

• In this chapter, we introduce exception handling.

• An exception is an indication of a problem that occurs

during a program’s execution.

• The name ―exception‖ implies that the problem

occurs infrequently—if the ―rule‖ is that a statement

normally executes correctly, then the ―exception to

the rule‖ is that a problem occurs.

• Exception handling enables you to create applications

that can resolve (or handle) exceptions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

• In many cases, handling an exception allows a
program to continue executing as if no problem
had been encountered.

• A more severe problem could prevent a program
from continuing normal execution, instead
requiring the program to notify the user of the
problem before terminating in a controlled
manner.

• The features presented in this chapter enable you
to write robust and fault-tolerant programs that
can deal with problems that may arise and
continue executing or terminate gracefully.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 3

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 5

• Program logic frequently tests conditions that determine how
program execution proceeds.

• Consider the following pseudocode:
– Perform a task

– If the preceding task did not execute correctly
Perform error processing

– Perform next task

– If the preceding task did not execute correctly
Perform error processing
…

• In this pseudocode, we begin by performing a task. We then test
whether that task executed correctly. If not, we perform error
processing. Otherwise, we continue with the next task.

• Intermixing program logic with error-handling logic can make
the program difficult to read, modify, maintain and debug—
especially in large applications.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 7

• Exception handling enables you to remove error-handling code from
the ―main line‖ of the program’s execution, which improves program
clarity and enhances modifiability.

• You can decide to handle any exceptions you choose—all exceptions,
all exceptions of a certain type or all exceptions of a group of related
types (e.g., exception types that belong to an inheritance hierarchy).

• Such flexibility reduces the likelihood that errors will be overlooked
and thereby makes a program more robust.

• With programming languages that do not support exception handling,
programmers often delay writing error-processing code or sometimes
forget to include it.

• This results in less robust software products.

• C++ enables you to deal with exception handling easily from the
inception of a project.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

• Let’s consider a simple example of exception

handling (Figs. 16.1–16.2).

• The purpose of this example is to show how to

prevent a common arithmetic problem—division by

zero.

• In C++, division by zero using integer arithmetic

typically causes a program to terminate prematurely.

• In floating-point arithmetic, some C++

implementations allow division by zero, in which

case positive or negative infinity is displayed as INF
or -INF, respectively.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

• In this example, we define a function named
quotient that receives two integers input by
the user and divides its first int parameter by its
second int parameter.

• Before performing the division, the function casts
the first int parameter’s value to type double.

• Then, the second int parameter’s value is
promoted to type double for the calculation.

• So function quotient actually performs the
division using two double values and returns a
double result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

• Although division by zero is allowed in floating-point arithmetic,
for the purpose of this example we treat any attempt to divide by
zero as an error.

• Thus, function quotient tests its second parameter to ensure
that it isn’t zero before allowing the division to proceed.

• If the second parameter is zero, the function uses an exception to
indicate to the caller that a problem occurred.

• The caller (main in this example) can then process the exception
and allow the user to type two new values before calling function
quotient again.

• In this way, the program can continue to execute even after an
improper value is entered, thus making the program more robust.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

• DivideByZeroException.h (Fig. 16.1)

defines an exception class that represents the

type of the problem that might occur in the

example, and fig16_02.cpp (Fig. 16.2)

defines the quotient function and the main
function that calls it.

• Function main contains the code that

demonstrates exception handling.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

• Figure 16.1 defines class DivideByZeroException as
a derived class of Standard Library class runtime_error
(defined in header file <stdexcept>).

• Class runtime_error—a derived class of Standard
Library class exception (defined in header file
<exception>)—is the C++ standard base class for
representing runtime errors.

• Class exception is the standard C++ base class for all
exceptions.
– Section 16.13 discusses class exception and its derived classes

in detail.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

• A typical exception class that derives from the
runtime_error class defines only a constructor (e.g., lines
12–13) that passes an error-message string to the base-class
runtime_error constructor.

• Every exception class that derives directly or indirectly from
exception contains the virtual function what, which
returns an exception object’s error message.

