


• We’ve repeatedly emphasized the importance of 

software reuse.

• Recognizing that many data structures and algorithms 

are commonly used, the C++ standard committee 

added the Standard Template Library (STL) to the 

C++ Standard Library.

• The STL defines powerful, template-based, reusable 

components that implement many common data 

structures and algorithms used to process those data 

structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• As you’ll see, the STL was conceived and 
designed for performance and flexibility.

• This chapter introduces the STL and discusses its 
three key components—containers (popular 
templatized data structures), iterators and 
algorithms.

• The STL containers are data structures capable of 
storing objects of almost any data type (there are 
some restrictions).

• We’ll see that there are three styles of container 
classes—first-class containers, adapters and near 
containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



• Each STL container has associated member functions.

• A subset of these member functions is defined in all 

STL containers.

• We illustrate most of this common functionality in 

our examples of STL containers vector (a 

dynamically resizable array which we introduced in 

Chapter 7), list (a doubly linked list) and deque (a 

double-ended queue, pronounced ―deck‖).

• We introduce container-specific functionality in 

examples for each of the other STL containers. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



• STL iterators, which have properties similar to those of 

pointers, are used by programs to manipulate the STL-

container elements.

• In fact, standard arrays can be manipulated by STL 

algorithms, using standard pointers as iterators.

• We’ll see that manipulating containers with iterators is 

convenient and provides tremendous expressive power 

when combined with STL algorithms—in some cases, 

reducing many lines of code to a single statement.

• There are five categories of iterators, each of which we 

discuss in Section 22.1.2 and use throughout this chapter. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



• STL algorithms are functions that perform such common 
data manipulations as searching, sorting and comparing 
elements (or entire containers).

• The STL provides approximately 70 algorithms.

• Most of them use iterators to access container elements.

• Each algorithm has minimum requirements for the types of 
iterators that can be used with it.

• We’ll see that each first-class container supports specific 
iterator types, some more powerful than others.

• A container’s supported iterator type determines whether 
the container can be used with a specific algorithm.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



• Iterators encapsulate the mechanism used to access 

container elements.

• This encapsulation enables many of the STL 

algorithms to be applied to several containers without 

regard for the underlying container implementation.

• As long as a container’s iterators support the 

minimum requirements of the algorithm, then the 

algorithm can process that container’s elements.

• This also enables you to create new algorithms that 

can process the elements of multiple container types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



• In Chapter 20, we studied data structures.

• We built linked lists, queues, stacks and trees.

• We carefully wove link objects together with pointers.

• Pointer-based code is complex, and the slightest omission or 
oversight can lead to serious memory-access violations and 
memory-leak errors with no compiler complaints.

• Implementing additional data structures, such as deques, 
priority queues, sets and maps, requires substantial extra 
work.

• An advantage of the STL is that you can reuse the STL 
containers, iterators and algorithms to implement common 
data representations and manipulations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



• The STL container types are shown in 

Fig. 22.1.

• The containers are divided into three major 

categories—sequence containers, associative 

containers and container adapters. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



• The sequence containers represent linear data structures, 
such as vectors and linked lists.

• Associative containers are nonlinear containers that 
typically can locate elements stored in the containers 
quickly.
– Such containers can store sets of values or key/value pairs.

• The sequence containers and associative containers are 
collectively referred to as the first-class containers.

• As we saw in Chapter 20, stacks and queues actually are 
constrained versions of sequential containers.

• For this reason, STL implements stacks and queues as 
container adapters that enable a program to view a 
sequential container in a constrained manner.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



• Most STL containers provide similar functionality.

• Many generic operations, such as member function size, 

apply to all containers, and other operations apply to subsets 

of similar containers.

• This encourages extensibility of the STL with new classes.

• Figure 22.2 describes the functions common to all Standard 

Library containers.

