


• An important part of every container is the type of 

iterator it supports.

• This determines which algorithms can be applied to 

the container.

• A vector supports random-access iterators—i.e., all 

iterator operations shown in Fig. 22.10 can be applied 

to a vector iterator.

• All STL algorithms can operate on a vector.

• The iterators for a vector are sometimes 

implemented as pointers to elements of the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2



• Each STL algorithm that takes iterator arguments 

requires those iterators to provide a minimum level of 

functionality.

• If an algorithm requires a forward iterator, for 

example, that algorithm can operate on any container 

that provides forward iterators, bidirectional iterators

or random-access iterators.

• As long as the container supports the algorithm’s 

minimum iterator functionality, the algorithm can 

operate on the container. 

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3



• Figure 22.14 illustrates several functions of the 

vector class template.

• Many of these functions are available in every 

first-class container.

• You must include header file <vector> to 

use class template vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7



• Line 14 defines an instance called integers of 

class template vector that stores int values.

• When this object is instantiated, an empty vector is 

created with size 0 (i.e., the number of elements 

stored in the vector) and capacity 0 (i.e., the 

number of elements that can be stored without 

allocating more memory to the vector).

• Lines 16 and 17 demonstrate the size and 

capacity functions; each initially returns 0 for 

vector v in this example.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8



• Function size—available in every container—returns the 

number of elements currently stored in the container.

• Function capacity returns the number of elements that can 

be stored in the vector before the vector needs to 

dynamically resize itself to accommodate more elements.

• Lines 20–22 use function push_back—available in all 

sequence containers—to add an element to the end of the 

vector.

• If an element is added to a full vector, the vector
increases its size—some STL implementations have the 

vector double its capacity.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9



©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10



• Lines 24 and 25 use size and capacity to illustrate the 

new size and capacity of the vector after the three 

push_back operations.

• Function size returns 3—the number of elements added to 

the vector.

• Function capacity returns 4, indicating that we can add 

one more element before the vector needs to add more 

memory.

• When we added the first element, the vector allocated 

space for one element, and the size became 1 to indicate 

that the vector contained only one element.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11



• When we added the second element, the capacity doubled to 
2 and the size became 2 as well.

• When we added the third element, the capacity doubled 
again to 4.

• So we can actually add another element before the vector
needs to allocate more space.

• When the vector eventually fills its allocated capacity 
and the program attempts to add one more element to the 
vector, the vector will double its capacity to 8 
elements. 

• The manner in which a vector grows to accommodate 
more elements—a time consuming operation—is not 
specified by the C++ Standard Document.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12



• C++ library implementors use various clever schemes to 
minimize the overhead of resizing a vector.

• Hence, the output of this program may vary, depending on 
the version of vector that comes with your compiler.

• Some library implementors allocate a large initial capacity.

• If a vector stores a small number of elements, such 
capacity may be a waste of space.

• However, it can greatly improve performance if a program 
adds many elements to a vector and does not have to 
reallocate memory to accommodate those elements.

• This is a classic space–time trade-off.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13



• Library implementors must balance the amount of memory used 
against the amount of time required to perform various vector
operations. 

• Lines 29–30 demonstrate how to output the contents of an array 
using pointers and pointer arithmetic.

• Line 33 calls function printVector (defined in lines 49–57) 
to output the contents of a vector using iterators.

• Function template printVector receives a const reference 
to a vector (integers2) as its argument.

• Line 51 defines a const_iterator called constIterator
that iterates through the vector and outputs its contents.

• Notice that the declaration in line 51 is prefixed with the keyword 
typename.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14



• A const_iterator enables the program to read the 
elements of the vector, but does not allow the program to 
modify the elements.

• The for statement in lines 54–56 initializes 
constIterator using vector member function 
begin, which returns a const_iterator to the first 
element in the vector—there is another version of 
begin that returns an iterator that can be used for 
non-const containers.

• A const_iterator is returned because the identifier 
integers2 was declared const in the parameter list of 
function printVector.

• The loop continues as long as constIterator has not 
reached the end of the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15



• Line 37 declares a const_reverse_iterator that can be used to 
iterate through a vector backward.

• Line 38 declares a const_reverse_iterator variable 
tempIterator and initializes it to the iterator returned by function 
rend (i.e., the iterator for the ending point when iterating through the 
container in reverse).

• All first-class containers support this type of iterator.

• Lines 41–43 use a for statement similar to that in function 
printVector to iterate through the vector.

• In this loop, function rbegin (i.e., the iterator for the starting point 
when iterating through the container in reverse) and tempIterator
delineate the range of elements to output.

• As with functions begin and end, rbegin and rend can return a 
const_reverse_iterator or a reverse_iterator, based 
on whether or not the container is constant.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16



17©1992-2010 by Pearson Education, Inc. All Rights Reserved.


