Lecture 32:
Standard Template Library
(STL)

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 21¢t, 2010

22,2, vector seguence Container

 Figure 22.15 illustrates functions that enable
retrieval and manipulation of the elements of a
vector.

e Line 15 uses an overloaded vector
constructor that takes two Iterators as
arguments to initialize 1ntegers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

VoO~NONNBB

10
11
12
13
14
15
16
17

#include
#include
#include
#include
#include
using namespace std;

<iostream>

<vector> // vector class-template definition
<algorithm> // copy algorithm

<iterator> // ostream_iterator iterator
<stdexcept> // out_of range exception

int main(Q)

{

const

int SIZE = 6;

int array[SIZE 1 = { 1, 2, 3, 4, 5, 6 };
vector< int > integers(array, array + SIZE);
ostream_iterator< int > output(cout, " ");

Fig. 22.15 | vector class template element-manipulation functions. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

copy(integers.begin(), integers.end(), output);

cout << "\nFirst element of integers: << integers.front()
<< "\nLast element of integers: " << integers.back();

integers[0] = 7; // set first element to 7
integers.at(2) = 10; // set element at position 2 to 10

// insert 22 as 2nd element
integers.insert(integers.begin() + 1, 22);

cout << "\n\nContents of vector integers after changes: ";
copy(integers.begin(), integers.end(), output);

// access out-of-range element
try

{
integers.at(100) = 777;
} // end try
catch (out_of_range &outOfRange) // out_of range exception

{
cout << "\n\nException: " << outOfRange.what();
} // end catch

Fig. 22.15 | vector class template element-manipulation functions. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

45
46
47
48
49
50
51
52
53
54
35
56
37
58
39
60
61
62

// erase first element

integers.erase(integers.begin());

mn

cout << "\n\nVector integers after erasing first element: ";
copy(integers.begin(), integers.end(), output);

// erase remaining elements
integers.erase(integers.begin(), integers.end());

cout << "\nAfter erasing all elements, vector integers
<< (integers.empty() ? "is" : "is not") <<

"

empty";

// insert elements from array
integers.insert(integers.begin(), array, array + SIZE);

cout << "\n\nContents of vector integers before clear: ";

copy(integers.begin(), integers.end(), output);

// empty integers; clear calls erase to empty a collection

integers.clear();

cout << "\nAfter clear, vector integers
<< (integers.empty() ? "is" : "is not") <<

} // end main

empty"” << endl;

Fig. 22.15 | vector class template element-manipulation functions. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Vector integers contains: 1 2 3 4 5 6
First element of integers: 1
Last element of integers: 6
Contents of vector integers after changes: 7 22 2 10 4 5 6

Exception: invalid vector<T> subscript

Vector integers after erasing first element: 22 2 10 4 5 6
After erasing all elements, vector integers is empty

Contents of vector integers before clear: 1 2 3 45 6
After clear, vector integers is empty

Fig. 22.15 | vector class template element-manipulation functions. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

out_of_range Indicates when subscript is out of range—e.g., when an
invalid subscript is specified to vector member function at.

invalid_argument Indicates an invalid argument was passed to a function.

length_error Indicates an attempt to create too long a container, string,
etc.

bad_alloc Indicates that an attempt to allocate memory with new (or
with an allocator) failed because not enough memory was
available.

Fig. 22.16 | Some STL exception types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.2.1 vector Seguence Container

Lines 24-25 illustrate two ways to subscript through a vector
(which also can be used with the deque containers).

Line 26 uses the subscript operator that is overloaded to return
either a reference to the value at the specified location or a
constant reference to that value, depending on whether the
container is constant.

Function at (line 25) performs the same operation, but with
bounds checking.

Function at first checks the value supplied as an argument and
determines whether it’s in the bounds of the vector.

If not, function at throws an out_of_range exception
defined in header <stdexcept> (as demonstrated in lines 34—
41).

Figure 22.16 shows some of the STL exception types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22.2.9 vector seqguence Contalner

Line 28 uses one of the three overloaded 1nsert functions
provided by each sequence container.

Line 28 Inserts the value 22 before the element at the
location specified by the iterator in the first argument.

In this example, the iterator is pointing to the second
element of the vector, so 22 iIs inserted as the second
element and the original second element becomes the third
element of the vector.

Other versions of 1nsert allow inserting multiple copies
of the same value starting at a particular position in the
container, or inserting a range of values from another
container (or array), starting at a particular position in the
original container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

Common Programming Error 22.4

Erasing an element that contains a pointer to a dynam-
ically allocated object does not delete that object; this
can lead to a memory leak.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

22,2, vector seguence Container

Lines 44 and 49 use the two er ase functions that are available In
all first-class containers.

Line 44 indicates that the element at the location specified by the
Iterator argument should be removed from the container (in this
example, the element at the beginning of the vector).

Line 49 specifies that all elements in the range starting with the
location of the first argument up to—»but not including—the
location of the second argument should be erased from the
container.

In this example, all the elements are erased from the vector.

Line 51 uses function empty (available for all containers and
adapters) to confirm that the vector is empty.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

22.2.1 vector Seguence Container

Line 54 demonstrates the version of function 1nsert that
uses the second and third arguments to specify the starting
location and ending location Iin a sequence of values
(possibly from another container; in this case, from array of
Integers array) that should be inserted into the vector.

Remember that the ending location specifies the position in
the sequence after the last element to be inserted; copying Is
performed up to—»but not including—this location.

Finally, line 59 uses function clear (found in all first-class
containers) to empty the vector.

This function calls the version of erase used in line 51 to
empty the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

22.2.2 11 st Seguence Contalner

The 11 st sequence container provides an efficient

Implementation for insertion and deletion operations at any
location in the container.

If most of the insertions and deletions occur at the ends of
the container, the deque data structure (Section 22.2.3)
provides a more efficient implementation.

Class template 11 st is implemented as a doubly linked

list—every node in the 11 st contains a pointer to the
revious node in the 11 st and to the next node in the
1ST.

This enables class template 11 st to support bidirectional

Iterators that allow the container to be traversed both
forward and backward.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

22.2.2 118t Sequence Contalner (Cont.)

« Any algorithm that requires input, output, forward
or bidirectional iterators can operate ona 11st.

« Many 11st member functions manipulate the
elements of the container as an ordered set of
elements.

 In addition to the member functions of all STL
containers In Fig. 22.2 and the common member
functions of all sequence containers discussed In
Section 22.2, class template 1.1 st provides nine
other member functions—sp 11 ce,
push_front, pop_front, remove,

remove_if, unique, merge, reverse and
sort.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

4 #include <list> // 1list class-template definition
5 #include <algorithm> // copy algorithm

6 #include <iterator> // ostream_iterator

7 using namespace std;

8

9

// prototype for function template printList
10 template < typename T > void printList(const list< T > &listRef);

12 1int main(Q)

13 {

14 const int SIZE = 4;

15 int array[SIZE] = { 2, 6, 4, &8 };

16 Tist< int > values; // create Tist of ints
17 Tist< int > otherValues; // create list of ints
18

19 // insert items in values

20 values.push_front(1);

21 values.push_front(2);

22 values.push_back(4);

23 values.push_back(3);

24

Fig. 22.17 | Standard Library 19st class template. (Part | of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

15

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

values.sort(); // sort values
cout << "\nvalues after sorting contains: ";
printList(values);

// insert elements of array into otherValues
otherValues.insert(otherValues.begin(), array, array + SIZE);

cout << "\nAfter insert, otherValues contains: ";
printList(otherValues);

// remove otherValues elements and insert at end of values
values.splice(values.end(), otherValues);

cout << "\nAfter splice, values contains: ";
printList(values);

values.sort(); // sort values
cout << "\nAfter sort, values contains: ";
printList(values);

// insert elements of array into otherValues
otherValues.insert(otherValues.begin(), array, array + SIZE);
otherValues.sort();

Fig. 22.17 | Standard Library 19 st class template. (Part 2 of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

16

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

// remove otherValues elements and insert into values in sorted order
values.merge(otherValues);

cout << "\nAfter merge:\n values contains: ";
printList(values);

cout << "\n otherValues contains: ";
printList(otherValues);

"

values.pop_front(); // remove element from front
values.pop_back(); // remove element from back

cout << "\nAfter pop_front and pop_back:\n values contains:

printList(values);

values.unique(); // remove duplicate elements

cout << "\nAfter unique, values contains: ";
printList(values);

// swap elements of values and otherValues
values.swap(otherValues);

cout << "\nAfter swap:\n values contains: ";
printList(values);

cout << "\n otherValues contains: ";

Fig. 22.17 | Standard Library 19 st class template. (Part 3 of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

// replace contents of values with elements of otherValues
values.assign(otherValues.begin(), otherValues.end());

cout << "\nAfter assign, values contains: ";
printList(values);

// remove otherValues elements and insert into values in sorted order
values.merge(otherValues);

cout << "\nAfter merge, values contains: ";
printList(values);

values.remove(4); // remove all 4s

cout << "\nAfter remove(4), values contains: ";
printList(values);

cout << endl;

} // end main

// printList function template definition; uses
// ostream_iterator and copy algorithm to output 1list elements
template < typename T > void printList(const list< T > &listRef)

{

if (1istRef.empty()) // Tist is empty
cout << "List s empty";

Fig. 22.17 | Standard Library 19 st class template. (Part 4 of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18

100 copy(1;stRef.begin(), TistRef.end(), output);
101 } // end else
102 } // end function printList

values contains: 2 1 4 3
values after sorting contains: 1 2 3 4
After insert, otherValues contains: 2 6 4 8
After splice, values contains: 1 2 34 2 6 4 8
After sort, values contains: 1 2 2 3 4 4 6 8
After insert and sort, otherValues contains: 2 4 6 8
After merge:
values contains: 1 22 2 344466838
otherValues contains: List is empty

Fig. 22.17 | Standard Library 1ist class template. (Part 5 of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

After pop_front and pop_back:

values contains: 2 2 2 3 444668
After unique, values contains: 2 3 4 6 8
After swap:

values contains: List is empty

otherValues contains: 2 3 4 6 8
After assign, values contains: 2 3 4 6 8

After merge, values contains: 2 2 3

34466288
After remove(4), values contains: 2 2 3 3 6 6 8 8

Fig. 22.17 | Standard Library 1ist class template. (Part 6 of 6.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

22.2.2 11st Sequenece Contalher (Cont.)

« Several of these member functions are 11st-

optimized implementations of STL algorithms
presented in Section 22.5.

» Figure 22.17 demonstrates several features of class
11st.

« Remember that many of the functions presented In
~igs. 22.14-22.15 can be used with class 11st.

« Header file <I1st> must be included to use class
11st.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

22.2.2 118t Sequence Container (Cont.)

 Lines 16-17 instantiate two 11 st objects capable of
storing integers.

* Lines 20-21 use function push_front to insert integers at
the beginning of values.

 Function push_front is specific to classes 11st and
deque (not to vector).

 Lines 22-23 use function push_back to insert integers at
the end of values.

- Remember that function push_back is common to all
sequence containers.

» Line 28 uses 11 st member function sort to arrange the
elements in the 11 st in ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

22.2.2 118t Sequence Contalner (Cont.)

A second version of function sort allows you
to supply a binary predicate function that takes
two arguments (values in the list), performs a
comparison and returns a boo 1 value
Indicating the result.

e This function determines the order in which
the elements of the 11 st are sorted.

