

• Figure 22.15 illustrates functions that enable

retrieval and manipulation of the elements of a

vector.

• Line 15 uses an overloaded vector
constructor that takes two iterators as

arguments to initialize integers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• Lines 24–25 illustrate two ways to subscript through a vector
(which also can be used with the deque containers).

• Line 26 uses the subscript operator that is overloaded to return
either a reference to the value at the specified location or a
constant reference to that value, depending on whether the
container is constant.

• Function at (line 25) performs the same operation, but with
bounds checking.

• Function at first checks the value supplied as an argument and
determines whether it’s in the bounds of the vector.

• If not, function at throws an out_of_range exception
defined in header <stdexcept> (as demonstrated in lines 34–
41).

• Figure 22.16 shows some of the STL exception types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• Line 28 uses one of the three overloaded insert functions
provided by each sequence container.

• Line 28 inserts the value 22 before the element at the
location specified by the iterator in the first argument.

• In this example, the iterator is pointing to the second
element of the vector, so 22 is inserted as the second
element and the original second element becomes the third
element of the vector.

• Other versions of insert allow inserting multiple copies
of the same value starting at a particular position in the
container, or inserting a range of values from another
container (or array), starting at a particular position in the
original container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• Lines 44 and 49 use the two erase functions that are available in
all first-class containers.

• Line 44 indicates that the element at the location specified by the
iterator argument should be removed from the container (in this
example, the element at the beginning of the vector).

• Line 49 specifies that all elements in the range starting with the
location of the first argument up to—but not including—the
location of the second argument should be erased from the
container.

• In this example, all the elements are erased from the vector.

• Line 51 uses function empty (available for all containers and
adapters) to confirm that the vector is empty.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• Line 54 demonstrates the version of function insert that
uses the second and third arguments to specify the starting
location and ending location in a sequence of values
(possibly from another container; in this case, from array of
integers array) that should be inserted into the vector.

• Remember that the ending location specifies the position in
the sequence after the last element to be inserted; copying is
performed up to—but not including—this location.

• Finally, line 59 uses function clear (found in all first-class
containers) to empty the vector.

• This function calls the version of erase used in line 51 to
empty the vector.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• The list sequence container provides an efficient
implementation for insertion and deletion operations at any
location in the container.

• If most of the insertions and deletions occur at the ends of
the container, the deque data structure (Section 22.2.3)
provides a more efficient implementation.

• Class template list is implemented as a doubly linked
list—every node in the list contains a pointer to the
previous node in the list and to the next node in the
list.

• This enables class template list to support bidirectional
iterators that allow the container to be traversed both
forward and backward.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• Any algorithm that requires input, output, forward
or bidirectional iterators can operate on a list.

• Many list member functions manipulate the
elements of the container as an ordered set of
elements.

• In addition to the member functions of all STL
containers in Fig. 22.2 and the common member
functions of all sequence containers discussed in
Section 22.2, class template list provides nine
other member functions—splice,
push_front, pop_front, remove,
remove_if, unique, merge, reverse and
sort.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

• Several of these member functions are list-

optimized implementations of STL algorithms

presented in Section 22.5.

• Figure 22.17 demonstrates several features of class

list.

• Remember that many of the functions presented in

Figs. 22.14–22.15 can be used with class list.

• Header file <list> must be included to use class

list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Lines 16–17 instantiate two list objects capable of
storing integers.

• Lines 20–21 use function push_front to insert integers at
the beginning of values.

• Function push_front is specific to classes list and
deque (not to vector).

• Lines 22–23 use function push_back to insert integers at
the end of values.

• Remember that function push_back is common to all
sequence containers.

• Line 28 uses list member function sort to arrange the
elements in the list in ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• A second version of function sort allows you

to supply a binary predicate function that takes

two arguments (values in the list), performs a

comparison and returns a bool value

indicating the result.

• This function determines the order in which

the elements of the list are sorted.

• This version could be particularly useful for a

list that stores pointers rather than values.

• [Note: We demonstrate a unary predicate

function in Fig. 22.28.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

• A unary predicate function takes a single argument,

performs a comparison using that argument and returns a

bool value indicating the result.]

• Line 38 uses list function splice to remove the elements

in otherValues and insert them into values before the

iterator position specified as the first argument.

• There are two other versions of this function.

• Function splice with three arguments allows one element

to be removed from the container specified as the second

argument from the location specified by the iterator in the

third argument.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

• Function splice with four arguments uses the last two
arguments to specify a range of locations that should be
removed from the container in the second argument and
placed at the location specified in the first argument.

• After inserting more elements in otherValues and
sorting both values and other-Values, line 53 uses
list member function merge to remove all elements of
otherValues and insert them in sorted order into
values.

• Both lists must be sorted in the same order before this
operation is performed.

• A second version of merge enables you to supply a
predicate function that takes two arguments (values in the
list) and returns a bool value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

• The predicate function specifies the sorting order used by
merge.

• Line 59 uses list function pop_front to remove the first
element in the list.

• Line 60 uses function pop_back (available for all sequence
containers) to remove the last element in the list.

• Line 64 uses list function unique to remove duplicate
elements in the list.

• The list should be in sorted order (so that all duplicates
are side by side) before this operation is performed, to
guarantee that all duplicates are eliminated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• A second version of unique enables you to
supply a predicate function that takes two
arguments (values in the list) and returns a bool
value specifying whether two elements are equal.

