Lecture 31:
Standard Template Library
(STL)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 19th, 2010

22.2.9 vector Seguence Container
(Cont.)

An Important part of every container is the type of
Iterator It supports.

This determines which algorithms can be applied to
the container.

A vector supports random-access Iterators—iI.e., all
Iterator operations shown in Fig. 22.10 can be applied
to a vector iterator.

All STL algorithms can operate on a vector.

The iterators for a vector are sometimes
Implemented as pointers to elements of the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

22.2.1 vector Seguence Container

« Each STL algorithm that takes iterator arguments
requires those iterators to provide a minimum level of

functionality.

« |f an algorithm requires a forward iterator, for
example, that algorithm can operate on any container
that provides forward iterators, bidirectional iterators
or random-access Iiterators.

* As long as the container supports the algorithm’s
minimum iterator functionality, the algorithm can
operate on the container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22,2, vector seguence Container

 Figure 22.14 illustrates several functions of the
vector class template.

« Many of these functions are available in every
first-class container.

 You must Include header file <vector> to
use class template vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

#include <vector> // vector class-template definition
using namespace std;

// prototype for function template printVector
template < typename T > void printVector(const vector< T > &integers2);

4

5

6

7

8

9

10 1int main()

11 {

12 const int SIZE = 6; // define array size
13 int array[SIZE] = { 1, 2, 3, 4, 5, 6 }; // initialize array
14 vector< int > integers; // create vector of ints

15

16

17

18

19

20

m

<< integers.size()

"

cout << "The initial size of integers is:

<< "\nThe initial capacity of integers is: << integers.capacity();
// function push_back is in every sequence collection
integers.push_back(2);

21 integers.push_back(3);
22 integers.push_back(4);
23

Fig. 22.14 | Standard Library vector class template. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

integers.size()
integers.capacity()

27

28 // display array using pointer notation

29 for (int *ptr = array; ptr != array + SIZE; ptr++)
30 cout << *ptr << ' ';

31

32 cout << "\nOutput vector using iterator notation: ";
33 printVector(integers);

34 cout << "\nReversed contents of vector integers: ";

35

36 // two const reverse iterators

37 vector< int >::const_reverse_iterator reverselterator;
38 vector< int >::const_reverse_iterator tempIlterator = integers.rend();
39

40 // display vector 1in reverse order using reverse_iterator
41 for (reverselterator = integers.rbegin();

42 reverselterator!= templterator; ++reverselterator)
43 cout << *reverselterator << ' ';

44

45 cout << endl;

46 } // end main

47

Fig. 22.14 | Standard Library vector class template. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

51 typename vector< T >::const_iterator constlterator; // const iterator
52

53 // display vector elements using const_iterator

54 for (constIlterator = integers2.begin();

55 constIlterator != integers2.end(); ++constlterator)
56 cout << *constlterator << ' ';

57 1} // end function printVector

The initial size of integers is: 0O

The initial capacity of integers 1is: 0
The size of integers is: 3

The capacity of integers is: 4

Output array using pointer notation: 1 2 3 4 56
Output vector using iterator notation: 2 3 4
Reversed contents of vector integers: 4 3 2

Fig. 22.14 | Standard Library vector class template. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.2.9 vector seqguence Contalner

 Line 14 defines an instance called 1ntegers of
class template vector that stores 1nt values.

* When this object is instantiated, an empty vector Is
created with size 0 (i.e., the number of elements
stored in the vector) and capacity O (i.e., the
number of elements that can be stored without
allocating more memory to the vector).

« Lines 16 and 17 demonstrate the s1ze and
capacity functions; each initially returns 0 for
vector v in this example.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.2.1 vector Seguence Container

Function s1ze—available in every container—returns the
number of elements currently stored in the container.

Function capaci1ty returns the number of elements that can
be stored in the vector before the vector needs to
dynamically resize itself to accommodate more elements.

Lines 20-22 use function push_back—available in all
sequence containers—to add an element to the end of the
vector.

If an element is added to a full vector, the vector
Increases Its size—some STL implementations have the
vector double its capacity.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

. Performance Tip 22.10

It can be wasteful to double a vector’ size when more
space is needed. For example, a full vector of
1,000,000 elements resizes to accommodate 2,000,000
elements when a new element is added. This leaves
999,999 unused elements. You can use resize and
reserve to control space usage better.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

22.2.1 vector Seguence Container

Lines 24 and 25 use s1ze and capacity to illustrate the
new size and capacity of the vector after the three
push_back operations.

Function s1ze returns 3—the number of elements added to
the vector.

Function capacity returns 4, indicating that we can add
one more element before the vector needs to add more
memory.

When we added the first element, the vector allocated

space for one element, and the size became 1 to indicate
that the vector contained only one element.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

22.2.1 vector Seguence Container

When we added the second element, the capacity doubled to
2 and the size became 2 as well.

When we added the third element, the capacity doubled
again to 4.

So we can actually add another element before the vector
needs to allocate more space.

When the vector eventually fills its allocated capacity
and the program attempts to add one more element to the
vector, the vector will double its capacity to 8
elements.

The manner in which a vector grows to accommodate
more elements—a time consuming operation—iIs not
specified by the C++ Standard Document.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

22.2.1 vector Seguence Container

C++ library implementors use various clever schemes to
minimize the overhead of resizing a vector.

Hence, the output of this program may vary, depending on
the version of vector that comes with your compiler.

Some library implementors allocate a large initial capacity.

If a vector stores a small number of elements, such
capacity may be a waste of space.

However, it can greatly improve performance if a program
adds many elements to a vector and does not have to
reallocate memory to accommodate those elements.

This is a classic space—time trade-off.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

13

22.2.1 vector Seguence Container

Library iImplementors must balance the amount of memory used
against the amount of time required to perform various vector
operations.

Lines 29-30 demonstrate how to output the contents of an array
using pointers and pointer arithmetic.

Line 33 calls function printvector (defined in lines 49-57)
to output the contents of a vector using iterators.

Function template printVector receives a const reference
toa vector (1ntegers?) as its argument.

Line 51 defines a const_1iterator called constIterator
that iterates through the vector and outputs its contents.

Notice that the declaration in line 51 is prefixed with the keyword
typename.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

22.2.9 vector seqguence Contalner

A const_iterator enables the program to read the
elements of the vector, but does not allow the program to
modify the elements.

The for statement in lines 54-56 initializes _
constIterator using vector member function
begin, which returns a const_iterator to the first
element in the vector—there is another version of
begin that returns an 1 terator that can be used for
non-const containers.

A const_1iterator isreturned because the identifier
1htegers2 was declared const in the parameter list of
function printvector.

The loop continues as long as constIterator has not
reached the end of the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

22.2.1 vector Seguence Container

Line 37 declares a const_reverse_1iterator that can be used to
Iterate through a vector backward.

Line 38 declares a const_reverse_1iterator variable
tempIterator and initializes it to the iterator returned by function
rend (1.e., the iterator for the ending point when iterating through the
container in reverse).

All first-class containers support this type of iterator.

Lines 41-43 use a for statement similar to that in function
printvVector to iterate through the vector.

In this loop, function rbegin (i.e., the iterator for the starting point
when iterating through the container in reverse) and tempIterator
delineate the range of elements to output.

As with functions begin and end, rbegin and rend can return a
const_reverse_iteratororareverse_iterator, based
on whether or not the container Is constant.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17