 This version could be particularly useful for a
11 st that stores pointers rather than values.

* [Note: We demoenstrate-a twnary-predicate &

22.2.2 118t Sequence Container (Cont.)

» A unary predicate function takes a single argument,
performs a comparison using that argument and returns a
bool value indicating the result.]

e Line 38 uses 11st function splice to remove the elements
in othervalues and insert them into values before the

Iterator position specified as the first argument.
« There are two other versions of this function.

 Function sp11ce with three arguments allows one element
to be removed from the container specified as the second
argument from the location specified by the iterator in the
third argument.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

22.2.2 11st Sequenece Contalher (Cont.)

» Function 5{31 1 ce with four arguments uses the last two
arguments to specify a range of locations that should be
removed from the container in the second argument and
placed at the location specified in the first argument.

 After inserting more elements in othervalues and
sorting both values and other-values, line 53 uses
11 st member function mer ge to remove all elements of
otﬁle rvalues and insert them in sorted order into
values.

« Both 11sts must be sorted in the same order before this
operation is performed.

« A second version of merge enables you to supPIy a
redicate function that takes two arguments (values in the
ist) and returns a boo 1 value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

22.2.2 11st Sequenece Contalher (Cont.)

» The predicate function specifies the sorting order used by
merge.

e Line 59 uses 11st function pop_front to remove the first
element in the 11st.

 Line 60 uses function pop_back (available for all sequence
containers) to remove the last element in the 11 st.

 Line 64 uses 11st function unique to remove duplicate
elements in the 11st.

« The 11st should be in sorted order (so that all duplicates
are side by side) before this operation is performed, to
guarantee that all duplicates are eliminated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

22.2.2 118t Sequence Container (Cont.)

« A second version of unique enables you to
supply a predicate function that takes two
arguments (values in the list) and returns a boo
value specifying whether two elements are equal.

» Line 69 uses function swap (available to all first-
class containers) to exchange the contents of
values with the contents of othervalues.

 Line 76 uses 11st function assign (available to
all sequence containers) to replace the contents of
va lues with the contents of othervalues in
the range specified by the two iterator arguments.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

22.2.2 118t Sequence Container (Cont.)

A second version of ass1gn replaces the
original contents with copies of the value
specified In the second argument.

 The first argument of the function specifies the
number of coples.

e Line 85 uses 11 st function remove to delete
all copies of the value 4 from the 11st.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

22.2.83 deque Sequenece Container

Class deque provides many of the benefits of a vector
and a 11st in one container.

The term deque is short for “double-ended queue.”

Class deque is implemented to provide efficient indexed
access (using subscripting) for reading and modifying its
elements, much like a vector.

Class deque is also implemented for efficient insertion and
deletion operations at its front and back, much likea 11st

(although a 11 st is also capable of efficient insertions and

deletions in the middle of the 11st).

Class deque provides support for random-access iterators,
so deques can be used with all STL algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

. Performance Tip 22.13
In general, deque has higher overhead than vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

2 Performance Tip 22.14
Insertions and deletions in the middle of a deque are op-
timized to minimize the number of elements copied, so

it’s more efficient than a vector but less efficient than
a 11st for this kind of modification.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

31

22.2.8 degue Seguence Container (Cont.)

« One of the most common uses of a deque is to maintain a
first-in, first-out queue of elements.

 Infact, a deque is the default underlying implementation
for the queue adaptor (Section 22.4.2).

 Additional storage for a deque can be allocated at either
end of the deque in blocks of memory that are typically
maintained as an array of pointers to those blocks.

 Due to the noncontiguous memory layout of a deque, a
deque iterator must be more intelligent than the pointers
that are used to Iiterate through vectors or pointer-based
arrays.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

4 #include <deque> // deque class-template definition
5 #include <algorithm> // copy algorithm

6 #include <iterator> // ostream_iterator

7 using namespace std;

8

9

int main()

10 {

11 deque< double > values; // create deque of doubles
12 ostream_iterator< double > output(cout, " ");
13

14 // insert elements in values

15 values.push_front(2.2);

16 values.push_front(3.5);

17 values.push_back(1.1);

18

19 cout << "values contains: ";

20

Fig. 22.18 | Standard Library deque class template. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

33

24
25
26
27
28
29
30
31
32
33
34

values[i]

values.pop_front(); // remove first element
cout << "\nAfter pop_front, values contains: ";
copy(values.begin(), values.end(), output);

// use subscript operator to modify element at Tocation 1
values[1] = 5.4;

cout << "\nAfter values[1] = 5.4, values contains: ";
copy(values.begin(), values.end(), output);

cout << endl;

} // end main

values contains: 3.5 2.2 1.1
After pop_front, values contains: 2.2 1.1
After values[1] = 5.4, values contains: 2.2 5.4

Fig. 22.18 | Standard Library deque class template. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

34

22.2.8 degue Seguence Container (Cont.)

« Class deque provides the same basic operations as class
vector, but like 11 st adds member functions push_front
and pop_Tront to allow insertion and deletion at the beginning
of the deque, respectively.

« Figure 22.18 demonstrates features of class deque.

« Remember that many of the functions presented in Fig. 22.14,
Fig. 22.15 and Fig. 22.17 also can be used with class deque.

« Header file <deque> must be included to use class deque.
« Line 11 instantiates a deque that can store doub 1 e values.

« Lines 15-17 use functions push_front and push_back to
insert elements at the beginning and end of the deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

22.2.3 deque Seguence Container (Cont.)

» The for statement in lines 22—23 uses the subscript
operator to retrieve the value in each element of the deque
for output.

« The condition uses function s1ze to ensure that we do not

attempt to access an element outside the bounds of the
deque.

 Line 25 uses function pop_front to demonstrate
removing the first element of the deque.

 Remember that pop_front is available only for class
11st and class deque (not for class vector).

 Line 30 uses the subscript operator to create an lvalue.

» This enables values to be assigned directly to any element
of the deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

22.3 Assoclative Containers

The STL’s associative containers provide direct access to store
and retrieve elements via keys (often called search keys).

The four associative containers are multiset, set,
multimap and map.

Each associative container maintains its keys in sorted order.

Iterating through an associative container traverses it in the sort
order for that container.

Classes multi1set and set provide operations for manipulating
sets of values where the values are the keys—there is not a
separate value associated with each key.

The primary difference betweenamultiset and a set is that
amultiset allows duplicate keys and a set does not.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

22.3 Associative Containers (Cont.)

Classes mult imap and map provide operations for manipulating
values associated with keys (these values are sometimes referred
to as mapped values).

The primary difference between amultimap and a map is that
amultimap allows duplicate keys with associated values to be
stored and a map allows only unique keys with associated values.

In addition to the common member functions of all containers
presented in Fig. 22.2, all associative containers also support
several other member functions, including 1 nd,
lower_bound, upper_bound and count.

Examples of each of the associative containers and the common
assoclative container member functions are presented in the next
several subsections.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

22.3.9 multiset Associative Container
(Cont.)

« Themultiset associative container provides fast storage
and retrieval of keys and allows duplicate keys.

» The ordering of the elements Is determined by a comparator
function object.

« For example, in an integer mult1set, elements can be
sorted in ascending order by ordering the keys with
comparator function object less<int>.

« We discuss function objects in detail in Section 22.7.

» The data type of the keys in all associative containers must
support comparison properly based on the comparator
function object specified—Kkeys sorted with 1Tess< T >
must support comparison with operatorx.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

4 #include <set> // multiset class-template definition
5 #include <algorithm> // copy algorithm

6 #include <iterator> // ostream_iterator

7 using namespace std;

8

9

// define short name for multiset type used in this program
10 typedef multiset< int, less< int > > Ims;

12 1int main(Q)

13 {

14 const int SIZE = 10;

15 int a[SI2 1 ={ 7, 22, 9, 1, 18, 30, 100, 22, &5, 13 };
16 Ims intMultiset; // Ims is typedef for "integer multiset"
17 ostream_iterator< int > output(cout, " ");

18

Fig. 22.19 | Standard Library muTtiset class template. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

40

intMultiset.count(15)

22 intMultiset.insert(15); // insert 15 in intMultiset

23 intMultiset.insert(15); // insert 15 in intMultiset

24 cout << "After inserts, there are " << intMultiset.count(15)
25 << " values of 15 in the multiset\n\n";

26

27 // iterator that cannot be used to change element values

28 Ims::const_iterator result;

29

30 // find 15 in intMultiset; find returns iterator

31 result = intMultiset.find(15);

32

33 if (result != intMultiset.end()) // if iterator not at end
34 cout << "Found value 15\n"; // found search value 15

35

36 // find 20 in intMultiset; find returns iterator

37 result = intMultiset.find(20);

38

Fig. 22.19 | Standard Library multiset class template. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

// insert elements of array a into intMultiset
intMultiset.insert(a, a + SIZE);

cout << "\nAfter 1insert, intMultiset contains:\n";
copy(intMultiset.begin(), intMultiset.end(), output);

// determine lower and upper bound of 22 1in intMultiset
cout << "\n\nLower bound of 22: "
<< *(intMultiset.lower_bound(22));

cout << "\nUpper bound of 22: " << *(intMultiset.upper_bound(22));

// p represents pair of const_iterators
pair< Ims::const_iterator, Ims::const_iterator > p;

// use equal_range to determine lower and upper bound
// of 22 in intMultiset
p = intMultiset.equal_range(22);

m LA}

cout << "\n\nequal_range of 22:" << "\n Lower bound:
<< *(p.first) << "\n Upper bound: " << *(p.second);
cout << endl;

} // end main

Fig. 22.19 | Standard Library multiset class template. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

42

There are currently 0 values of 15 in the multiset
After inserts, there are 2 values of 15 in the multiset

Found value 15
Did not find value 20

After insert, intMultiset contains:
17 9 13 15 15 18 22 22 30 85 100

Lower bound of 22: 22
Upper bound of 22: 30

equal_range of 22:
Lower bound: 22
Upper bound: 30

Fig. 22.19 | Standard Library multiset class template. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

22.3.9 multl set Associative Container

(Cont.)

If the keys used in the associative containers are of user-

defined data types, those types must supply the appropriate
comparison operators.

A multiset supports bidirectional iterators (but not
random-access iterators).

Figure 22.19 demonstrates the mu1t1set associative
container for amultiset of integers sorted in ascending
order.

Header file <set> must be included to use class
multiset.

Containers multiset and set provide the
same basic functionality.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

M Good Programming Practice 22.1
Use typedefs to make code with long type names (such
as multisets) easier to read.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

22.3.9 multl set Associative Container
(Cont.)

 Line 10 uses a typedef to create a new type
name (alias) for amulti1set of integers
ordered In ascending order, using the function
object less< 1nt >.

» Ascending order Is the default for a
multiset,so less< 1nt > can be omitted

In line 10.

* This new type (Ims) Is then used to Instantiate
an integer multiset object, TntMultiset
(1IN€ 16). .corzom0m pemson csucaion ne a ighs s 46

22.3.9 multiset Associative Container
(Cont.)

 The output statement in line 19 uses function count
(available to all associative containers) to count the number
of occurrences of the value 15 currently inthe multiset.

e Lines 22—23 use one of the three versions of function
1nsert to add the value 15 tothe multiset twice.

« A second version of Tnsert takes an iterator and a value
as arguments and begins the search for the insertion point
from the iterator position specified.

