if swap

fill remove replace_if swap_ranges
fill_n remove_copy reverse transform
generate remove_copy_if reverse_copy unique
generate_n remove_if rotate unique_copy
iter_swap replace rotate_copy

Fig. 22.11 | Mutating-sequence algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

22.7.3 Introeduetion to Algerithims (Cont.)

* Figure 22.12 shows many of the nonmodifying
sequence algorithms—I.e., the algorithms that
do not result iIn modifications of the containers
to which they’re applied.

 Figure 22.13 shows the numerical algorithms
of the header file <numer1c>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

adjacent_find equal find_end mismatch

count find find_first_of search

count_if find_each find_if search_n

Fig. 22.12 | Nonmodifying sequence algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

accumulate partial_sum

inner_product adjacent_difference

Fig. 22.13 | Numerical algorithms from header file <numeric>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

22,2 Seduence Containers

* The C++ Standard Template Library provides
three sequence containers—vector, 11st
and deque.

 Class template vector and class template
deque both are based on arrays.

 Class template 11 st implements a linked-list
data structure similar to our L1st class
presented in Chapter 20, but more robust.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

58

22.2 Sequence Containers (Cont.)

One of the most popular containers in the STL Is vector.

Recall that we introduced class template vector in
Chapter 7 as a more robust type of array.

A vector changes size dynamically.

Unlike C and C++ “raw” arrays (see Chapter 7), vectors
can be assigned to one another.

This is not possible with pointer-based, C-like arrays,
because those array names are constant pointers and cannot
be the targets of assignments.

Just as with C arrays, vector subscripting does not
perform automatic range checking, but class template
vector does provide this capability via member function
at (also discussed in Chapter 7).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59

. Performance Tip 22.4

Insertion at the back of a vector is efficient. The vec-
tor simply grows, if necessary, to accommodate the new
item. It’s expensive to insert (or delete) an element in the
middle of a vector—the entire portion of the vector
after the insertion (or deletion) point must be moved, be-
cause vector elements occupy contiguous cells in mem-
ory just as C or C++ “raw” arrays do.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60

22.2 Sequence Containers (Cont.)

Figure 22.2 presented the operations common
to all the STL containers.

Beyond these operations, each container
typically provides a variety of other
capabilities.

Many of these capabilities are common to

several containers, but they’re not always
equally efficient for each container.

You must choose the container most
appropriate ferthe-appHeati @Rz o

. Performance Tip 22.5

Applications that require frequent insertions and dele-
tions at both ends of a container normally use a deque
rather than a vector. Although we can insert and delete
elements at the front and back of both a vector and a
deque, class deque is more efficient than vector for
doing insertions and deletions at the front.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62

Performance Tip 22.6

Applications with frequent insertions and deletions in
the middle andlor at the extremes of a container normal-
ly use a 11st, due to its efficient implementation of in-
sertion and deletion anywhere in the data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63

22.2 Sequence Containers (Cont.)

* In addition to the common operations
described in Fig. 22.2, the sequence containers
have several other common operations—{ront
to return a reference to the first element in a
non-empty container, back to return a
reference to the last element in a non-empty
container, push_back to insert a new
element at the end of the container and
pop_back to remove the last element of the

container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64

22.2.1 vector Seguence Container

Class template vector provides a data structure with
contiguous memory locations.

This enables efficient, direct access to any element of a
vector via the subscript operator [], exactly as with a C or
C++ “raw” array.

Class template vector is most commonly used when the
data in the container must be easily accessible via a
subscript or will be sorted.

When a vector’s memory is exhausted, the vector
allocates a larger contiguous area of memory, copies the
original elements into the new memory and deallocates the
old memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

65

Performance Tip 22.7
Choose the vector container for the best random-access
performance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66

Performance Tip 22.8

Objects of class template vector provide rapid indexed
access with the overloaded subscript operator 1 because
they re stored in contiguous memory like a C or C++ raw

array.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

67

Performance Tip 22.9
1ts faster to insert many elements at once than one at a
time.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

69

