Lecture 34:
Inheritance

loan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming ||
May 25%, 2010

12.1 Introduction

Inheritance Is a form of software reuse in which you create
a class that absorbs an existing class’s data and behaviors
and enhances them with new capabilities.

You can designate that the new class should inherit the
members of an existing class.

This existing class Is called the base class, and the new class
Is referred to as the derived class.

A derived class represents a more specialized group of
objects.

A derived class contains behaviors inherited from its base
class and can contain additional behaviors.

A derived class can also customize behaviors inherited from
the base class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 2

12.1 Introduction (cont.)

A direct base class Is the base class from which a
derived class explicitly inherits.

An Indirect base class Is inherited from two or more
levels up In the class hierarchy.

In the case of single inheritance, a class is derived
from one base class.

C++ also supports multiple inheritance, in which a
derived class inherits from multiple (possibly
unrelated) base classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12.1 Introduection (cont.)

C++ offers public, protected and private
Inheritance.

In this chapter, we concentrate on pub 11 ¢ inheritance and
briefly explain the other two.

In Chapter 20, Data Structures, we show how private
Inheritance can be used as an alternative to composition.

The third form, protected inheritance, is rarely used.

With pub 11 c inheritance, every object of a derived class is
also an object of that derived class’s base class.

However, base-class objects are not objects of their derived
classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 4

B

Software Engineering Observation 12.1
Member functions of a derived class cannot directly
access private members of the base class.

Software Engineering Observation 12.2

If a derived class could access its base class’s private
members, classes that inherit from that derived class
could access that data as well. This would propagate
access to what should be private data, and the benefits
of information hiding would be lost.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12.2 Base Classes and Derived Classes

» (Often, an object of one class iIs an object of another class, as
well.

— For example, in geometry, a rectangle is a quadrilateral (as are
squares, parallelograms and trapezoids).

— Thus, in C++, class Rectangle can be said to inherit from class
Quadrilateral.

— In this context, class Quadrilateral is a base class, and class
Rectangle is a derived class.

— Avrrectangle is a specific type of quadrilateral, but it’s incorrect to
claim that a quadrilateral is a rectangle—the quadrilateral could be
a parallelogram or some other shape.

« Figure 12.1 lists several simple examples of base classes
and derived classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 6

Student

GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, Mortgageloan
Employee Faculty, Staff
Account CheckingAccount, SavingsAccount

Fig. 12.1 | Inheritance examples.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

12.2 Base Classes and Derived Classes
(cont.)

« Because every derived-class object is an object of its base
class, and one base class can have many derived classes, the
set of objects represented by a base class typically is Iarger
trllan the set of objects represented by any of its derived
classes.

A base class exists in a hierarchical relationship with its
derived classes.

* Although classes can exist independently, once they’re
employed in inheritance relationships, they become
affiliated with other classes.

» A class becomes either a base class—supplying members to
other classes, a derived class—inheriting its members from
other classes, or both.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 8

12.2 Base Classes and Derived Classes
(cont.)

* Let’s develop a simple inheritance hierarchy with five
levels (represented by the UML class diagram in Fig. 12.2).

A university community has thousands of members.
« Employees are either faculty members or staff members.

» Faculty members are either administrators (such as deans
and department chairpersons) or teachers.

 Some administrators, however, also teach classes.

* Note that we’ve used multiple inheritance to form class
AdministratorTeacher.

 Also, this inheritance hierarchy could contain many other
classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 9

Single
inheritance

s e

Single
inheritance
A

Single
inheritance

Multiple
inheritance

Fig. 12.2 | Inheritance hierarchy for university CommunityMembers.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 10

12.2 Base Classes and Derived Classes
(cont.)

« Each arrow in the hierarchy (Fig. 12.2) represents an is-a
relationship.

— As we follow the arrows 1n this class hierarchy, we can state “an
Employee isa CommunityMember” and “a Teacherisa
Faculty member.” CommunityMember is the direct base class
of Employee, Student and Alumnus.

— CommunityMember is an indirect base class of all the other
classes in the diagram.

« Starting from the bottom of the diagram, you can follow the

arrows and apply the is-a relationship to the topmost base
class.