« A third version of 1nsert takes two iterators as arguments
that specify a range of values to add to the multiset from
another container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

22.3.9 multiset Associative Container
(Cont.)

» Line 31 uses function f1nd (available to all associative
containers) to locate the value 15 inthe multiset.

» Function find returns an 1terator ora _
const_1terator pointing to the earliest location at
which the value is found.

» If the value is not found, find returns an 1terator ora
cogst_1 terator equal to the value returned by a call to
end.

e Line 40 demonstrates this case.

» Line 43 uses function 1nsert to insert the elements of array
a into themultiset.

* In line 45, the copy algorithm copies the elements of the
multiset to the standard output in ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

22.3.9 multiset Associative Container
(Cont.)

e Lines 49 and 50 use functions 1ower_bound and
upper_bound (available in all associative containers) to
locate the earliest occurrence of the value 22 in the
mu |l tiset and the element after the last occurrence of the
value 22 inthemultiset.

- Both functions return 1teratorsor const_iterators
pointing to the appropriate location or the iterator returned
by end if the value is not inthe multiset.

 Line 53 instantiates an instance of class pair called p.
 Obijects of class pair are used to associate pairs of values.

» In this example, the contents of a pair aretwo
const_1iterators for our integer-based multiset.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

22.3.9 multiset Associative Container
(Cont.)

« The purpose of p is to store the return value of multiset
function equal_range that returns a pai r containing the
results of both a 1ower_bound and an upper_bound
operation.

« Type pair contains two pub11c data members called
first and second.

 Line 57 uses function equal_range to determine the
lower_bound and upper_bound of 22 in the
multiset.

e Line60usesp.firstandp.second, respectively, to
access the lower_bound and upper_bound.

- We dereferenced the iterators to output the values at the
locations returned from equal_range.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

#include <set>

#include <algorithm>

#include <iterator> // ostream_iterator
using namespace std;

// define short name for set type used in this program
typedef set< double, less< double > > DoubleSet;

int main(Q)

{
const int SIZE = 5;
double a[SIZE] = { 2.1, 4.2, 9.5, 2.1, 3.7 };
DoubleSet doubleSet(a, a + SIZE);
ostream_iterator< double > output(cout, " ");

Fig. 22.20 | Standard Library set class template. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

51

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

// p represents pair containing const_iterator and bool
pair< DoubleSet::const_iterator, bool > p;

// insert 13.8 in doubleSet; insert returns pair in which
// p.first represents location of 13.8 in doubleSet and
// p.second represents whether 13.8 was inserted
p = doubleSet.insert(13.8); // value not 1in set
cout << "\n\n" << *(p.first)

<< (p.second ? " was" : " was not") <<
cout << "\ndoubleSet contains: ";
copy(doubleSet.begin(), doubleSet.end(), output);

n

inserted";

// insert 9.5 in doubleSet
p = doubleSet.insert(9.5); // value already in set
cout << "\n\n" << *(p.first)

<< (p.second ? " was" : " was not") <<
cout << "\ndoubleSet contains: ";
copy(doubleSet.begin(), doubleSet.end(), output);
cout << endl;

inserted";

} // end main

Fig. 22.20 | Standard Library set class template. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

52

doubleSet contains: 2.1 3.7 4.2 9.5

13.8 was inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

9.5 was not inserted
doubleSet contains: 2.1 3.7 4.2 9.5 13.8

Fig. 22.20 | Standard Library set class template. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

22.8.2 set Assoclative Contalner

The set associative container Is used for fast storage and
retrieval of unique keys.

The implementation of a set is identical to that of a
multiset, except that a set must have unique keys.

Therefore, if an attempt is made to insert a duplicate key
Into a set, the duplicate Is ignored; because this is the
Intended mathematical behavior of a set, we do not identify
It as a common programming error.

A set supports bidirectional iterators (but not random-
access Iiterators).

Figure 22.20 demonstrates a set of doubes.
Header file <set> must be included to use class set.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

22.3.2 set Assoclative Container (Cont.)

 Line 10 uses typedef to create a new type name
(DoubleSet) for a set of doub1e values ordered in
ascending order, using the function object
less<double>.

 Line 16 uses the new type Doub 1eSet to instantiate object
doubleSet.

» The constructor call takes the elements In array a between a
and a + SIZE (i.e., the entire array) and inserts them into
the set.

» Line 20 uses algorithm copy to output the contents of the
set.

 Notice that the value 2 . 1—which appeared twice in array
a—appears only once in doubleSet.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

22.3.2 set Assoclative Container (Cont.)

« This Is because container set does not allow duplicates.

 Line 23 defines a pa1i r consisting of a const_1iterator for
aDoubleSet and a bool value.

 This object stores the result of a call to set function insert.

 Line 28 uses function 1nsert to place the value 13. 8 in the
set.

« The returned pair, p, contains an iterator p. 1 rst pointing to
the value 13.8 inthe set and a boo1 value that is true if the
value was inserted and false if the value was not inserted
(because It was already in the set).

 Inthis case, 13. 8 was not in the set, so it was inserted.
« Line 35 attempts to insert 9. 5, which is already in the set.
« The output of lines 36-37 shows that 9. 5 was not inserted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

22.3.8 multimap Associative Container

 The multimap associative container is used for fast storage and
retrieval of keys and associated values (often called key/value
pairs).

« Many of the functions used with multisetsand sets are also
used with mu1timaps and maps.

« The elements of multimaps and maps are pairs of keys and
values instead of individual values.

« When inserting into a mu 1 t1map or map, a pair object that
contains the key and the value is used.

. Tg_e ordering of the keys is determined by a comparator function
object.

« For example, in a multimap that uses integers as the key type,
keys can be sorted in ascending order by ordering them with
comparator function object Tess< int >.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

;. Performance Tip 22.15
A multimap is implemented to efficiently locate all val-
ues paired with a given key.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58

22,38 multimap Assocliative Contalner
(Cont.)

« Duplicate keys are allowed in a multimap, so multiple values
can be associated with a single key.

« This Is often called a one-to-many relationship.

« For example, in a credit-card transaction-processing system, one
credit-card account can have many associated transactions; in a
university, one student can take many courses, and one professor
can teach many students; in the military, one rank (like “private™)
has many people.

« A multimap supports bidirectional iterators, but not random-
access iterators.

« Figure 22.21 demonstrates the mu 1 t1map associative container.
« Header file <map> must be included to use class multimap.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59

#include <map> // multimap class-template definition
using namespace std;

// define short name for multimap type used in this program
typedef multimap< int, double, less< int > > Mmid;

int main()

{

Mmid pairs; // declare the multimap pairs

cout << "There are currently " << pairs.count(15

<< pairs with key 15 in the multimap\n";

// insert two value_type objects in pairs
pairs.insert(Mmid::value_type(15, 2.7));

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 pairs.insert(Mmid::value_type(15, 99.3));
20

Fig. 22.21 | Standard Library multimap class template. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

60

pairs.count(15)

24 // insert five value_type objects in pairs

25 pairs.insert(Mmid::value_type(30, 111.11));

26 pairs.insert(Mmid::value_type(10, 22.22));

27 pairs.insert(Mmid::value_type(25, 33.333));

28 pairs.insert(Mmid::value_type(20, 9.345));

29 pairs.insert(Mmid::value_type(5, 77.54));

30

31 cout << "Multimap pairs contains:\nKey\tValue\n";

32

33 // use const_iterator to walk through elements of pairs
34 for (Mmid::const_iterator iter = pairs.begin();

35 iter != pairs.end(); ++iter)

36 cout << iter->first << '\t' << iter->second << '\n';
37

38 cout << endl;

39 } // end main

Fig. 22.21 | Standard Library multimap class template. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61

There are currently 0 pairs with key 15 in the multimap
After inserts, there are 2 pairs with key 15

Key
5
10
15
15
20
25
30

Multimap pairs contains:

Value
77.54
22.22
2.7
99.3
9.345
33.333
111.11

Fig. 22.21 | Standard Library multimap class template. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

62

22.3.8 multimap Assoeclative Container
(Cont.)

 Line 8 uses typedef to define alias Mm1d for
a mu 1 timap type in which the key type is
1nt, the type of a key’s associated value is
doub1e and the elements are ordered in
ascending order.

* Line 12 uses the new type to Instantiate a
multimap called pairs.

 Line 14 uses function count to determine the
number of key/value pairs with a key of 15.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63

22,38 multimap Assocliative Contalner
(Cont.)

e Line 18 uses function 1nsert to add a new
key/value pair to the multimap.

« The expressionMmid: :value_type(15, 2.7)
creates a pair object in which 1 rst is the key
(15) of type 1nt and second is the value (2.7) of
type double.

« Thetype Mmid: :value_type is defined as part of
the typedef for the multimap.

 Line 19 inserts another pa1r object with the key 15
and the value 99. 3.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64

22.3.8 multimap Assoeclative Container
(Cont.)

* Then lines 21-22 output the number of pairs with
key 15.

 Lines 25-29 insert five additional pa1irs into the
mu | timap.

« The for statement in lines 34—36 outputs the

contents of the mu 1 t1map, including both keys
and values.

 Line 36 uses the const_1terator called
1ter to access the members of the pair in each
element of the mu 1 timap.

 Notice In the output that the keys appear Iin
ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65

22.8.4 map Assoclative Contalner

The map associative container performs fast storage and retrieval
of unique keys and associated values.

Duplicate keys are not allowed—a single value can be associated
with each key.

This is called a one-to-one mapping.

For example, a company that uses unigue employee numbers,
such as 100, 200 and 300, might have a map that associates
employee numbers with their telephone extensions—4321, 4115
and 5217, respectively.

With a map you specify the key and get back the associated data
quickly.
A map is also known as an associative array.

Providing the key in a map’s subscript operator [] locates the
value associated with that key in the map.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66

VOO~V

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include <map> // map class-template definition
using namespace std;

// define short name for map type used in this program
typedef map< int, double, Tess< int > > Mid;

int main

{

O

Mid pairs;

// insert eight value_type objects 1in pairs

pairs
pairs
pairs
pairs
pairs
pairs
pairs
pairs

.insert(Mid:
.insert(Mid:
.insert(Mid:
.insert(Mid:
.insert(Mid:
.insert(Mid:
.insert(Mid:
.insert(Mid:

:value_type(
:value_type(
:value_type(
:value_type(
:value_type(
:value_type(
:value_type(
:value_type(

15, 2.7));

30, 111.11));

5, 1010.1));

10, 22.22));

25, 33.333));

5, 77.54)); // dup ignored
20, 9.345));

15, 99.3)); // dup ignored

Fig. 22.22 | Standard Library map class template. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

67

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// use const_iterator to walk through elements of pairs
for (Mid::const_iterator iter = pairs.begin();

iter != pairs.end(); ++iter)

cout << iter->first << '\t' << iter->second << '\n';

pairs[25] = 9999.99; // use subscripting to change value for key 25
pairs[40] = 8765.43; // use subscripting to insert value for key 40

cout << "\nAfter subscript operations, pairs contains:\nKey\tValue\n";

// use const_iterator to walk through elements of pairs
for (Mid::const_iterator iter2 = pairs.begin(Q);

iter2 != pairs.end(); ++iter2)

cout << iter2->first << '\t' << jiter2->second << '\n';

cout << endl;
} // end main

Fig. 22.22 | Standard Library map class template. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

pairs contains:

Key Value
5 1010.1
10 22.22
15 2.7

20 9.345
25 33.333
30 111.11

After subscript operations, pairs contains:
Key Value

5 1010.1
10 22.22
15 2.7

20 9.345
25 EHOTSHRSHE
30 111.11
40 8765.43

Fig. 22.22 | Standard Library map class template. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69

22.3.4 map Assoclative Container (Cont.)