• Line 69 uses function swap (available to all first-
class containers) to exchange the contents of
values with the contents of otherValues.

• Line 76 uses list function assign (available to
all sequence containers) to replace the contents of
values with the contents of otherValues in
the range specified by the two iterator arguments.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

• A second version of assign replaces the

original contents with copies of the value

specified in the second argument.

• The first argument of the function specifies the

number of copies.

• Line 85 uses list function remove to delete

all copies of the value 4 from the list.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

• Class deque provides many of the benefits of a vector
and a list in one container.

• The term deque is short for ―double-ended queue.‖

• Class deque is implemented to provide efficient indexed
access (using subscripting) for reading and modifying its
elements, much like a vector.

• Class deque is also implemented for efficient insertion and
deletion operations at its front and back, much like a list
(although a list is also capable of efficient insertions and
deletions in the middle of the list).

• Class deque provides support for random-access iterators,
so deques can be used with all STL algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

• One of the most common uses of a deque is to maintain a

first-in, first-out queue of elements.

• In fact, a deque is the default underlying implementation

for the queue adaptor (Section 22.4.2).

• Additional storage for a deque can be allocated at either

end of the deque in blocks of memory that are typically

maintained as an array of pointers to those blocks.

• Due to the noncontiguous memory layout of a deque, a

deque iterator must be more intelligent than the pointers

that are used to iterate through vectors or pointer-based

arrays.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

• Class deque provides the same basic operations as class
vector, but like list adds member functions push_front
and pop_front to allow insertion and deletion at the beginning
of the deque, respectively.

• Figure 22.18 demonstrates features of class deque.

• Remember that many of the functions presented in Fig. 22.14,
Fig. 22.15 and Fig. 22.17 also can be used with class deque.

• Header file <deque> must be included to use class deque.

• Line 11 instantiates a deque that can store double values.

• Lines 15–17 use functions push_front and push_back to
insert elements at the beginning and end of the deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

• The for statement in lines 22–23 uses the subscript
operator to retrieve the value in each element of the deque
for output.

• The condition uses function size to ensure that we do not
attempt to access an element outside the bounds of the
deque.

• Line 25 uses function pop_front to demonstrate
removing the first element of the deque.

• Remember that pop_front is available only for class
list and class deque (not for class vector).

• Line 30 uses the subscript operator to create an lvalue.

• This enables values to be assigned directly to any element
of the deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

• The STL’s associative containers provide direct access to store
and retrieve elements via keys (often called search keys).

• The four associative containers are multiset, set,
multimap and map.

• Each associative container maintains its keys in sorted order.

• Iterating through an associative container traverses it in the sort
order for that container.

• Classes multiset and set provide operations for manipulating
sets of values where the values are the keys—there is not a
separate value associated with each key.

• The primary difference between a multiset and a set is that
a multiset allows duplicate keys and a set does not.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

• Classes multimap and map provide operations for manipulating
values associated with keys (these values are sometimes referred
to as mapped values).

• The primary difference between a multimap and a map is that
a multimap allows duplicate keys with associated values to be
stored and a map allows only unique keys with associated values.

• In addition to the common member functions of all containers
presented in Fig. 22.2, all associative containers also support
several other member functions, including find,
lower_bound, upper_bound and count.

• Examples of each of the associative containers and the common
associative container member functions are presented in the next
several subsections.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

• The multiset associative container provides fast storage
and retrieval of keys and allows duplicate keys.

• The ordering of the elements is determined by a comparator
function object.

• For example, in an integer multiset, elements can be
sorted in ascending order by ordering the keys with
comparator function object less<int>.

• We discuss function objects in detail in Section 22.7.

• The data type of the keys in all associative containers must
support comparison properly based on the comparator
function object specified—keys sorted with less< T >
must support comparison with operator<.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

• If the keys used in the associative containers are of user-
defined data types, those types must supply the appropriate
comparison operators.

• A multiset supports bidirectional iterators (but not
random-access iterators).

• Figure 22.19 demonstrates the multiset associative
container for a multiset of integers sorted in ascending
order.

• Header file <set> must be included to use class
multiset.

• Containers multiset and set provide the

same basic functionality.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

• Line 10 uses a typedef to create a new type

name (alias) for a multiset of integers

ordered in ascending order, using the function

object less< int >.

• Ascending order is the default for a

multiset, so less< int > can be omitted

in line 10.

• This new type (Ims) is then used to instantiate

an integer multiset object, intMultiset
(line 16). ©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

• The output statement in line 19 uses function count
(available to all associative containers) to count the number

of occurrences of the value 15 currently in the multiset.

• Lines 22–23 use one of the three versions of function

insert to add the value 15 to the multiset twice.

• A second version of insert takes an iterator and a value

as arguments and begins the search for the insertion point

from the iterator position specified.

• A third version of insert takes two iterators as arguments

that specify a range of values to add to the multiset from

another container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

• Line 31 uses function find (available to all associative
containers) to locate the value 15 in the multiset.

• Function find returns an iterator or a
const_iterator pointing to the earliest location at
which the value is found.

• If the value is not found, find returns an iterator or a
const_iterator equal to the value returned by a call to
end.

• Line 40 demonstrates this case.

• Line 43 uses function insert to insert the elements of array
a into the multiset.