• You are not required to derive a custom exception class, such as
DivideByZeroException, from the standard exception
classes provided by C++.
– Doing so allows you to use the virtual function what to obtain an

appropriate error message.

• We use an object of this DivideByZeroException class in
Fig. 16.2 to indicate when an attempt is made to divide by zero.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

• The program in Fig. 16.2 uses exception handling to wrap

code that might throw a ―divide-by-zero‖ exception and to

handle that exception, should one occur.

• Function quotient divides its first parameter

(numerator) by its second parameter (denominator).

• Assuming that the user does not specify 0 as the

denominator for the division, function quotient returns

the division result.

• However, if the user inputs 0 for the denominator, function

quotient throws an exception.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 17

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 18

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 19

• Exception handling is geared to situations in which the function
that detects an error is unable to handle it.

• C++ provides try blocks to enable exception handling.

• A try block consists of keyword try followed by braces ({})
that define a block of code in which exceptions might occur.

• The try block encloses statements that might cause exceptions
and statements that should be skipped if an exception occurs.

• In this example, because the invocation of function quotient
(line 35) can throw an exception, we enclose this function
invocation in a try block.

• Enclosing the output statement (line 36) in the try block ensures
that the output will occur only if function quotient returns a
result.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 20

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 21

• Exceptions are processed by catch handlers (also called
exception handlers), which catch and handle exceptions.

• At least one catch handler (lines 38–42) must
immediately follow each try block.

• Each catch handler begins with the keyword catch and
specifies in parentheses an exception parameter that
represents the type of exception the catch handler can
process (DivideByZeroException in this case).

• When an exception occurs in a try block, the catch
handler that executes is the one whose type matches the
type of the exception that occurred (i.e., the type in the
catch block matches the thrown exception type exactly or
is a base class of it).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 22

• If an exception parameter includes an optional
parameter name, the catch handler can use that
parameter name to interact with the caught
exception in the body of the catch handler,
which is delimited by braces ({ and }).

• A catch handler typically reports the error to the
user, logs it to a file, terminates the program
gracefully or tries an alternate strategy to
accomplish the failed task.

• In this example, the catch handler simply
reports that the user attempted to divide by zero.
Then the program prompts the user to enter two
new integer values.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 25

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 26

• If an exception occurs as the result of a statement in a try
block, the try block expires (i.e., terminates immediately).

• Next, the program searches for the first catch handler that
can process the type of exception that occurred.

• The program locates the matching catch by comparing the
thrown exception’s type to each catch’s exception-
parameter type until the program finds a match.

• A match occurs if the types are identical or if the thrown
exception’s type is a derived class of the exception-
parameter type.

• When a match occurs, the code contained in the matching
catch handler executes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

• When a catch handler finishes processing by reaching its
closing right brace (}), the exception is considered handled and
the local variables defined within the catch handler (including
the catch parameter) go out of scope.

• Program control does not return to the point at which the
exception occurred (known as the throw point), because the try
block has expired.

• Rather, control resumes with the first statement after the last
catch handler following the try block.

• This is known as the termination model of exception handling.

• As with any other block of code, when a try block terminates,
local variables defined in the block go out of scope.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 30

• If the try block completes its execution successfully (i.e.,
no exceptions occur in the try block), then the program
ignores the catch handlers and program control continues
with the first statement after the last catch following that
try block.

• If an exception that occurs in a try block has no matching
catch handler, or if an exception occurs in a statement that
is not in a try block, the function that contains the
statement terminates immediately, and the program attempts
to locate an enclosing try block in the calling function.

• This process is called stack unwinding and is discussed in
Section 16.8.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 31

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

• As part of throwing an exception, the throw operand is created and
used to initialize the parameter in the catch handler, which we
discuss momentarily.

• Central characteristic of exception handling: A function should throw
an exception before the error has an opportunity to occur.

• In general, when an exception is thrown within a try block, the
exception is caught by a catch handler that specifies the type
matching the thrown exception.

• In this program, the catch handler specifies that it catches
DivideByZeroException objects—this type matches the object
type thrown in function quotient.