 Insertions and deletions can be made anywhere in a map.

« Figure 22.22 demonstrates a map and uses the same features as
Fig. 22.21 to demonstrate the subscript operator.

« Header file <map> must be included to use class map.
« Lines 31-32 use the subscript operator of class map.

« When the subscript is a key that is already in the map (line 31),
the operator returns a reference to the associated value.

« When the subscript is a key that is not in the map (line 32), the
operator inserts the key in the map and returns a reference that
can be used to associate a value with that key.

« Line 31 replaces the value for the key 25 (previously 33.333 as
specified in line 19) with a new value, 9999. 99.

- Line 32 inserts a new key/value pa1r in the map (called creating
an association).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 70

22.4 GContainer Adapiers

The STL provides three container adapters—stack,
queue and priority_queue.

Adapters are not first-class containers, because they do not
provide the actual data-structure implementation in which
elements can be stored and because adapters do not support
Iterators.

The benefit of an adapter class is that you can choose an
appropriate underlying data structure.

All three adapter classes provide member functions push
and pop that properly insert an element into each adapter
data structure and properly remove an element from each
adapter data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 71

224,91 stack Adapier

Class stack enables insertions into and deletions
from the underlying data structure at one end
(commonly referred to as a last-in, first-out data
structure).

A stack can be implemented with any of the
sequence containers: vector, 11st and deque.

This example creates three integer stacks, using each
of the sequence containers of the Standard Library as
the underlying data structure to represent the stack.

By default, a stack is implemented with a deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 72

22,49 stack Adapter (Cont.)

« The stack operations are push to insert an element at the
top of the stack (implemented by calling function
push_back of the underlying container), pop to remove
the top element of the stack (implemented by calling
function pop_back of the underlying container), top to
get a reference to the top element of the stack
(implemented by calling function back of the underlying
container), empty to determine whether the stack is
empty (implemented by calling function empty of the
underlying container) and s1ze to get the number of
elements in the stack (implemented by calling function
s1ze of the underlying container).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 73

2 Performance Tip 22.16
Each of the common operations of a stack is imple-
mented as an 1nl1ine function that calls the appropriate
function of the underlying container. This avoids the
overhead of a second function call.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 74

Performance Tip 22.17
For the best performance, use class vector as the under-
lying container for a stack.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 75

2249 stack Adapter (Cont.)

Figure 22.23 demonstrates the stack adapter class.

Header file <stack> must be included to use class
stack.

Lines 18, 21 and 24 instantiate three integer stacks.

Line 18 specifies a stack of integers that uses the
default deque container as its underlying data
structure.

Line 21 specifies a stack of integers that uses a

vector of integers as its underlying data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

76

46
47
48
49
50
51
52
53
54
35
56

#include <stack> // stack adapter definition

#include <vector> // vector class-template definition
#include <Tist> // Tist class-template definition
using namespace std;

// pushElements function-template prototype
template< typename T > void pushElements(T &stackRef);

// popElements function-template prototype
template< typename T > void popElements(T &stackRef);

Fig. 22.23 | Standard Library stack adapter class. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

77

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

// stack with default underlying deque
stack< int > intDequeStack;

// stack with underlying vector
stack< int, vector< int > > intVectorStack;

// stack with underlying Tist
stack< int, list< int > > intListStack;

// push the values 0-9 onto each stack
cout << "Pushing onto intDequeStack: ";
pushElements(intDequeStack);

cout << "\nPushing onto intVectorStack: ";
pushElements(intVectorStack);

cout << "\nPushing onto intListStack: ";
pushElements(intListStack);

cout << endl << endl;

Fig. 22.23 | Standard Library stack adapter class. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

78

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

cout << "\nPopping from intVectorStack: ";
popElements(intVectorStack);
cout << "\nPopping from intListStack: ";
popElements(intListStack);
cout << endl;

} // end main

// push elements onto stack object to which stackRef refers
template< typename T > void pushElements(T &stackRef)
{
for (int i =03 i < 10; i++)
{
stackRef.push(i); // push element onto stack
cout << stackRef.top() << ' '; // view (and display) top element
} // end for
} // end function pushElements

Fig. 22.23 | Standard Library stack adapter class. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

79

100 while (!stackRef.empty())

101 {
102 cout << stackRef.top() << ' '; // view (and display) top element
103 stackRef.pop(); // remove top element

104 } // end while
105 } // end function popElements

Pushing onto intDequeStack: 0 1 2 34567 8 9
Pushing onto intVectorStack: 12
23

0 9
Pushing onto intListStack: 0 1

(9, =N
[e2 51
O 0

3 67
4 7 8
Popping from intDequeStack: 9 8 7 6 54 32 10
Popping from intVectorStack: 876

765

9 0
Popping from intListStack: 9 8

w A

1
0

N

76543
65432

Fig. 22.23 | Standard Library stack adapter class. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

80

22,49 stack Adapter (Cont.)

Line 24 specifies a stack of integers that uses a
11 st of integers as its underlying data structure.

Function pushElements (lines 46-53) pushes the
elements onto each stack.

Line 50 uses function push (available in each
adapter class) to place an integer on top of the
stack.

Line 51 uses stack function top to retrieve the top
element of the stack for output.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 81

22,49 stack Adapter (Cont.)

Function top does not remove the top element.

Function popE lements (lines 56-63) pops the
elements off each stack.

Line 60 uses stack function top to retrieve the top
element of the stack for output.

Line 61 uses function pop (available in each adapter
class) to remove the top element of the stack.

Function pop does not return a value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 82

224 2 queue Adapier

» Class queue enables insertions at the back of
the underlying data structure and deletions
from the front (commonly referred to as a first-
In, first-out data structure).

* A queue can be implemented with STL data
structure 11st or deque.

« By default, a queue is implemented with a
deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 83

22.4.2 queue Adapter (Cont.)

« The common queue operations are push to insert an element at
the back of the queue (implemented by calling function
push_back of the underlying container), pop to remove the
element at the front of the queue (implemented by calling
function pop_Tfront of the underlying container), front to get
a reference to the first element in the queue (implemented by
calling function front of the underlying container), back to get
a reference to the last element in the queue (implemented by
calling function back of the underlying container), empty to
determine whether the queue is empty (implemented by calling
function empty of the underlying container) and s1ze to get the
number of elements in the queue (implemented by calling
function s1ze of the underlying container).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 84

. Performance Tip 22.18
For the best performance, use class deque as the under-
lying container for a queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 85

2 Performance Tip 22.19
Each of the common operations of a queue is imple-
mented as an 1nl1ine function that calls the appropriate
function of the underlying container. This avoids the
overhead of a second function call.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 86

» Figure 22.24 demonstrates the queue adapter
class.

« Header file <queue> must be included to use a
queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

87

109 #include <queue> // queue adapter definition
110 using namespace std;

112 1int main()

13 {
114
115
116
117
118
119
120
121
122

gueue< double > values; // queue with doubles

// push elements onto queue values
values.push(3.2);
values.push(9.8);
values.push(5.4);

cout << "Popping from values: ";

Fig. 22.24 | Standard Library queue adapter class templates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

88

lvalues.empty()

126 cout << values.front() << ' '; // view front element
127 values.pop(); // remove element

128 } // end while

129

130 cout << endl;

131 } // end main

Popping from values: 3.2 9.8 5.4

Fig. 22.24 | Standard Library queue adapter class templates.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 89

22.4.2 gueue Adapter (Cont.)

Line 9 instantiates a queue that stores doub 1 e values.

Lines 12—-14 use function push to add elements to the
queue.
The wh1 1e statement in lines 19-23 uses function empty

(available in all containers) to determine whether the
queue is empty (line 19).

While there are more elements in the queue, line 21 uses
queue function front to read (but not remove) the first
element in the queue for output.

Line 22 removes the first element in the queue with
function pop (available in all adapter classes).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 90

22.4.8 priority_queue Adapier (Cont.)

« Class priority_queue provides functionality that enables
Insertions in sorted order into the underlying data structure
and deletions from the front of the underlying data
structure.

« Apriority_queue can be implemented with STL
seguence containers vector or deque.

« By default,apriority_queue is implemented with a
vector as the underlying container.

« When elements are added to a priority_queue, they’re
Inserted in priority order, such that the highest-priority
element (i.e., the largest value) will be the first element
removed from the priority_queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 91

22.4.8 priority_queue Adapier (Cont.)

 This is usually accomplished by arranging the elements in a
binary tree structure called a heap that always maintains the
largest value (i.e., highest-priority element) at the front of
the data structure.

* We discuss the STL’s heap algorithms in Section 22.5.12.

» The comparison of elements is performed with comparator
function object 1ess< T > by default, but you can supply a
different comparator.

« There are several common priority_queue operations.

 push inserts an element at the appropriate location based
on priority order of the priority_queue (implemented
by calling function push_back of the underlying
container, then reordering the elements using heapsort).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 92

22.4.8 priority_queue Adapier (Cont.)

« pop removes the highest-priority element of the
priority_queue (implemented by calling function
pop_back of the underlying container after removing the
top element of the heap).

* top gets a reference to the top element of the
priority_queue (implemented by calling function
front of the underlying contalner)

o empty determines whether the priority_queue is
empty (implemented by calling function empty of the
underlylng container).

 S1ze gets the number of elements in the
priority_queue (implemented by calling function
s1ze of the underlying container).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 93

2 Performance Tip 22.20
Each of the common operations of a priority_queue
is implemented as an inline function that calls the ap-
propriate function of the underlying container. This
avoids the overhead of a second function call.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 94

Performance Tip 22.21
For the best performance, use class vector as the under-
lying container for a priority_queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 95

* Figure 22.25 demonstrates the
priority_queue adapter class.

« Header file <queue> must be included to use
class priority_queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 96

4 #include <queue> // priority_queue adapter definition
5 using namespace std;

6

7 int main(Q)

8 {

9 priority_queue< double > priorities; // create priority_queue
10

11 // push elements onto priorities

12 priorities.push(3.2);

13 priorities.push(9.8);

14 priorities.push(5.4);

15

16 cout << "Popping from priorities: ";

17

Fig. 22.25 | Standard Library priority_queue adapter class. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

97

Ipriorities.empty()

21 cout << priorities.top() << ' "; // view top element
22 priorities.pop(); // remove top element

23 } // end while

24

25 cout << endl;

26 } // end main

Popping from priorities: 9.8 5.4 3.2

Fig. 22.25 | Standard Library priority_queue adapter class. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 98

22.4.8 priority_queue Adapier (Cont.)

« Line 9 instantiates a priority_queue that stores double
values and uses a vector as the underlying data structure.

« Lines 12-14 use function push to add elements to the
priority_queue.

« The wh1 1e statement in lines 19-23 uses function empty
(available in all containers) to determine whether the
priority_queue is empty (line 19).

« While there are more elements, line 21 uses priority_queue

function top to retrieve the highest-priority element in the
priority_queue for output.