• In line 45, the copy algorithm copies the elements of the
multiset to the standard output in ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

• Lines 49 and 50 use functions lower_bound and
upper_bound (available in all associative containers) to
locate the earliest occurrence of the value 22 in the
multiset and the element after the last occurrence of the
value 22 in the multiset.

• Both functions return iterators or const_iterators
pointing to the appropriate location or the iterator returned
by end if the value is not in the multiset.

• Line 53 instantiates an instance of class pair called p.

• Objects of class pair are used to associate pairs of values.

• In this example, the contents of a pair are two
const_iterators for our integer-based multiset.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

• The purpose of p is to store the return value of multiset
function equal_range that returns a pair containing the
results of both a lower_bound and an upper_bound
operation.

• Type pair contains two public data members called
first and second.

• Line 57 uses function equal_range to determine the
lower_bound and upper_bound of 22 in the
multiset.

• Line 60 uses p.first and p.second, respectively, to
access the lower_bound and upper_bound.

• We dereferenced the iterators to output the values at the
locations returned from equal_range.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

• The set associative container is used for fast storage and
retrieval of unique keys.

• The implementation of a set is identical to that of a
multiset, except that a set must have unique keys.

• Therefore, if an attempt is made to insert a duplicate key
into a set, the duplicate is ignored; because this is the
intended mathematical behavior of a set, we do not identify
it as a common programming error.

• A set supports bidirectional iterators (but not random-
access iterators).

• Figure 22.20 demonstrates a set of doubles.

• Header file <set> must be included to use class set.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

• Line 10 uses typedef to create a new type name
(DoubleSet) for a set of double values ordered in
ascending order, using the function object
less<double>.

• Line 16 uses the new type DoubleSet to instantiate object
doubleSet.

• The constructor call takes the elements in array a between a
and a + SIZE (i.e., the entire array) and inserts them into
the set.

• Line 20 uses algorithm copy to output the contents of the
set.

• Notice that the value 2.1—which appeared twice in array
a—appears only once in doubleSet.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

• This is because container set does not allow duplicates.

• Line 23 defines a pair consisting of a const_iterator for
a DoubleSet and a bool value.

• This object stores the result of a call to set function insert.

• Line 28 uses function insert to place the value 13.8 in the
set.

• The returned pair, p, contains an iterator p.first pointing to
the value 13.8 in the set and a bool value that is true if the
value was inserted and false if the value was not inserted
(because it was already in the set).

• In this case, 13.8 was not in the set, so it was inserted.

• Line 35 attempts to insert 9.5, which is already in the set.

• The output of lines 36–37 shows that 9.5 was not inserted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

• The multimap associative container is used for fast storage and
retrieval of keys and associated values (often called key/value
pairs).

• Many of the functions used with multisets and sets are also
used with multimaps and maps.

• The elements of multimaps and maps are pairs of keys and
values instead of individual values.

• When inserting into a multimap or map, a pair object that
contains the key and the value is used.

• The ordering of the keys is determined by a comparator function
object.

• For example, in a multimap that uses integers as the key type,
keys can be sorted in ascending order by ordering them with
comparator function object less< int >.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58

• Duplicate keys are allowed in a multimap, so multiple values
can be associated with a single key.

• This is often called a one-to-many relationship.

• For example, in a credit-card transaction-processing system, one
credit-card account can have many associated transactions; in a
university, one student can take many courses, and one professor
can teach many students; in the military, one rank (like ―private‖)
has many people.

• A multimap supports bidirectional iterators, but not random-
access iterators.

• Figure 22.21 demonstrates the multimap associative container.

• Header file <map> must be included to use class multimap.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62

• Line 8 uses typedef to define alias Mmid for

a multimap type in which the key type is

int, the type of a key’s associated value is

double and the elements are ordered in

ascending order.

• Line 12 uses the new type to instantiate a

multimap called pairs.

• Line 14 uses function count to determine the

number of key/value pairs with a key of 15.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 63

• Line 18 uses function insert to add a new

key/value pair to the multimap.

• The expression Mmid::value_type(15, 2.7)
creates a pair object in which first is the key

(15) of type int and second is the value (2.7) of

type double.

• The type Mmid::value_type is defined as part of

the typedef for the multimap.

• Line 19 inserts another pair object with the key 15
and the value 99.3.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 64

• Then lines 21–22 output the number of pairs with
key 15.

• Lines 25–29 insert five additional pairs into the
multimap.

• The for statement in lines 34–36 outputs the
contents of the multimap, including both keys
and values.

• Line 36 uses the const_iterator called
iter to access the members of the pair in each
element of the multimap.

• Notice in the output that the keys appear in
ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65

• The map associative container performs fast storage and retrieval
of unique keys and associated values.

• Duplicate keys are not allowed—a single value can be associated
with each key.

• This is called a one-to-one mapping.

• For example, a company that uses unique employee numbers,
such as 100, 200 and 300, might have a map that associates
employee numbers with their telephone extensions—4321, 4115
and 5217, respectively.

• With a map you specify the key and get back the associated data
quickly.

• A map is also known as an associative array.

• Providing the key in a map’s subscript operator [] locates the
value associated with that key in the map.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 66

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 67

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 68

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69

• Insertions and deletions can be made anywhere in a map.

• Figure 22.22 demonstrates a map and uses the same features as
Fig. 22.21 to demonstrate the subscript operator.

• Header file <map> must be included to use class map.

• Lines 31–32 use the subscript operator of class map.

• When the subscript is a key that is already in the map (line 31),
the operator returns a reference to the associated value.