— An AdministratorTeacher isan Administrator,isa

Faculty member, isan Employee and is a
CommunityMember.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 11

12.2 Base Classes and Derived Classes
(cont.)

 Consider the Shape inheritance hierarchy in Fig. 12.3.
 Begins with base class Shape.

« Classes TwoD1mensionalShape and
ThreeDimensionalShape derive from base class
Shape—Shapes are either TwoD1mensionalShapes
or Three-DimensionalShapes.

* The third level of this hierarchy contains some more
specific types of TwoD1mensionalShapes and
ThreeDimensionalShapes.

« AsinFig. 12.2, we can follow the arrows from the bottom
of the diagram to the topmost base class in this class
hierarchy to identify several is-a relationships.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 12

Fig. 12.3 | Inheritance hierarchy for Shapes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 13

12.3 protected Members

Chapter 3 introduced access specifiers public and private.

A base class’s pub11c members are accessible within its body and
anywhere that the program has a handle (i.e., a name, reference or
pointer) to an object of that class or one of its derived classes.

A base class’s private members are accessible only within its body
and to the friends of that base class.

In this section, we introduce the access specifier protected.

Using protected access offers an intermediate level of protection
between pub1i1c and private access.

A base class’s protected members can be accessed within the body
of that base class, by members and friends of that base class, and by
members and friends of any classes derived from that base class.

Derived-class member functions can refer to pub11c and
protected members of the base class simply by using the member
names.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 14

12.4 Relationship between Base Classes
and Derived Classes

* |n this section, we use an inheritance hierarchy
containing types of employees 1n a company’s payroll
application to discuss the relationship between a base
class and a derived class.

« Commission employees (who will be represented as
objects of a base class) are paid a percentage of their
sales, while base-salaried commission employees
(who will be represented as objects of a derived class)
receive a base salary plus a percentage of their sales.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 15

12.4).1 Creating and Using
Comm1 ss1onEmMp loyee Class

e CommissionEmployee’s class definition (Figs. 12.4—
12.5).

« CommissionEmployee’s public services include a
constructor and member functions earnings and print.

 Also includes pub 11 c get and set functions that
manipulate the class’s data members 1 rstName,
lastName, socialSecurityNumber, grossSales
and commissionRate.

— These data members are private, so objects of other classes
cannot directly access this data.

— Declaring data members as private and providing non-
private get and set functions to manipulate and validate the data
members helps enforce good software engineering.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 16

VOO~V

10
11
12
13
14
15
16
17
18
19
20
21
22
23

#define COMMISSION H

#include <string> // C++ standard string class
using namespace std;

class CommissionEmployee
{
public:
CommissionEmployee(const string &, const string &, const string &,
double = 0.0, double = 0.0);

void setFirstName(const string &); // set first name
string getFirstName() const; // return first name

void setLastName(const string &); // set last name
string getLastName() const; // return last name

void setSocialSecurityNumber(const string &); // set SSN
string getSocialSecurityNumber() const; // return SSN

Fig. 12.4 | CommissionEmployee class header file. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

17

27
28
29
30
31
32
33
34
35
36
37
38
39
40

void setCommissionRate(double); // set commission rate (percentage)

doubTe

doubTe

getCommissionRate() const; // return commission rate

earnings() const; // calculate earnings

void print() const; // print CommissionEmployee object

private:
string
string
string
doubTle
double

}; // end

#endif

firstName;

TastName;

socialSecurityNumber;

grossSales; // gross weekly sales
commissionRate; // commission percentage
class CommissionEmployee

Fig. 12.4 | CommissionEmployee class header file. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

18

include <iostream>
#include "CommissionEmployee.h”™ // CommissionEmployee class definition
using namespace std;

// constructor

CommissionEmployee: :CommissionEmployee(
const string &first, const string &last, const string &ssn,
double sales, double rate)

firstName = first; // should validate

socialSecurityNumber = ssn; // should validate

setGrossSales(sales); // validate and store gross sales

setCommissionRate(rate); // validate and store commission rate
} // end CommissionEmployee constructor