* Line 22 removes the highest-priority element in the
priority_queue with function pop (available in all adapter
classes).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 99

22.5 Algorithms

Until the STL, class libraries of containers and algorithms
were essentially incompatible among vendors.

Early container libraries generally used inheritance and
polymorphism, with the associated overhead of virtual
function calls.

Early libraries built the algorithms into the container classes
as class behaviors.

The STL separates the algorithms from the containers.
This makes it much easier to add new algorithms.

With the STL, the elements of containers are accessed
through iterators.

The next several subsections demonstrate many of the STL
algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 100

Software Engineering Observation 22.8

STL algorithms do not depend on the implementation
details of the containers on which they operate. As long as
the container’s (or array’s) iterators satisfy the
requirements of the algorithm, STL algorithms can work
on C-style, pointer-based arrays, on STL containers and
on user-defined data structures.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

101

Software Engineering Observation 22.9
Algorithms can be added easily to the STL without
modifying the container classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 102

22584 111, ¥111_n, generate and
generate_n

 Figure 22.26 demonstrates algorithms 111,
f11l1_n, generate and generate_n.

 Functions fi1ll and f111_n set every elementina
range of container elements to a specific value.

» Functions generate and generate_n use a generator
function to create values for every element in a range
of container elements.

 The generator function takes no arguments and
returns a value that can be placed in an element of the
container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 103

cCwVwoeO~NOS UGN

11
12
13
14
15
16
17
18
19
20
21
22

#include <algorithm> // algorithm definitions
#include <vector> // vector class-template definition
#include <iterator> // ostream_iterator

using namespace std;

char nextLetter(); // prototype of generator function

int main(Q)

{

vector< char > chars(10);
ostream_iterator< char > output(cout, " ");
fi11(chars.begin(), chars.end, '5'); // fill chars with 5s

cout << "Vector chars after filling with 5s:\n";
copy(chars.begin(), chars.end(), output);

// i1l first five elements of chars with As
fi11_n(chars.begin(), 5, 'A");

Fig. 22.26 | Algorithms fi11, fi11_n, generate and generate_n. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

104

26 // generate values for all elements of chars with nextLetter

27 generate(chars.begin(), chars.end(), nextLetter);

28

29 cout << "\n\nVector chars after generating letters A-J:\n";
30 copy(chars.begin(), chars.end(), output);

31

32 // generate values for first five elements of chars with nextlLetter
33 generate_n(chars.begin(), 5, nextlLetter);

34

35 cout << "\n\nVector chars after generating K-0 for the"

36 << " first five elements:\n";

37 copy(chars.begin(), chars.end(), output);

38 cout << endl;

39 } // end main

40

41 // generator function returns next letter (starts with A)
42 char nextlLetter()

43 {
44 static char Tetter = 'A';
45 return letter++;

46 1} // end function nextlLetter

Fig. 22.26 | Algorithms fi11, fi11_n, generate and generate_n. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 105

Vector chars after filling with 5s:
5555555555

Vector chars after filling five elements with As:
AAAAASS5555

Vector chars after generating letters A-J:
ABCDEFGHTI]

Vector chars after generating K-0 for the first five elements:
KLMNOFGHTI]

Fig. 22.26 | Algorithms fi11, fi11_n, generate and generate_n. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 106

22584 v111, ¥111_n, generate and
generate_n (Cont.)

e Line 13 defines a 10-element vector that stores char
values.

 Line 15 uses function 111 to place the character '5" in
every element of vector chars from chars.begin()
up to, but not including, chars.end().

 The iterators supplied as the first and second argument must
be at least forward iterators (i.e., they can be used for both
Input from a container and output to a container in the
forward direction).

 Line 21 uses function 1 11_n to place the character 'A’
in the first five elements of vector chars.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 107

22584 v111, ¥111_n, generate and
generate_n (Cont.)

 The 1terator supplied as the first argument must be
at least an output iterator (1.e., It can be used for
output to a container in the forward direction).

* The second a_r?ument specifies the number of
elements to fill.

« The third argument specifies the value to place In
each element.

 Line 27 uses function generate to place the
result of a call to generator function next-
Letter in every element of vector chars

from chars.bégin() up to, but not including,
chars.end().

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 108

22584 v111, ¥111_n, generate and
generate_n (Cont.)

 The iterators supplied as the first and second arguments
must be at least forward iterators.

« Function nextLetter (lines 42-46) begins with the
character 'A' maintained in a static local variable.

* The statement In line 45 postincrements the value of
lTetter and returns the old value of Tetter each time
hext-Letter is called.

» Line 33 uses function generate_n to place the result of a
call to generator function nextLetter in five elements of
vector chars, starting from chars.begin().

 The iterator supplied as the first argument must be at least
an output Iterator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 109

22.9.9 Mathematical Algeritihms

 Figure 22.30 demonstrates several common
mathematical algorithms from the STL,
including random_shuffle, count,
count_1f, min_element,
max_element, accumulate, for_each
and transform.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 110

#include <algorithm> // algorithm definitions
#include <numeric> // accumulate is defined here
#include <vector>

#include <iterator>

using namespace std;

bool greater9(int); // predicate function prototype
void outputSquare(int); // output square of a value
int calculateCube(int); // calculate cube of a value

int main()

{
const int SIZE = 10;
int al[SIZE 1 ={ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
vector< int > v(al, al + SIZE); // copy of al
ostream_iterator< int > output(cout, " ");

"

cout << "Vector v before random_shuffle: ";
copy(v.begin(), v.end(), output);

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

111

random_shuffle(v.begin(), v.end()); // shuffle elements of v

27

28 int a2[SIZE] = { 100, 2, 8, 1, 50, 3, 8, 8, 9, 10 };

29 vector< int > v2(a2, a2 + SIZE); // copy of a2

30 cout << "\n\nVector v2 contains: ";

31 copy(v2.begin(), v2.end(), output);

32

33 // count number of elements in v2 with value 8

34 int result = count(v2.begin(), v2.end(), 8);

35 cout << "\nNumber of elements matching 8: " << result;

36

37 // count number of elements in v2 that are greater than 9
38 result = count_if(v2.begin(), v2.end(), greater9);

39 cout << "\nNumber of elements greater than 9: " << result;
40

41 // locate minimum element in v2

42 cout << "\n\nMinimum element in Vector v2 is: "

43 << *(min_element(v2.begin(), v2.end()));

44

45 // locate maximum element in v2

46 cout << "\nMaximum element in Vector v2 is: "

47 << *(max_element(v2.begin(), v2.end()));

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 112

51
52
33
34
35
56
37
58
59
60
61
62
63
64
65
66
67
68
69
70
71

<< accumulate(v.begin(), v.end(), 0);

// output square of every element in v
cout << "\n\nThe square of every integer in Vector v is:\n";
for_each(v.begin(), v.end(), outputSquare);

vector< int > cubes(SIZE); // instantiate vector cubes

// calculate cube of each element in v; place results in cubes
transform(v.begin(), v.end(), cubes.begin(), calculateCube);
cout << "\n\nThe cube of every integer in Vector v is:\n";
copy(cubes.begin(), cubes.end(), output);
cout << endl;

} // end main

// determine whether argument is greater than 9
bool greater9(int value)
{
return value > 9;
} // end function greater9

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

113

75 cout << value * value << ;
76 1} // end function outputSquare
7

78 // return cube of argument

79 int calculateCube(int value)
80 {

81 return value * value * value;
82 } // end function calculateCube

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 114

Vector v before random shuffle: 1 2 3 45 6 7 8 9 10
v after random_shuffle: 54 1 37 8 9 10 6 2

Vector
Vector v2 contains: 100 2 8 1 50 3 8 8 9 10
Number of elements matching 8: 3

Number of elements greater than 9: 3

Minimum element in Vector v2 is: 1
Maximum element in Vector v2 is: 100

The total of the elements in Vector v 1is: 55

The square of every integer in Vector v is:
25 16 1 9 49 64 81 100 36 4

The cube of every integer in Vector v is:
125 64 1 27 343 512 729 1000 216 8

Fig. 22.30 | Mathematical algorithms of the Standard Library. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

115

22.9.9 Mathematical Algoritihimnms (Cont.)

» Line 24 uses function random_shuff le to reorder randomly
the elements in the range from v.begin () up to, but not
including, v.end () inv.

 This function takes two random-access iterator arguments.

» Line 34 uses function count to count the elements with the
value 8 in the range from v2.begin () up to, but not
including, v2.end() in v2.

» This function requires Its two iterator arguments to be at
least input iterators.

e Line 38 uses function count_1f to count elements in the
range from v2 .begin () up to, but not including,
v2.end() in v2 for which the predicate function
greater9 returns true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 116

22.9.9 Mathematical Algoritihins (Cont.)

 Function count_1T requires its two iterator arguments to be at
least input iterators.

* Line 43 uses function min_element to locate the smallest
element in the range from v2.begin () up to, but not
including, v2.end ().

» The function returns a forward iterator located at the smallest
element, or v2.end () if the range is empty.

 The function’s two iterator arguments must be at least input
Iterators.

» Asecond version of this function takes as its third argument a
binary function that compares two elements in the sequence.

« This function returns the boo 1 value true if the first argument
IS less than the second.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 117

22.9.9 Mathematical Algoritihimnms (Cont.)

* Line 47 uses function max_element to locate the largest
element in the range from v2 .begin () up to, but not
including, v2.end() in v2.

 The function returns an input iterator located at the largest
element.

 The function’s two iterator arguments must be at least input
Iterators.

» A second version of this function takes as its third argument
a binary predicate function that compares the elements in
the sequence.

» The binary function takes two arguments and returns the
bool value true if the first argument is less than the

second.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 118

22.9.9 Mathematical Algoritihimnms (Cont.)

* Line 51 uses function accumulate (the template of which is
in header file <numer1i c>) to sum the values in the range
from v.begin() up to, but not including, v.end () inv.

* The function’s two 1terator arguments must be at least input
Iterators and its third argument represents the initial value of
the total.

A second version of this function takes as its fourth
argument a general function that determines how elements
are accumulated.

» The general function must take two arguments and return a
result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 119

22.9.9 Mathematical Algoritihimnms (Cont.)

 The first argument to this function is the current value of the
accumulation.

» The second argument is the value of the current element in
the sequence being accumulated.

« Line 55 uses function for_each to apply a general function
to every element in the range from v.begin () up to, but
not including, v.end ().

 The general function takes the current element as an
argument and may modify that element (if it’s received by
reference).

 Function for_each requires its two iterator arguments to
be at least input iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 120

22.9.9 Mathematical Algoritihimnms (Cont.)

 Line 60 uses function transform to apply a general
function to every element in the range from v.begin()
up to, but not including, v.end () inv.

« The general function (the fourth argument) should take the
current element as an argument, should not modify the
element and should return the transformed value.

 Function transform requires its first two iterator
arguments to be at least input iterators and its third
argument to be at least an output iterator.

 The third argument specifies where the transformed
values should be placed.