• When the subscript is a key that is not in the map (line 32), the
operator inserts the key in the map and returns a reference that
can be used to associate a value with that key.

• Line 31 replaces the value for the key 25 (previously 33.333 as
specified in line 19) with a new value, 9999.99.

• Line 32 inserts a new key/value pair in the map (called creating
an association).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 70

• The STL provides three container adapters—stack,
queue and priority_queue.

• Adapters are not first-class containers, because they do not
provide the actual data-structure implementation in which
elements can be stored and because adapters do not support
iterators.

• The benefit of an adapter class is that you can choose an
appropriate underlying data structure.

• All three adapter classes provide member functions push
and pop that properly insert an element into each adapter
data structure and properly remove an element from each
adapter data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 71

• Class stack enables insertions into and deletions

from the underlying data structure at one end

(commonly referred to as a last-in, first-out data

structure).

• A stack can be implemented with any of the

sequence containers: vector, list and deque.

• This example creates three integer stacks, using each

of the sequence containers of the Standard Library as

the underlying data structure to represent the stack.

• By default, a stack is implemented with a deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 72

• The stack operations are push to insert an element at the
top of the stack (implemented by calling function
push_back of the underlying container), pop to remove
the top element of the stack (implemented by calling
function pop_back of the underlying container), top to
get a reference to the top element of the stack
(implemented by calling function back of the underlying
container), empty to determine whether the stack is
empty (implemented by calling function empty of the
underlying container) and size to get the number of
elements in the stack (implemented by calling function
size of the underlying container).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 73

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 74

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 75

• Figure 22.23 demonstrates the stack adapter class.

• Header file <stack> must be included to use class

stack.

• Lines 18, 21 and 24 instantiate three integer stacks.

• Line 18 specifies a stack of integers that uses the

default deque container as its underlying data

structure.

• Line 21 specifies a stack of integers that uses a

vector of integers as its underlying data structure.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 76

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 77

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 78

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 79

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 80

• Line 24 specifies a stack of integers that uses a

list of integers as its underlying data structure.

• Function pushElements (lines 46–53) pushes the

elements onto each stack.

• Line 50 uses function push (available in each

adapter class) to place an integer on top of the

stack.

• Line 51 uses stack function top to retrieve the top

element of the stack for output.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 81

• Function top does not remove the top element.

• Function popElements (lines 56–63) pops the

elements off each stack.

• Line 60 uses stack function top to retrieve the top

element of the stack for output.

• Line 61 uses function pop (available in each adapter

class) to remove the top element of the stack.

• Function pop does not return a value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 82

• Class queue enables insertions at the back of

the underlying data structure and deletions

from the front (commonly referred to as a first-

in, first-out data structure).

• A queue can be implemented with STL data

structure list or deque.

• By default, a queue is implemented with a

deque.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 83

• The common queue operations are push to insert an element at
the back of the queue (implemented by calling function
push_back of the underlying container), pop to remove the
element at the front of the queue (implemented by calling
function pop_front of the underlying container), front to get
a reference to the first element in the queue (implemented by
calling function front of the underlying container), back to get
a reference to the last element in the queue (implemented by
calling function back of the underlying container), empty to
determine whether the queue is empty (implemented by calling
function empty of the underlying container) and size to get the
number of elements in the queue (implemented by calling
function size of the underlying container).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 84

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 85

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 86

• Figure 22.24 demonstrates the queue adapter

class.

• Header file <queue> must be included to use a

queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 87

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 88

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 89

• Line 9 instantiates a queue that stores double values.

• Lines 12–14 use function push to add elements to the
queue.

• The while statement in lines 19–23 uses function empty
(available in all containers) to determine whether the
queue is empty (line 19).

• While there are more elements in the queue, line 21 uses
queue function front to read (but not remove) the first
element in the queue for output.

• Line 22 removes the first element in the queue with
function pop (available in all adapter classes).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 90

• Class priority_queue provides functionality that enables
insertions in sorted order into the underlying data structure
and deletions from the front of the underlying data
structure.

• A priority_queue can be implemented with STL
sequence containers vector or deque.

• By default, a priority_queue is implemented with a
vector as the underlying container.

• When elements are added to a priority_queue, they’re
inserted in priority order, such that the highest-priority
element (i.e., the largest value) will be the first element
removed from the priority_queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 91

• This is usually accomplished by arranging the elements in a
binary tree structure called a heap that always maintains the
largest value (i.e., highest-priority element) at the front of
the data structure.

• We discuss the STL’s heap algorithms in Section 22.5.12.

• The comparison of elements is performed with comparator
function object less< T > by default, but you can supply a
different comparator.

• There are several common priority_queue operations.

• push inserts an element at the appropriate location based
on priority order of the priority_queue (implemented
by calling function push_back of the underlying
container, then reordering the elements using heapsort).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 92

• pop removes the highest-priority element of the
priority_queue (implemented by calling function
pop_back of the underlying container after removing the
top element of the heap).

• top gets a reference to the top element of the
priority_queue (implemented by calling function
front of the underlying container).

• empty determines whether the priority_queue is
empty (implemented by calling function empty of the
underlying container).

• size gets the number of elements in the
priority_queue (implemented by calling function
size of the underlying container).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 93

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 94

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 95

• Figure 22.25 demonstrates the

priority_queue adapter class.