• [Note: Overloaded operators operator<, operator<=, 

operator>, operator>=, operator== and 

operator!= are not provided for priority_queues.]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19



• The header files for each of the Standard 

Library containers are shown in Fig. 22.3.

• The contents of these header files are all in 

namespace std.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23



• When preparing to use an STL container, it’s important to ensure 
that the type of element being stored in the container supports a 
minimum set of functionality.

• When an element is inserted into a container, a copy of that 
element is made.

• For this reason, the element type should provide its own copy 
constructor and assignment operator.

• [Note: This is required only if default memberwise copy and 
default memberwise assignment do not perform proper copy and 
assignment operations for the element type.] 

• Also, the associative containers and many algorithms require 
elements to be compared.

• For this reason, the element type should provide an equality 
operator (==) and a less-than operator (<).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25



• Iterators have many features in common with pointers and 
are used to point to the elements of first-class containers 
(and for a few other purposes, as we’ll see).

• Iterators hold state information sensitive to the particular 
containers on which they operate; thus, iterators are 
implemented appropriately for each type of container.

• Certain iterator operations are uniform across containers.

• For example, the dereferencing operator (*) dereferences an 
iterator so that you can use the element to which it points.

• The ++ operation on an iterator moves it to the next element 
of the container (much as incrementing a pointer into an 
array aims the pointer at the next element of the array).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26



• STL first-class containers provide member 

functions begin and end.

• Function begin returns an iterator pointing to 

the first element of the container.

• Function end returns an iterator pointing to the 

first element past the end of the container (an 

element that doesn’t exist).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27



• If iterator i points to a particular element, then 
++i points to the ―next‖ element and *i refers to 
the element pointed to by i.

• The iterator resulting from end is typically used 
in an equality or inequality comparison to 
determine whether the ―moving iterator‖ (i in this 
case) has reached the end of the container.

• An object of type iterator refers to a 
container element that can be modified.

• An object of type const_iterator refers to a 
container element that cannot be modified.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28



• We use iterators with sequences

ranges). 

• These sequences can be in containers, or they can be 

input sequences or output sequences.

• The program of Fig. 22.5 demonstrates input from the 

standard input (a sequence of data for input into a 

program), using an istream_iterator, and output to 

the standard output (a sequence of data for output 

from a program), using an ostream_iterator.

• The program inputs two integers from the user at the 

keyboard and displays the sum of the integers.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31



• Line 12 creates an istream_iterator that is capable 
of extracting (inputting) int values in a type-safe manner 
from the standard input object cin.

• Line 14 dereferences iterator inputInt to read the first 
integer from cin and assigns that integer to number1.

• The dereferencing operator * applied to inputInt gets 
the value from the stream associated with inputInt; this 
is similar to dereferencing a pointer.

• Line 15 positions iterator inputInt to the next value in 
the input stream.

• Line 16 inputs the next integer from inputInt and 
assigns it to number2.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32



• Line 19 creates an ostream_iterator that is capable 

of inserting (outputting) int values in the standard output 

object cout.

• Line 22 outputs an integer to cout by assigning to 

*outputInt the sum of number1 and number2.

• Notice the use of the dereferencing operator * to use 

*outputInt as an lvalue in the assignment statement.

• If you want to output another value using outputInt, the 

iterator must be incremented with ++ (both the prefix and 

postfix increment can be used, but the prefix form should be 

preferred for performance reasons).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34



• The iterator category that each container supports 
determines whether that container can be used with specific 
algorithms in the STL.

• Containers that support random-access iterators can be used 
with all algorithms in the STL.

• As we’ll see, pointers into arrays can be used in place of 
iterators in most STL algorithms, including those that 
require random-access iterators.

• Figure 22.8 shows the iterator category of each of the STL 
containers.

• The first-class containers (vectors, deques, lists, 
sets, multisets, maps and multimaps), strings 
and arrays are all traversable with iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38



• Figure 22.9 shows the predefined iterator 

typedefs that are found in the class 

definitions of the STL containers.