 Note that the third argument can equal the first.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 121

22.9.8 Basie Searching and sSerting
Algerithms

 Figure 22.31 demonstrates some basic
searching and sorting capabilities of the
Standard Library, including find, find_1T,
sortand binary_search.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 122

VOO~V

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#include <algorithm> // algorithm definitions
#include <vector> // vector class-template definition
#include <iterator>

using namespace std;

bool greaterl0(int value); // predicate function prototype

int main(Q)

{
const int SIZE = 10;
int a[SIZE] = { 10, 2, 17, 5, 16, 8, 13, 11, 20, 7 };
vector< int > v(a, a + SIZE); // copy of a
ostream_iterator< int > output(cout, " ");
cout << "Vector v contains: ";
copy(v.begin(), v.end(), output); // display output vector

// locate first occurrence of 16 in v
vector< int >::iterator location;
location = find(v.begin(), v.end(), 16);

Fig. 22.31 | Basic searching and sorting algorithms of the Standard Library. (Part |

of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

123

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

else // 16 not found
cout << “"\n\nl6 not found";

// locate first occurrence of 100 in v
location = find(v.begin(), v.end(), 100);

if (Tocation != v.end()) // found 100

cout << "\nFound 100 at Tocation " << (location - v.begin());
else // 100 not found

cout << "\nl0O0 not found";

// locate first occurrence of value greater than 10 in v
location = find_if(v.begin(), v.end(), greaterl0);

if (location != v.end()) // found value greater than 10
cout << "\n\nThe first value greater than 10 is " << *location
<< "\nfound at location " << (location - v.begin());
else // value greater than 10 not found
cout << "\n\nNo values greater than 10 were found";

Fig. 22.31 | Basic searching and sorting algorithms of the Standard Library. (Part 2

of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

124

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

// sort elements of v
sort(v.begin(), v.end(Q));

"

cout << "\n\nVector v after sort: ";
copy(v.begin(), v.end(), output);

// use binary_search to locate 13 in v

if (binary_search(v.begin(), v.end(), 13))
cout << "\n\nl3 was found in v'";

else
cout << "\n\nl3 was not found in v";

// use binary_search to locate 100 in v

if (binary_search(v.begin(), v.end(), 100))
cout << "\nl00 was found in v";

else
cout << "\nl00 was not found in v";

cout << endl;
} // end main

Fig. 22.31 | Basic searching and sorting algorithms of the Standard Library. (Part 3

of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

125

70 return value > 10;
71 } // end function greaterl0

Found 16 at location 4
100 not found

found at location 2

13 was found in v
100 was not found in v

Vector v contains: 10 2 17 5 16 8 13 11 20 7

The first value greater than 10 1is 17

Vector v after sort: 2 5 7 8 10 11 13 16 17 20

Fig. 22.31 | Basic searching and sorting algorithms of the Standard Library. (Part 4

of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

126

22.9.0 Basie searching and Sorting
Algorithms (Cont.)

e Line 23 uses function f ind to locate the value 16 in the
range from v.begin () up to, but not including,
v.end() inv.

 The function requires its two iterator arguments to be at
least input iterators and returns an input iterator that either
IS positioned at the first element containing the value or
Indicates the end of the sequence (as is the case in line 31).

« Line 39 uses function find_1f to locate the first value in
the range from v.begin () up to, but not including,
v.end () in v for which the unary predicate function
greaterlO returns true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 127

22.9.0 Basiec Searching and Sorting
Algorithms (Cont.)

Function greaterl0 (defined in lines 71-74) takes an
integer and returns a boo 1 value indicating whether the
Integer argument is greater than 10.

Function find_1f requires its two iterator arguments to
be at least input iterators.

The function returns an input iterator that either is
positioned at the first element containing a value for which
the predicate function returns true or indicates the end of
the sequence.

Line 48 uses function sort to arrange the elements in the
range from v.begin () up to, but not including,
v.end() in v in ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 128

22.5,6 Basie Searching and Sorting
Algorithms (Cont.)

 The function requires Its two Iterator
arguments to be random-access iterators.

A second version of this function takes a third
argument that is a binary predicate function
taking two arguments that are values in the
sequence and returning a bool indicating the
sorting order—If the return value Is true, the
two elements being compared are in sorted
order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 129

Common Programming Error 22.5

Attempting to sort a container by using an iterator oth-
er than a random-access iterator is a compilation error.
Function sort requires a random-access iterator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 130

22.9.0 Basie searching and Sorting
Algorithms (Cont.)

Line 53 uses function binary_search to determine
whether the value 13 is in the range from
v.begin() up to, but not including, v.end () in
V.

The sequence of values must be sorted in ascending
order first.

Function binary_search requires its two iterator
arguments to be at least forward iterators.

The function returns a boo 1 indicating whether the
value was found in the sequence.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 131

22.5,6 Basie Searching and Sorting
Algorithms (Cont.)

Line 59 demonstrates a call to function
binary_search in which the value is not found.

A second version of this function takes a fourth
argument that is a binary predicate function taking
two arguments that are values in the sequence and
returning a boo 1.

The predicate function returns true if the two
elements being compared are in sorted order.

To obtain the location of the search key in the
container, use the Tower_bound or f1nd
algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 132

22.5.7 swap, 1ter_swap and
swap_ranges

Figure 22.32 demonstrates algorithms swap,
1ter_swap and swap_ranges for
swapping elements.

Line 18 uses function swap to exchange two
values.

In this example, the first and second elements
of array a are exchanged.

he function takes as arguments references to
the two values being exchanged.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 133

#include <algorithm> // algorithm definitions
#include <iterator>
using namespace std;

int main()

{

const int SIZE = 10;

int a[SIZE 1 ={ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
ostream_iterator< int > output(cout, " ");

cout << "Array a contains:\n "

copy(a, a + SIZE, output); // d1sp1ay array a

// swap elements at Tocations 0 and 1 of array a
swap(a[0], a[1 1]);

cout << "\nArray a after swapping a[0] and a[l] using swap:\n
copy(a, a + SIZE, output); // display array a

Fig. 22.32 | Demonstrating swap, iter_swap and swap_ranges. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

134

// use iterators to swap elements at locations 0 and 1 of array a
iter_swap(&a[0], &[1]); // swap with iterators

25 cout << "\nArray a after swapping a[0] and a[l] using iter_swap:\n s
26 copy(a, a + SIZE, output);

27

28 // swap elements in first five elements of array a with

29 // elements in last five elements of array a

30 swap_ranges(a, a + 5, a + 5);

31

32 cout << "\nArray a after swapping the first five elements\n"
33 << "with the Tast five elements:\n -

34 copy(a, a + SIZE, output);

35 cout << endl;

36 1} // end main

Array a contains:
12345678910

Array a after swapping a[0] and a[l] using swap:
21345678910

Array a after swapping a[0] and a[l] using iter_swap:
12345678910

Array a after swapping the first five elements

with the last five elements:
67891012345

Fig. 22.32 | Demonstrating swap, iter_swap and swap_ranges. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 135

22.5.7 swap, 1ter_swap and
swap_ranges (Cont.)

« Line 24 uses function 1ter_swap to exchange the two
elements.

 The function takes two forward iterator arguments (in
this case, pointers to elements of an array) and
exchanges the values in the elements to which the
Iterators refer.

 Line 30 uses function swap_ranges to exchange the
elements from a up to, but not including, a + 5 with

the elements beginning at position a + 5.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 136

22.9.7 swap, 1ter_swap and
swap_ranges (Cont.)

 The function requires three forward iterator
arguments.

 The first two arguments specify the range of elements
In the first sequence that will be exchanged with the
elements In the second sequence starting from the
Iterator in the third argument.

* In this example, the two sequences of values are Iin
the same array, but the sequences can be from
different arrays or containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 137

22.5.68 copy_backward, merge, unigque
and reverse

« Figure 22.33 demonstrates STL algorithms
copy_backward, merge, unique and reverse.

 Line 26 uses function copy_backward to copy elements in
the range from v1.begin () up to, but not including,
vl.end(), placing the elements in results by starting
from the element before results.end () and working
toward the beginning of the vector.

« The function returns an iterator positioned at the last
element copied into the results (i.e., the beginning of
results, because of the backward copy).

« The elements are placed in results in the same order as
v1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 138

22.5.68 copy_backward, merge, unigque
and reverse (Cont.)

 This function requires three bidirectional iterator arguments
(iterators that can be incremented and decremented to
Iterate forward and backward through a sequence,
respectively).

« One difference between copy_backward and copy is
that the iterator returned from copy Is positioned after the
last element copied and the one returned from
copy_backward is positioned at the last element copied
(1.e., the first element in the sequence).

« Also, copy_backward can manipulate overlapping
ranges of elements in a container as long as the first element
to copy Is not in the destination range of elements.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 139

4 #include <algorithm> // algorithm definitions

5 #include <vector> // vector class-template definition
6 #include <iterator> // ostream_iterator

7 using namespace std;

8

9

int main()

10 {

11 const int SIZE = 5;

12 int al[SIZE 1 ={ 1, 3, 5, 7, 9 };

13 int a2[SIZE 1 =9{ 2, 4, 5, 7, 9 };

14 vector< int > v1(al, al + SIZE); // copy of al

15 vector< int > v2(a2, a2 + SIZE); // copy of a2

16 ostream_iterator< int > output(cout, " ");

17

18 cout << "Vector vl contains: ";

19 copy(vl.begin(), vl.end(), output); // display vector output
20 cout << "\nVector v2 contains: ";

21 copy(v2.begin(), v2.end(), output); // display vector output
22

Fig. 22.33 | Demonstrating copy_backward, merge, unique and reverse. (Part |
of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 140

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// place elements of vl into results in reverse order
copy_backward(vl.begin(), vl.end(), results.end());

cout << "\n\nAfter copy_backward, results contains: ";
copy(results.begin(), results.end(), output);

vector< int > results2(vl.size() + v2.size());

// merge elements of vl and v2 into results2 in sorted order
merge(vl.begin(), vl.end(), v2.begin(), v2.end(), results2.begin());

cout << "\n\nAfter merge of vl and v2 results2 contains:\n";
copy(results2.begin(), results2.end(), output);

// eliminate duplicate values from results2
vector< int >::iterator endlLocation;
endLocation = unique(results2.begin(), results2.end());

cout << "\n\nAfter unique results2 contains:\n";
copy(results2.begin(), endLocation, output);

Fig. 22.33 | Demonstrating copy_backward, merge, unique and reverse. (Part 2

of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

141

48 cout << endl;
49 } // end main

reverse(vl.begin(), vl.end()); // reverse elements of vl

Vector v1 contains:
Vector v2 contains:

1234557799

12345709

1

2

3579
4579

After copy_backward, results contains: 1 3 57 9

After merge of vl and v2 results2 contains:

After unique results2 contains:

Vector vl after reverse: 9 7 5 3 1

Fig. 22.33 | Demonstrating copy_backward, merge, unique and reverse. (Part 3

of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

142

22.5.68 copy_backward, merge, unigque
and reverse (Cont.)

 Line 33 uses function merge to combine two sorted
ascending sequences of values into a third sorted ascending
sequence.

 The function requires five iterator arguments.

« The first four must be at least input iterators and the last
must be at least an output iterator.

» The first two arguments specify the range of elements in the
first sorted sequence (v1), the second two arguments
specify the range of elements in the second sorted sequence
(v2) and the last argument specifies the starting location in
the third sequence (results2) where the elements will be
merged.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 143

22.5.68 copy_backward, merge, unigque
and reverse (Cont.)

» A second version of this function takes as its sixth argument
a binary predicate function that specifies the sorting order.

» Line 30 creates vector results2 with the number of
elements vl.s1ze() +v2.s1ze().

 Using the merge function as shown here requires that the
sequence where the results are stored be at least the size of
the two sequences being merged.