• Header file <queue> must be included to use

class priority_queue.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 96

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 97

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 98

• Line 9 instantiates a priority_queue that stores double
values and uses a vector as the underlying data structure.

• Lines 12–14 use function push to add elements to the
priority_queue.

• The while statement in lines 19–23 uses function empty
(available in all containers) to determine whether the
priority_queue is empty (line 19).

• While there are more elements, line 21 uses priority_queue
function top to retrieve the highest-priority element in the
priority_queue for output.

• Line 22 removes the highest-priority element in the
priority_queue with function pop (available in all adapter
classes).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 99

• Until the STL, class libraries of containers and algorithms
were essentially incompatible among vendors.

• Early container libraries generally used inheritance and
polymorphism, with the associated overhead of virtual
function calls.

• Early libraries built the algorithms into the container classes
as class behaviors.

• The STL separates the algorithms from the containers.

• This makes it much easier to add new algorithms.

• With the STL, the elements of containers are accessed
through iterators.

• The next several subsections demonstrate many of the STL
algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 100

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 101

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 102

• Figure 22.26 demonstrates algorithms fill,

fill_n, generate and generate_n.

• Functions fill and fill_n set every element in a

range of container elements to a specific value.

• Functions generate and generate_n use a generator

function to create values for every element in a range

of container elements.

• The generator function takes no arguments and

returns a value that can be placed in an element of the

container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 103

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 104

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 105

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 106

• Line 13 defines a 10-element vector that stores char
values.

• Line 15 uses function fill to place the character '5' in
every element of vector chars from chars.begin()
up to, but not including, chars.end().

• The iterators supplied as the first and second argument must
be at least forward iterators (i.e., they can be used for both
input from a container and output to a container in the
forward direction).

• Line 21 uses function fill_n to place the character 'A'
in the first five elements of vector chars.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 107

• The iterator supplied as the first argument must be
at least an output iterator (i.e., it can be used for
output to a container in the forward direction).

• The second argument specifies the number of
elements to fill.

• The third argument specifies the value to place in
each element.

• Line 27 uses function generate to place the
result of a call to generator function next-
Letter in every element of vector chars
from chars.begin() up to, but not including,
chars.end().

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 108

• The iterators supplied as the first and second arguments
must be at least forward iterators.

• Function nextLetter (lines 42–46) begins with the
character 'A' maintained in a static local variable.

• The statement in line 45 postincrements the value of
letter and returns the old value of letter each time
next-Letter is called.

• Line 33 uses function generate_n to place the result of a
call to generator function nextLetter in five elements of
vector chars, starting from chars.begin().

• The iterator supplied as the first argument must be at least
an output iterator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 109

• Figure 22.30 demonstrates several common

mathematical algorithms from the STL,

including random_shuffle, count,

count_if, min_element,

max_element, accumulate, for_each
and transform.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 110

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 111

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 112

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 113

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 114

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 115

• Line 24 uses function random_shuffle to reorder randomly
the elements in the range from v.begin() up to, but not
including, v.end() in v.

• This function takes two random-access iterator arguments.

• Line 34 uses function count to count the elements with the
value 8 in the range from v2.begin() up to, but not
including, v2.end() in v2.

• This function requires its two iterator arguments to be at
least input iterators.

• Line 38 uses function count_if to count elements in the
range from v2.begin() up to, but not including,
v2.end() in v2 for which the predicate function
greater9 returns true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 116

• Function count_if requires its two iterator arguments to be at
least input iterators.

• Line 43 uses function min_element to locate the smallest
element in the range from v2.begin() up to, but not
including, v2.end().

• The function returns a forward iterator located at the smallest
element, or v2.end() if the range is empty.

• The function’s two iterator arguments must be at least input
iterators.

• A second version of this function takes as its third argument a
binary function that compares two elements in the sequence.

• This function returns the bool value true if the first argument
is less than the second.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 117

• Line 47 uses function max_element to locate the largest
element in the range from v2.begin() up to, but not
including, v2.end() in v2.

• The function returns an input iterator located at the largest
element.

• The function’s two iterator arguments must be at least input
iterators.

• A second version of this function takes as its third argument
a binary predicate function that compares the elements in
the sequence.

• The binary function takes two arguments and returns the
bool value true if the first argument is less than the
second.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 118

• Line 51 uses function accumulate (the template of which is
in header file <numeric>) to sum the values in the range
from v.begin() up to, but not including, v.end() in v.

• The function’s two iterator arguments must be at least input
iterators and its third argument represents the initial value of
the total.

• A second version of this function takes as its fourth
argument a general function that determines how elements
are accumulated.

• The general function must take two arguments and return a
result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 119

• The first argument to this function is the current value of the
accumulation.

• The second argument is the value of the current element in
the sequence being accumulated.

• Line 55 uses function for_each to apply a general function
to every element in the range from v.begin() up to, but
not including, v.end().

• The general function takes the current element as an
argument and may modify that element (if it’s received by
reference).

• Function for_each requires its two iterator arguments to
be at least input iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 120

• Line 60 uses function transform to apply a general
function to every element in the range from v.begin()
up to, but not including, v.end() in v.

• The general function (the fourth argument) should take the
current element as an argument, should not modify the
element and should return the transformed value.

• Function transform requires its first two iterator
arguments to be at least input iterators and its third
argument to be at least an output iterator.

• The third argument specifies where the transformed
values should be placed.