• Actually, the catch handler catches a reference to the
DivideByZeroException object created by function
quotient’s throw statement.

• The exception object is maintained by the exception-handling
mechanism.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 35

• Exception handling is designed to process synchronous
errors, which occur when a statement executes.

• Common examples of these errors are out-of-range array
subscripts, arithmetic overflow (i.e., a value outside the
representable range of values), division by zero, invalid
function parameters and unsuccessful memory allocation
(due to lack of memory).

• Exception handling is not designed to process errors
associated with asynchronous events (e.g., disk I/O
completions, network message arrivals, mouse clicks and
keystrokes), which occur in parallel with, and independent
of, the program’s flow of control.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 37

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 39

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

• The exception-handling mechanism also is useful for

processing problems that occur when a program

interacts with software elements, such as member

functions, constructors, destructors and classes.

• Rather than handling problems internally, such

software elements often use exceptions to notify

programs when problems occur.

• This enables you to implement customized error

handling for each application.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 43

• Complex applications normally consist of predefined

software components and application-specific

components that use the predefined components.

• When a predefined component encounters a problem,

that component needs a mechanism to communicate

the problem to the application-specific component—

the predefined component cannot know in advance

how each application processes a problem that

occurs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

• The C++ standard specifies that, when operator
new fails, it throws a bad_alloc exception
(defined in header file <new>).

• In this section, we present two examples of new
failing.
– The first uses the version of new that throws a
bad_alloc exception when new fails.

– The second uses function set_new_handler to handle
new failures.

– [Note: The examples in Figs. 16.5–16.6 allocate large
amounts of dynamic memory, which could cause your
computer to become sluggish.]

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

• Figure 16.5 demonstrates new throwing bad_alloc on
failure to allocate the requested memory.

• The for statement (lines 16–20) inside the try block
should loop 50 times and, on each pass, allocate an array of
50,000,000 double values.

• If new fails and throws a bad_alloc exception, the loop
terminates, and the program continues in line 22, where the
catch handler catches and processes the exception.

• Lines 24–25 print the message
"Exception occurred:" followed by the message
returned from the base-class-exception version of
function what (i.e., an implementation-defined exception-
specific message, such as "Allocation Failure" in
Microsoft Visual C++).

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

• The output shows that the program performed

only four iterations of the loop before new
failed and threw the bad_alloc exception.

• Your output might differ based on the physical

memory, disk space available for virtual

memory on your system and the compiler you

are using.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 47

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 49

• In old versions of C++, operator new returned 0 when it
failed to allocate memory.

• The C++ standard specifies that standard-compliant
compilers can continue to use a version of new that returns
0 upon failure.

• For this purpose, header file <new> defines object nothrow
(of type nothrow_t), which is used as follows:

• double *ptr = new(nothrow) double[50000000
];

• The preceding statement uses the version of new that does
not throw bad_alloc exceptions (i.e., nothrow) to
allocate an array of 50,000,000 doubles.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 50

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

• Experience has shown that exceptions fall nicely into

a number of categories.

• The C++ Standard Library includes a hierarchy of

exception classes, some of which are shown in

Fig. 16.10.

• As we first discussed in Section 16.3, this hierarchy is

headed by base-class exception (defined in header

file <exception>), which contains virtual
function what, which derived classes can override to

issue appropriate error messages.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 52

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

• Immediate derived classes of base-class exception include
runtime_error and logic_error (both defined in header
<stdexcept>), each of which has several derived classes.

• Also derived from exception are the exceptions thrown by
C++ operators—for example, bad_alloc is thrown by new
(Section 16.11), bad_cast is thrown by dynamic_cast
(Chapter 13) and bad_typeid is thrown by typeid
(Chapter 13).

• Including bad_exception in the throw list of a function means
that, if an unexpected exception occurs, function unexpected
can throw bad_exception rather than terminating the
program’s execution (by default) or calling another function
specified by set_unexpected.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

55©1992-2010 by Pearson Education, Inc. All Rights Reserved.