» If you do not want to allocate the number of elements for
the resulting sequence before the merge operation, you can
use the following statements:

e vector< int > results?;

merge(vl.begin(), vl.end(), v2.begin(),
v2.end(),

back_inserter(results2));

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 144

22.5.68 copy_backward, merge, unigque
and reverse (Cont.)

e The argument back_inserter(results2) uses

function template back_i1n—serter (header file
<1terator>) for the container results?2.

« Aback_in-serter calls the container’s default
push_back function to insert an element at the end
of the container.

e |If an element iIs Iinserted into a container that has no
more space available, the container grows in size.

e Thus, the number of elements In the container does
not have to be known In advance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 145

22.5.68 copy_backward, merge, unigque
and reverse (Cont.)

» There are two other inserters—front_1nserter (to insert
an element at the beginning of a container specified as its
argument) and 1nserter (to insert an element before the
Iterator supplied as its second argument in the container
supplied as its first argument).

» Line 40 uses function unique on the sorted sequence of
elements in the range from results2.begin() up to,
but not including, results2.end() inresults2.

» After this function Is applied to a sorted sequence with
duplicate values, only a single copy of each value remains
In the sequence.

» The function takes two arguments that must be at least
forward iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 146

22,58 copy_backward, merge, unigue
and reverse (Cont.)

« The function returns an iterator positioned after the last
element in the sequence of unique values.

 The values of all elements in the container after the last
unique value are undefined.

A second version of this function takes as a third argument
a binary predicate function specifying how to compare two
elements for equality.

* Line 46 uses function reverse to reverse all the elements In
the range from v1.begin () up to, but not including,
vl.end() in vl.

* The function takes two arguments that must be at least
bidirectional iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 147

22.,5.9 1nplace_merge, Unigue_copy
and reverse_copy

» Figure 22.34 demonstrates algorithms 1nplace_merge,
unique_copy and reverse_copy.

» Line 22 uses function 1nplace_merge to merge two sorted
sequences of elements in the same container.

* In this example, the elements from v1.begin() up to,
but not including, v1.begin() + 5 are merged with the
elements from v1.begin() + 5 up to, but not including,
vl.end().

» This function requires Its three iterator arguments to be at
least bidirectional iterators.

» A second version of this function takes as a fourth argument
a binary predicate function for comparing elements in the
two sequences.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 148

#include <iostream>

4
5 #include <algorithm> // algorithm definitions

6 #include <vector> // vector class-template definition
7 #include <iterator> // back_inserter definition

8 using namespace std;

9

10 1int main(Q)

11 {

12 const int SIZE = 10;

13 int al[S1ZE 1 ={ 1, 3, 5, 7, 9, 1, 3, 5, 7, 9 };

14 vector< int > v1(al, al + SIZE); // copy of a

15 ostream_iterator< int > output(cout, " ");

16

17 cout << "Vector vl contains: ";

18 copy(vl.begin(), vl.end(), output);

19

20 // merge first half of vl with second half of vl such that
21 // vl contains sorted set of elements after merge

22 inplace_merge(vl.begin(), vl.begin() + 5, vl.end(Q));

Fig. 22.34 | Algorithms inplace_merge, unique_copy and reverse_copy. (Part
| of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

149

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

vector< int > resultsl;

// copy only unique elements of vl into resultsl
unique_copy(vl.begin(), vl.end(), back_inserter(resultsl));

cout << "\nAfter unique_copy resultsl contains: ";
copy(resultsl.begin(), resultsl.end(), output);

vector< int > results2;

// copy elements of vl into results2 in reverse order
reverse_copy(vl.begin(), vl.end(), back_inserter(results2));
cout << "\nAfter reverse_copy, results2 contains: ";
copy(results2.begin(), results2.end(), output);

cout << endl;

} // end main

Fig. 22.34 | Algorithms inplace_merge, unique_copy and reverse_copy. (Part

2 0f3))

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

150

Vector vl contains: 1357 913579
After inplace_merge, vl contains: 1133557799
After unique_copy resultsl contains: 1 3 57 9
After reverse_copy, results2 contains: 9 9 7 7

Fig. 22.34 | Algorithms inplace_merge, unique_copy and reverse_copy. (Part
30f3)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 151

22.5.9 1aplace_merge, Unigue_copy
and reverse_copy (Gont.)

 Line 30 uses function unique_copy to make a copy of all
the unique elements in the sorted sequence of values from
vl.begin() up to, but not including, vl.end().

« The copied elements are placed into vector resultsl.

 The first two arguments must be at least input iterators and
the last must be at least an output iterator.

* In this example, we did not preallocate enough elements in
resultsl to store all the elements copied from v1.

* Instead, we use function back_inserter (defined in
header file <1terator>) to add elements to the end of

vl

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 152

22.5.9 1aplace_merge, Unigue_copy
and reverse_copy (Gont.)

« The back_1nserter uses class vector’s
capability to insert elements at the end of the
vector.

« Because the back_inserter inserts an element
rather than replacing an existing element’s value, the
vector is able to grow to accommodate additional
elements.

A second version of the unique_copy function
takes as a fourth argument a binary predicate function
for comparing elements for equality.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 153

22,5.9 1nplace_merge, Unigue_copy
and reverse_copy (Cont.)

e Line 37 uses function reverse_copy to make a
reversed copy of the elements in the range from
vl.begin() up to, but not including, vl.end().

« The copied elements are inserted into results?2
using a back_1inserter object to ensure that the
vector can grow to accommodate the appropriate
number of elements copied.

« Function reverse_copy requires its first two
Iterator arguments to be at least bidirectional iterators
and its third to be at least an output Iterator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 154

229,90 Set Operations

Figure 22.35 demonstrates functions 1ncludes,
set_difference, set_intersection,
set_symmetric_difference and set_union for
manipulating sets of sorted values.

To demonstrate that STL functions can be applied to arrays
and containers, this example uses only arrays (remember, a
pointer into an array is a random-access iterator).

Lines 25 and 31 call function 1ncludes.

Function 1ncludes compares two sets of sorted values to
determine whether every element of the second set is Iin the
first set.

If so, 1ncludes returns true:; otherwise, it returns
false.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 155

22,9710 Set Operations (Cont.)

The first two Iterator arguments must be at least input
Iterators and must describe the first set of values.

In line 25, the first set consists of the elements from al up
to, but not including, al + STIZE1].

The last two iterator arguments must be at least input
Iterators and must describe the second set of values.

In this example, the second set consists of the elements
from a2 up to, but not including, a2 + SIZE2.

A second version of function 1ncludes takes a fifth
argument that Is a binary predicate function indicating the
order in which the elements were originally sorted.

The two sequences must be sorted using the same
comparison function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 156

#include <iostream>
#include <algorithm> // algorithm definitions
#include <iterator> // ostream_iterator

using namespace std;

int main()

{
const int SIZE1l = 10, SIZE2 = 5, SIZE3 = 20;
int al[SIZE1 1 ={ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
_{415!6!7;8;
int a3[SIZE2 1 = { 4, 5, 6, 11, 15 };
ostream_iterator< int > output(cout, " ");

LA}

cout << "al contains: ";
copy(al, al + SIZE1l, output); // display array al

cout << "\naZ contains: ";

4

5

6

7

8

9

10

11

12

13 int a2[SIZE2] =
14

15

16

17

18

19
20 copy(a2, a2 + SIZE2, output); // display array a2

21 cout << "\na3 contains: ";
22 copy(a3, a3 + SIZEZ, output); // display array a3
23

Fig. 22.35 | set operations of the Standard Library. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

157

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

includes(al, al + SIZE1, a2, a2 + SIZE2)

else
cout << "\n\nal does not include a2";

// determine whether set a3 is completely contained in al
if (includes(al, al + SIZE1l, a3, a3 + SIZE2))

cout << "\nal includes a3";
else

cout << "\nal does not include a3";

int difference[SIZE1l 1;

// determine elements of al not in a2
int *ptr = set_difference(al, al + SIZE1,
a2, a2 + SIZE2, difference);
cout << "\n\nset_difference of al and a2 is: ";
copy(difference, ptr, output);

int intersection[SIZE1l];

Fig. 22.35 | set operations of the Standard Library. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

158

// determine elements in both al and a2
ptr = set_intersection(al, al + SIZEIL,
a2, a2 + SIZE2, 1intersection);

49 cout << "\n\nset_intersection of al and a2 is: ";

50 copy(1intersection, ptr, output);

51

52 int symmetric_difference[SIZELl + SIZE2];

53

54 // determine elements of al that are not in a2 and

55 // elements of a2 that are not in al

56 ptr = set_symmetric_difference(al, al + SIZEL,

57 a3, a3 + SIZE2, symmetric_difference);

58 cout << "\n\nset_symmetric_difference of al and a3 is: ";
59 copy(symmetric_difference, ptr, output);

60

61 int unionSet[SIZE3 1;

62

63 // determine elements that are in either or both sets

64 ptr = set_union(al, al + SIZEl, a3, a3 + SIZEZ2, unionSet);
65 cout << "\n\nset_union of al and a3 is: ";

66 copy(unionSet, ptr, output);

67 cout << endl;

68 1} // end main

Fig. 22.35 | set operations of the Standard Library. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 159

al contains: 1 2 3 4
a2 contains: 4 5 6 7
a3 contains: 4 56 1

al includes a2
al does not include a3

set difference of al and a2 is: 1 2 3 9 10
set intersection of al and a2 is: 4 5 6 7 8
set_symmetric_difference of al and a3 is: 1 2 37 8 9 10 11 15

set_union of al and a3 is: 1 2 3456 7 8 9 10 11 15

Fig. 22.35 | set operations of the Standard Library. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 160

22.9.10 Set Operations (Cont.)

Lines 39-40 use function set_difference to find the
elements from the first set of sorted values that are not in
the second set of sorted values (both sets of values must be
In ascending order).

The elements that are different are copied into the fifth
argument (in this case, the array di1fference).

The first two Iiterator arguments must be at least input
Iterators for the first set of values.

The next two iterator arguments must be at least input
Iterators for the second set of values.

The fifth argument must be at least an output iterator
Indicating where to store a copy of the values that are
different.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 161

22.9.10 Set Operations (Cont.)

The function returns an output iterator positioned
Immediately after the last value copied into the set to which
the fifth argument points.

A second version of function set_difference takes a
sixth argument that is a binary predicate function indicating
the order in which the elements were originally sorted.

The two sequences must be sorted using the same
comparison function.

Lines 47—48 use function set_intersection to determine
the elements from the first set of sorted values that are In
the second set of sorted values (both sets of values must be
In ascending order).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 162

22.9.10 Set Operations (Cont.)

The elements common to both sets are copied into the fifth
argument (in this case, array intersection).

The first two iterator arguments must be at least input
Iterators for the first set of values.

The next two Iterator arguments must be at least input
Iterators for the second set of values.

The fifth argument must be at least an output iterator

Indicating where to store a copy of the values that are the
same.

The function returns an output iterator positioned
Immediately after the last value copied into the set to which
the fifth argument points.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 163

22.9.10 Set Operations (Cont.)

A second version of function set_intersection takes
a sixth argument that is a binary predicate function
Indicating the order in which the elements were originally
sorted.

The two sequences must be sorted using the same
comparison function-.