• Note that the third argument can equal the first.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 121

• Figure 22.31 demonstrates some basic

searching and sorting capabilities of the

Standard Library, including find, find_if,

sort and binary_search.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 122

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 123

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 124

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 125

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 126

• Line 23 uses function find to locate the value 16 in the

range from v.begin() up to, but not including,

v.end() in v.

• The function requires its two iterator arguments to be at

least input iterators and returns an input iterator that either

is positioned at the first element containing the value or

indicates the end of the sequence (as is the case in line 31).

• Line 39 uses function find_if to locate the first value in

the range from v.begin() up to, but not including,

v.end() in v for which the unary predicate function

greater10 returns true.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 127

• Function greater10 (defined in lines 71–74) takes an
integer and returns a bool value indicating whether the
integer argument is greater than 10.

• Function find_if requires its two iterator arguments to
be at least input iterators.

• The function returns an input iterator that either is
positioned at the first element containing a value for which
the predicate function returns true or indicates the end of
the sequence.

• Line 48 uses function sort to arrange the elements in the
range from v.begin() up to, but not including,
v.end() in v in ascending order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 128

• The function requires its two iterator

arguments to be random-access iterators.

• A second version of this function takes a third

argument that is a binary predicate function

taking two arguments that are values in the

sequence and returning a bool indicating the

sorting order—if the return value is true, the

two elements being compared are in sorted

order.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 129

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 130

• Line 53 uses function binary_search to determine

whether the value 13 is in the range from

v.begin() up to, but not including, v.end() in

v.

• The sequence of values must be sorted in ascending

order first.

• Function binary_search requires its two iterator

arguments to be at least forward iterators.

• The function returns a bool indicating whether the

value was found in the sequence.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 131

• Line 59 demonstrates a call to function

binary_search in which the value is not found.

• A second version of this function takes a fourth

argument that is a binary predicate function taking

two arguments that are values in the sequence and

returning a bool.

• The predicate function returns true if the two

elements being compared are in sorted order.

• To obtain the location of the search key in the

container, use the lower_bound or find
algorithms.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 132

• Figure 22.32 demonstrates algorithms swap,

iter_swap and swap_ranges for

swapping elements.

• Line 18 uses function swap to exchange two

values.

• In this example, the first and second elements

of array a are exchanged.

• The function takes as arguments references to

the two values being exchanged.
©1992-2010 by Pearson Education, Inc. All Rights Reserved. 133

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 134

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 135

• Line 24 uses function iter_swap to exchange the two

elements.

• The function takes two forward iterator arguments (in

this case, pointers to elements of an array) and

exchanges the values in the elements to which the

iterators refer.

• Line 30 uses function swap_ranges to exchange the

elements from a up to, but not including, a + 5 with

the elements beginning at position a + 5.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 136

• The function requires three forward iterator

arguments.

• The first two arguments specify the range of elements

in the first sequence that will be exchanged with the

elements in the second sequence starting from the

iterator in the third argument.

• In this example, the two sequences of values are in

the same array, but the sequences can be from

different arrays or containers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 137

• Figure 22.33 demonstrates STL algorithms
copy_backward, merge, unique and reverse.

• Line 26 uses function copy_backward to copy elements in
the range from v1.begin() up to, but not including,
v1.end(), placing the elements in results by starting
from the element before results.end() and working
toward the beginning of the vector.

• The function returns an iterator positioned at the last
element copied into the results (i.e., the beginning of
results, because of the backward copy).

• The elements are placed in results in the same order as
v1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 138

• This function requires three bidirectional iterator arguments
(iterators that can be incremented and decremented to
iterate forward and backward through a sequence,
respectively).

• One difference between copy_backward and copy is
that the iterator returned from copy is positioned after the
last element copied and the one returned from
copy_backward is positioned at the last element copied
(i.e., the first element in the sequence).

• Also, copy_backward can manipulate overlapping
ranges of elements in a container as long as the first element
to copy is not in the destination range of elements.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 139

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 140

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 141

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 142

• Line 33 uses function merge to combine two sorted
ascending sequences of values into a third sorted ascending
sequence.

• The function requires five iterator arguments.

• The first four must be at least input iterators and the last
must be at least an output iterator.

• The first two arguments specify the range of elements in the
first sorted sequence (v1), the second two arguments
specify the range of elements in the second sorted sequence
(v2) and the last argument specifies the starting location in
the third sequence (results2) where the elements will be
merged.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 143

• A second version of this function takes as its sixth argument
a binary predicate function that specifies the sorting order.

• Line 30 creates vector results2 with the number of
elements v1.size() + v2.size().

• Using the merge function as shown here requires that the
sequence where the results are stored be at least the size of
the two sequences being merged.

• If you do not want to allocate the number of elements for
the resulting sequence before the merge operation, you can
use the following statements:

• vector< int > results2;
merge(v1.begin(), v1.end(), v2.begin(),
v2.end(),

back_inserter(results2));

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 144

• The argument back_inserter(results2) uses

function template back_in-serter (header file

<iterator>) for the container results2.

• A back_in-serter calls the container’s default

push_back function to insert an element at the end

of the container.

• If an element is inserted into a container that has no

more space available, the container grows in size.

• Thus, the number of elements in the container does

not have to be known in advance.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 145

• There are two other inserters—front_inserter (to insert
an element at the beginning of a container specified as its
argument) and inserter (to insert an element before the
iterator supplied as its second argument in the container
supplied as its first argument).