• Not every typedef is defined for every 

container.

• We use const versions of the iterators for 

traversing read-only containers.

• We use reverse iterators to traverse containers 

in the reverse direction.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41



• Figure 22.10 shows some operations that can 

be performed on each iterator type.

• The operations for each iterator type include 

all operations preceding that type in the figure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45



• STL algorithms can be used generically across a variety of 
containers.

• STL provides many algorithms you’ll use frequently to 
manipulate containers.

• Inserting, deleting, searching, sorting and others are 
appropriate for some or all of the STL containers.

• The STL includes approximately 70 standard algorithms.

• The algorithms operate on container elements only 
indirectly through iterators.

• Many algorithms operate on sequences of elements defined 
by pairs of iterators—one pointing to the first element of the 
sequence and one pointing to one element past the last 
element.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46



• Algorithms often return iterators that indicate the 

results of the algorithms.

• Algorithm find, for example, locates an element 

and returns an iterator to that element.

• If the element is not found, find returns the ―one 

past the end‖ iterator that was passed in to define the 

end of the range to be searched, which can be tested 

to determine whether an element was not found.

• The find algorithm can be used with any first-class 

STL container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47



• STL algorithms create yet another opportunity 

for reuse—using the rich collection of popular 

algorithms can save you much time and effort.

• If an algorithm uses less powerful iterators, the 

algorithm can also be used with containers that 

support more powerful iterators.

• Some algorithms demand powerful iterators; 

e.g., sort demands random-access iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52



• Figure 22.11 shows many of the mutating-

sequence algorithms—i.e., the algorithms that 

result in modifications of the containers to 

which the algorithms are applied.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54



• Figure 22.12 shows many of the nonmodifying 

sequence algorithms—i.e., the algorithms that 

do not result in modifications of the containers 

to which they’re applied.

• Figure 22.13 shows the numerical algorithms 

of the header file <numeric>.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57



• The C++ Standard Template Library provides 

three sequence containers—vector, list
and deque.

• Class template vector and class template 

deque both are based on arrays.

• Class template list implements a linked-list 

data structure similar to our List class 

presented in Chapter 20, but more robust.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58



• One of the most popular containers in the STL is vector.

• Recall that we introduced class template vector in 
Chapter 7 as a more robust type of array.

• A vector changes size dynamically.

• Unlike C and C++ ―raw‖ arrays (see Chapter 7), vectors 
can be assigned to one another.

• This is not possible with pointer-based, C-like arrays, 
because those array names are constant pointers and cannot 
be the targets of assignments.

• Just as with C arrays, vector subscripting does not 
perform automatic range checking, but class template 
vector does provide this capability via member function 
at (also discussed in Chapter 7).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60



• Figure 22.2 presented the operations common 

to all the STL containers.

• Beyond these operations, each container 

typically provides a variety of other 

capabilities.

• Many of these capabilities are common to 

several containers, but they’re not always 

equally efficient for each container.

• You must choose the container most 

appropriate for the application.©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63



• In addition to the common operations 

described in Fig. 22.2, the sequence containers 

have several other common operations—front
to return a reference to the first element in a 

non-empty container, back to return a 

reference to the last element in a non-empty 

container, push_back to insert a new 

element at the end of the container and 

pop_back to remove the last element of the 

container. 
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64



• Class template vector provides a data structure with 
contiguous memory locations.

• This enables efficient, direct access to any element of a 
vector via the subscript operator [], exactly as with a C or 
C++ ―raw‖ array.

• Class template vector is most commonly used when the 
data in the container must be easily accessible via a 
subscript or will be sorted.

• When a vector’s memory is exhausted, the vector
allocates a larger contiguous area of memory, copies the 
original elements into the new memory and deallocates the 
old memory.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 67



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68



69©1992-2010 by Pearson Education, Inc. All Rights Reserved.