Lines 56-57 use function set_symmetric_difference to
determine the elements In the first set that are not in the
second set and the elements In the second set that are not In
the first set (both sets must be in ascending order).

The elements that are different are copied from both sets
Into the fifth argument (the array
symmetric_difference).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 164

22.9.10 Set Operations (Cont.)

The first two Iterator arguments must be at least input iterators
for the first set of values.

The next two iterator arguments must be at least input iterators
for the second set of values.

The fifth argument must be at least an output iterator indicating
where to store a copy of the values that are different.

The function returns an output iterator positioned immediately
after the last value copied into the set to which the fifth argument
points.

A second version of function set_symmetric_difference
takes a sixth argument that is a binary predicate function
Indicating the order in which the elements were originally sorted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 165

22.9.10 Set Operations (Cont.)

The two sequences must be sorted using the same
comparison function.

Line 64 uses function set_union to create a set of all
the elements that are in either or both of the two sorted
sets (both sets of values must be in ascending order).

The elements are copied from both sets into the fifth
argument (in this case the array unionSet).

Elements that appear in both sets are only copied from
the first set.

The first two Iterator arguments must be at least input
Iterators for the first set of values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 166

22.9.10 Set Operations (Cont.)

The next two Iterator arguments must be at least input
Iterators for the second set of values.

The fifth argument must be at least an output iterator
Indicating where to store the copied elements.

The function returns an output iterator positioned
Immediately after the last value copied into the set to which
the fifth argument points.

A second version of set_un1ion takes a sixth argument
that is a binary predicate function indicating the order in
which the elements were originally sorted.

The two sequences must be sorted using the same
comparison function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 167

22.5.13 mi1n and max

 Algorithms min and max determine the

minimum and the maximum of two elements,
respectively.

 Figure 22.38 demonstrates m1n and max for
1nt and char values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 168

#include <algorithm>
using namespace std;

int main()
{
cout <<
cout <<
cout <<
cout <<
cout <<

"The minimum of 12 and 7 is:
"\nThe maximum of 12 and 7 is: " << max(12, 7);
"\nThe minimum of 'G' and 'Z' is:
"\nThe maximum of 'G' and 'Z' is:

" << min(C 12, 7);

<< min('GC",
<< max('G",

} // end main

minimum of
maximum of
minimum of
maximum of

Fig. 22.38 | Algorithms min and max.

12 and 7 is:
12 and 7 is:

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

» Figure 22.39 summarizes the STL algorithms
that are not covered in this chapter.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 170

inner_product

adjacent_difference

partial_sum

Calculate the sum of the products of two sequences by taking corre-
sponding elements in each sequence, multiplying those elements and
adding the result to a total.

Beginning with the second element in a sequence, calculate the dif-
ference (using operator —) between the current and previous ele-
ments, and store the result. The first two input iterator arguments
indicate the range of elements in the container and the third indi-
cates where the results should be stored. A second version of this
algorithm takes as a fourth argument a binary function to perform a
calculation between the current element and the previous element.

Calculate a running total (using operator +) of the values in a
sequence. The first two input iterator arguments indicate the range
of elements in the container and the third indicates where the results
should be stored. A second version of this algorithm takes as a fourth
argument a binary function that performs a calculation between the
current value in the sequence and the running total.

Fig. 22.39 | Algorithms not covered in this chapter. (Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

nth_element Use three random-access iterators to partition a range of elements.
The first and last arguments represent the range of elements. The
second argument is the partitioning elemenc’s location. After this
algorithm executes, all elements before the partitioning element are
less than that element and all elements after the partitioning element
are greater than or equal to that element. A second version of this
algorithm takes as a fourth argument a binary comparison function.

partition This algorithm is similar to nth_element, but requires less powerful
bidirectional iterators, making it more flexible. It requires two bidi-
rectional iterators indicating the range of elements to partition. The
third argument is a unary predicate function that helps partition the
elements so that all elements for which the predicate is true are to
the left (toward the beginning of the sequence) of those for which
the predicate is false. A bidirectional iterator is returned indicating
the first element in the sequence for which the predicate returns
false.

stable_partition Similar to partition except that this algorithm guarantees that
equivalent elements will be maintained in their original order.

Fig. 22.39 | Algorithms not covered in this chapter. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 172

next_permutation Next lexicographical permutation of a sequence.

prev_permutation Previous lexicographical permutation of a sequence.

rotate Use three forward iterator arguments to rotate the sequence indi-
cated by the first and last argument by the number of positions indi-
cated by subtracting the first argument from the second argument.
For example, the sequence 1, 2, 3, 4, 5 rotated by two positions
would be 4, 5, 1, 2, 3.

rotate_copy This algorithm is identical to rotate except that the results are stored
in a separate sequence indicated by the fourth argument—an output
iterator. The two sequences must have the same number of elements.

adjacent_find This algorithm returns an input iterator indicating the first of two
identical adjacent elements in a sequence. If there are no identical
adjacent elements, the iterator is positioned at the end of the
sequence.

Fig. 22.39 | Algorithms not covered in this chapter. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 173

search This algorithm searches for a subsequence of elements within a
sequence of elements and, if such a subsequence is found, returns a
forward iterator that indicates the first element of that subsequence.
If there are no matches, the iterator is positioned at the end of the
sequence to be searched.

search_n This algorithm searches a sequence of elements looking for a sub-
sequence in which the values of a specified number of elements have
a particular value and, if such a subsequence is found, returns a for-
ward iterator that indicates the first element of that subsequence. If
there are no matches, the iterator is positioned at the end of the
sequence to be searched.

partial_sort Use three random-access iterators to sort part of a sequence. The first
and last arguments indicate the sequence of elements. The second
argument indicates the ending location for the sorted part of the
sequence. By default, elements are ordered using operator < (a binary
predicate function can also be supplied). The elements from the sec-
ond argument iterator to the end of the sequence are in an undefined
order.

Fig. 22.39 | Algorithms not covered in this chapter. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 174

partial_sort_copy Use two input iterators and two random-access iterators to sort part
of the sequence indicated by the two input iterator arguments. The
results are stored in the sequence indicated by the two random-access
iterator arguments. By default, elements are ordered using operator <
(a binary predicate function can also be supplied). The number of
elements sorted is the smaller of the number of elements in the result
and the number of elements in the original sequence.

stable_sort The algorithm is similar to sort except that all equivalent elements
are maintained in their original order. This sort is O(# log ») if
enough memory is available; otherwise, it's O(n(log 7)?).

Fig. 22.39 | Algorithms not covered in this chapter. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 175

22.6 Class bitset

Class bitset makes it easy to create and manipulate bit
sets, which are useful for representing a set of bit flags.

bitsets are fixed in size at compile time.

Class b1tset is an alternate tool for bit manipulation,
discussed in Chapter 21.

The declaration
e bitset< size > b;

creates bitset b, in which every bit is initially O.

The statement
e b.set(bitNumber);

sets bit b1tNumber of bitset b “on.” The expression
b.set() sets all bits in b “on.”

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 176

22.6 Class bitset (Cont.)

The statement

eb.reset(bitNumber);
sets bit b1 tNumber of bitset b “off.” The
expression b. reset () setsall bitsin b
“off.” The statement

eb.f1ip(bitNumber);
“flips” bit b1tNumber of bitset b (e.g., if
the bit is on, 11 p sets it off).

The expression b. f11p () flips all bits in b.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 177

Class bitset (Cont.)

e The statement
e b[bitNumber];

returns a reference to the bit b1 tNumber of b.

« Similarly,
e b.at(bitNumber);

performs range checking on b1 tNumber first.

— If b1tNumber is in range, at returns a reference to the
bit.
— Otherwise, at throws an out_of_range exception.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 178

22,6 Class bitset (Cont.)

* The statement
e b.test(bitNumber);
performs range checking on b1 tNumber first.

— If b1tNumber is in range, test returns true if the bit is on,
false it’s off.

— Otherwise, test throws an out_of_range exception.

* The expression
e b.size()

returns the number of bits in bi1tset b.

* The expression
e b.count()

returns the number of bits that are set in bitset b.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 179

22,6 Class b1tset (Cont.)

* The expression
eb.any() _
returns true if any bitis setin bitset b.

* The expression
e b.none()

[)eturns true if none of the bitsis set in b1tset

* The expressions

eb == Dbl
b != bl

compare the two b1tsets for equality and
Inequality, respectively.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 180

22,6 Class b1tset (Cont.)

Each of the bitwise assigfon_ment operators &=, |=and A=
can be used to combine b1tsets.
For example,

e b &= bl;

performs a bit-b%-bit logical AND
between bitsets and bl-

— The result is stored in b.
Eitwise logical OR and bitwise logical XOR are performed
y
eb |= bl;
b *= b2;
The expression
e b >>= n;

shifts the bits in bi1tset b right by n positions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 181

22,6 Class bitset (Cont.)

* The expression
eb <<= n;

shifts the bits in b1tset b left by n positions.

e The expressions

eb.to_string()
b.to_ulong()

convert bitset btoastringandan
unsigned long, respectively.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 182

22.7 Funection Objects

Many STL algorithms allow you to pass a function pointer
Into the algorithm to help the algorithm perform its task.

For example, the binary_search algorithm that we
discussed In Section 22.5.6 is overloaded with a version that
requires as Iits fourth parameter a pointer to a function that
takes two arguments and returns a boo1 value.

The binary_search algorithm uses this function to
compare the search key to an element in the collection.

The function returns true if the search key and element
being compared are equal; otherwise, the function returns
false.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 183

22,7 Funection Objecis (Cont.)

« This enables binary_search to search a
collection of elements for which the element type
does not provide an overloaded equality ==
operator.

 STL’s designers made the algorithms more
flexible by allowing an%/ algorithm that can
recelve a function pointer to receive an object of a
class that overloads the parentheses operator with
a function named operator (%, provided that
the overloaded operator meets the requirements of
the algorithm—in the case of binary_search,
it must receive two arguments and return a bool.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 184

22,7 Function Objecis (Cont.)

* An object of such a class is known as a function
object and can be used syntactically and semantically
like a function or function pointer—the overloaded
parentheses operator iIs invoked by using a function
object’s name followed by parentheses containing the
arguments to the function.

« Together, function objects and functions used are
know as functors.

» Most algorithms can use function objects and
functions interchangeably.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 185

22,7 Function Objecis (Cont.)

 Function objects provide several advantages over
function pointers.

« Since function objects are commonly implemented as
class templates that are included into each source
code file that uses them, the compiler can inline an
overloaded operator () to improve performance.

» Also, since they’re objects of classes, function objects
can have data members that operator () can use to

perform its task.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 186

22,7 Function Objecis (Cont.)

» Many predefined function objects can be found
In the header <functional>.

» Figure 22.41 lists several of the STL function
objects, which are all implemented as class
templates.

« We used the function object 1less< T > in the
set,multisetand priority_queue
examples, to specify the sorting order for
elements in a container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 187

divides< T >
equal_to< T >
greater< T >

greater_equal< T >

less< T >

less_equal< T >
logical_and< T >

logical_not< T >

arithmetic
relational
relational
relational
relational
relational
logical
logical

logical_or< T >
minus< T >
modulus< T >
negate< T >
not_equal_to< T >
plus< T >

multiplies< T >

Fig. 22.41 | Function objects in the Standard Library.

logical

arithmetic
arithmetic
arithmetic
relational

arithmetic

arithmertic

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

188

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 189