• Line 40 uses function unique on the sorted sequence of
elements in the range from results2.begin() up to,
but not including, results2.end() in results2.

• After this function is applied to a sorted sequence with
duplicate values, only a single copy of each value remains
in the sequence.

• The function takes two arguments that must be at least
forward iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 146

• The function returns an iterator positioned after the last
element in the sequence of unique values.

• The values of all elements in the container after the last
unique value are undefined.

• A second version of this function takes as a third argument
a binary predicate function specifying how to compare two
elements for equality.

• Line 46 uses function reverse to reverse all the elements in
the range from v1.begin() up to, but not including,
v1.end() in v1.

• The function takes two arguments that must be at least
bidirectional iterators.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 147

• Figure 22.34 demonstrates algorithms inplace_merge,
unique_copy and reverse_copy.

• Line 22 uses function inplace_merge to merge two sorted
sequences of elements in the same container.

• In this example, the elements from v1.begin() up to,
but not including, v1.begin() + 5 are merged with the
elements from v1.begin() + 5 up to, but not including,
v1.end().

• This function requires its three iterator arguments to be at
least bidirectional iterators.

• A second version of this function takes as a fourth argument
a binary predicate function for comparing elements in the
two sequences.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 148

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 149

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 150

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 151

• Line 30 uses function unique_copy to make a copy of all
the unique elements in the sorted sequence of values from
v1.begin() up to, but not including, v1.end().

• The copied elements are placed into vector results1.

• The first two arguments must be at least input iterators and
the last must be at least an output iterator.

• In this example, we did not preallocate enough elements in
results1 to store all the elements copied from v1.

• Instead, we use function back_inserter (defined in
header file <iterator>) to add elements to the end of
v1.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 152

• The back_inserter uses class vector’s

capability to insert elements at the end of the

vector.

• Because the back_inserter inserts an element

rather than replacing an existing element’s value, the

vector is able to grow to accommodate additional

elements.

• A second version of the unique_copy function

takes as a fourth argument a binary predicate function

for comparing elements for equality.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 153

• Line 37 uses function reverse_copy to make a

reversed copy of the elements in the range from

v1.begin() up to, but not including, v1.end().

• The copied elements are inserted into results2
using a back_inserter object to ensure that the

vector can grow to accommodate the appropriate

number of elements copied.

• Function reverse_copy requires its first two

iterator arguments to be at least bidirectional iterators

and its third to be at least an output iterator.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 154

• Figure 22.35 demonstrates functions includes,
set_difference, set_intersection,
set_symmetric_difference and set_union for
manipulating sets of sorted values.

• To demonstrate that STL functions can be applied to arrays
and containers, this example uses only arrays (remember, a
pointer into an array is a random-access iterator).

• Lines 25 and 31 call function includes.
• Function includes compares two sets of sorted values to

determine whether every element of the second set is in the
first set.

• If so, includes returns true; otherwise, it returns
false.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 155

• The first two iterator arguments must be at least input
iterators and must describe the first set of values.

• In line 25, the first set consists of the elements from a1 up
to, but not including, a1 + SIZE1.

• The last two iterator arguments must be at least input
iterators and must describe the second set of values.

• In this example, the second set consists of the elements
from a2 up to, but not including, a2 + SIZE2.

• A second version of function includes takes a fifth
argument that is a binary predicate function indicating the
order in which the elements were originally sorted.

• The two sequences must be sorted using the same
comparison function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 156

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 157

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 158

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 159

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 160

• Lines 39–40 use function set_difference to find the
elements from the first set of sorted values that are not in
the second set of sorted values (both sets of values must be
in ascending order).

• The elements that are different are copied into the fifth
argument (in this case, the array difference).

• The first two iterator arguments must be at least input
iterators for the first set of values.

• The next two iterator arguments must be at least input
iterators for the second set of values.

• The fifth argument must be at least an output iterator
indicating where to store a copy of the values that are
different.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 161

• The function returns an output iterator positioned
immediately after the last value copied into the set to which
the fifth argument points.

• A second version of function set_difference takes a
sixth argument that is a binary predicate function indicating
the order in which the elements were originally sorted.

• The two sequences must be sorted using the same
comparison function.

• Lines 47–48 use function set_intersection to determine
the elements from the first set of sorted values that are in
the second set of sorted values (both sets of values must be
in ascending order).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 162

• The elements common to both sets are copied into the fifth
argument (in this case, array intersection).

• The first two iterator arguments must be at least input
iterators for the first set of values.

• The next two iterator arguments must be at least input
iterators for the second set of values.

• The fifth argument must be at least an output iterator
indicating where to store a copy of the values that are the
same.

• The function returns an output iterator positioned
immediately after the last value copied into the set to which
the fifth argument points.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 163

• A second version of function set_intersection takes
a sixth argument that is a binary predicate function
indicating the order in which the elements were originally
sorted.

• The two sequences must be sorted using the same
comparison function-.

• Lines 56–57 use function set_symmetric_difference to
determine the elements in the first set that are not in the
second set and the elements in the second set that are not in
the first set (both sets must be in ascending order).

• The elements that are different are copied from both sets
into the fifth argument (the array
symmetric_difference).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 164

• The first two iterator arguments must be at least input iterators
for the first set of values.

• The next two iterator arguments must be at least input iterators
for the second set of values.

• The fifth argument must be at least an output iterator indicating
where to store a copy of the values that are different.

• The function returns an output iterator positioned immediately
after the last value copied into the set to which the fifth argument
points.

• A second version of function set_symmetric_difference
takes a sixth argument that is a binary predicate function
indicating the order in which the elements were originally sorted.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 165

• The two sequences must be sorted using the same
comparison function.

• Line 64 uses function set_union to create a set of all
the elements that are in either or both of the two sorted
sets (both sets of values must be in ascending order).

• The elements are copied from both sets into the fifth
argument (in this case the array unionSet).

• Elements that appear in both sets are only copied from
the first set.

• The first two iterator arguments must be at least input
iterators for the first set of values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 166

• The next two iterator arguments must be at least input
iterators for the second set of values.

• The fifth argument must be at least an output iterator
indicating where to store the copied elements.

• The function returns an output iterator positioned
immediately after the last value copied into the set to which
the fifth argument points.

• A second version of set_union takes a sixth argument
that is a binary predicate function indicating the order in
which the elements were originally sorted.

• The two sequences must be sorted using the same
comparison function.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 167

• Algorithms min and max determine the

minimum and the maximum of two elements,

respectively.

• Figure 22.38 demonstrates min and max for

int and char values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 168

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 169

• Figure 22.39 summarizes the STL algorithms

that are not covered in this chapter.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 170

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 171

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 172

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 173

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 174

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 175

• Class bitset makes it easy to create and manipulate bit
sets, which are useful for representing a set of bit flags.

• bitsets are fixed in size at compile time.

• Class bitset is an alternate tool for bit manipulation,
discussed in Chapter 21.

• The declaration
• bitset< size > b;

• creates bitset b, in which every bit is initially 0.

• The statement
• b.set(bitNumber);

• sets bit bitNumber of bitset b ―on.‖ The expression
b.set() sets all bits in b ―on.‖

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 176

• The statement
•b.reset(bitNumber);

• sets bit bitNumber of bitset b ―off.‖ The

expression b.reset() sets all bits in b
―off.‖ The statement

•b.flip(bitNumber);

• ―flips‖ bit bitNumber of bitset b (e.g., if

the bit is on, flip sets it off).

• The expression b.flip() flips all bits in b.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 177

• The statement
• b[bitNumber];

returns a reference to the bit bitNumber of b.

• Similarly,
• b.at(bitNumber);

performs range checking on bitNumber first.

– If bitNumber is in range, at returns a reference to the

bit.

– Otherwise, at throws an out_of_range exception.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 178

• The statement
• b.test(bitNumber);

performs range checking on bitNumber first.

– If bitNumber is in range, test returns true if the bit is on,
false it’s off.

– Otherwise, test throws an out_of_range exception.

• The expression
• b.size()

returns the number of bits in bitset b.

• The expression
• b.count()

returns the number of bits that are set in bitset b.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 179

• The expression
• b.any()

returns true if any bit is set in bitset b.
• The expression

• b.none()

returns true if none of the bits is set in bitset
b.

• The expressions
• b == b1
b != b1

compare the two bitsets for equality and
inequality, respectively.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 180

• Each of the bitwise assignment operators &=, |= and ^=
can be used to combine bitsets.

• For example,
• b &= b1;

performs a bit-by-bit logical AND
between bitsets b and b1.
– The result is stored in b.

• Bitwise logical OR and bitwise logical XOR are performed
by

• b |= b1;
b ^= b2;

• The expression
• b >>= n;

shifts the bits in bitset b right by n positions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 181

• The expression
•b <<= n;

shifts the bits in bitset b left by n positions.

• The expressions
•b.to_string()
b.to_ulong()

convert bitset b to a string and an

unsigned long, respectively.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 182

• Many STL algorithms allow you to pass a function pointer

into the algorithm to help the algorithm perform its task.

• For example, the binary_search algorithm that we

discussed in Section 22.5.6 is overloaded with a version that

requires as its fourth parameter a pointer to a function that

takes two arguments and returns a bool value.

• The binary_search algorithm uses this function to

compare the search key to an element in the collection.

• The function returns true if the search key and element

being compared are equal; otherwise, the function returns

false.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 183

• This enables binary_search to search a
collection of elements for which the element type
does not provide an overloaded equality ==
operator.

• STL’s designers made the algorithms more
flexible by allowing any algorithm that can
receive a function pointer to receive an object of a
class that overloads the parentheses operator with
a function named operator(), provided that
the overloaded operator meets the requirements of
the algorithm—in the case of binary_search,
it must receive two arguments and return a bool.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 184

• An object of such a class is known as a function

object and can be used syntactically and semantically

like a function or function pointer—the overloaded

parentheses operator is invoked by using a function

object’s name followed by parentheses containing the

arguments to the function.

• Together, function objects and functions used are

know as functors.

• Most algorithms can use function objects and

functions interchangeably.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 185

• Function objects provide several advantages over

function pointers.

• Since function objects are commonly implemented as

class templates that are included into each source

code file that uses them, the compiler can inline an

overloaded operator() to improve performance.

• Also, since they’re objects of classes, function objects

can have data members that operator() can use to

perform its task.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 186

• Many predefined function objects can be found

in the header <functional>.

• Figure 22.41 lists several of the STL function

objects, which are all implemented as class

templates.

• We used the function object less< T > in the

set, multiset and priority_queue
examples, to specify the sorting order for

elements in a container.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 187

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 188

189©1992-2010 by Pearson Education, Inc. All Rights Reserved.