// set first name

void CommissionEmployee::setFirstName(const string &first)
21 {
22 firstName = first; // should validate
23 } // end function setFirstName

3
4
5
6
7
8
9
10
11
12
13 TastName = last; // should validate
14
15
16
17
18
19
20

Fig. 12.5 | Implementation file for CommissionEmployee class that represents an
employee who is paid a percentage of gross sales. (Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

19

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

{

return firstName;
} // end function getFirstName

// set last name
void CommissionEmployee::setLastName(const string &last)
{
TastName = last; // should validate
} // end function setLastName

// return last name
string CommissionEmployee::getlLastName() const
{
return lastName;
} // end function getLastName

Fig. 12.5 | Implementation file for CommissionEmpTloyee class that represents an
employee who is paid a percentage of gross sales. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

20

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string CommissionEmployee::getSocialSecurityNumber() const
{
return socialSecurityNumber;
} // end function getSocialSecurityNumber

// set gross sales amount
void CommissionEmployee::setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end function setGrossSales

// return gross sales amount
double CommissionEmployee::getGrossSales() const
{
return grossSales;
} // end function getGrossSales

Fig. 12.5 | Implementation file for CommissionEmployee class that represents an
employee who is paid a percentage of gross sales. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

21

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

{

commissionRate = (rate > 0.0 & rate < 1.0) ? rate : 0.0;
} // end function setCommissionRate

// return commission rate
doubTe CommissionEmployee::getCommissionRate() const
{
return commissionRate;
} // end function getCommissionRate

// calculate earnings
doubTle CommissionEmployee::earnings() const
{
return commissionRate * grossSales;
} // end function earnings

Fig. 12.5 | Implementation file for CommissionEmpTloyee class that represents an
employee who is paid a percentage of gross sales. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

22

// print CommissionEmployee object
void CommissionEmployee::print() const

{
88 cout << "commission employee: " << firstName << ' ' << lastName
89 << "\nsocial security number: " << socialSecurityNumber
90 << "\ngross sales: " << grossSales
91 << "\ncommission rate: " << commissionRate;

92 } // end function print

Fig. 12.5 | Implementation file for CommissionEmpToyee class that represents an
employee who is paid a percentage of gross sales. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 23

12.4.% Creating and Using
Commi ss10nEMP | oyee Class (cont.)

« The CommissionEmployee constructor definition
purposely does not use member-initializer syntax in the first
several examples of this section, so that we can demonstrate
how private and protected specifiers affect member
access in derived classes.

— Later in this section, we’ll return to using member-initializer lists in
the constructors.

« Member function earnings calculates a
commissionEmployee’s earn-ings.

« Member function print displays the values of a
commissionEmployee object’s data members.

 Figure 12.6 tests class CommissionEmployee.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 24

#include <iomanip>

#include

4
5
6 using namespace std;
7
8
9

"CommissionEmployee.h"™ // CommissionEmployee class definition

int main()
{
10 // instantiate a CommissionEmployee object
11 CommissionEmployee employee(
12 "Sue", "Jones", "222-22-2222", 10000, .06);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getlLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nCross sales is " << employee.getGrossSales()
24 << "\nCommission rate is " << employee.getCommissionRate() << endl;

Fig. 12.6 | CommissionEmployee class test program. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

25

28
29
30
31
32
33
34
35

cout << "\nUpdated employee information output by print function: \n"

<< endl;

employee.setGrossSales(8000); // set gross sales
employee.setCommissionRate(.1); // set commission rate

employee.print(); // display the new employee information

// display the employee's earnings

cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;

} // end main

Fig. 12.6 | CommissionEmployee class test program. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

26

Employee information obtained by get functions:

First name is Sue

Last name is Jones

Social security number is 222-22-2222
Gross sales is 10000.00

Commission rate is 0.06

Updated employee information output by print function:
commission employee: Sue Jones

social security number: 222-22-2222

gross sales: 8000.00

commission rate: 0.10

Employee's earnings: $800.00

Fig. 12.6 | CommissionEmployee class test program. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 27

12.4).22 Creating a
BasePlusCommiss1onEmployee Class
Without Using Inheritance

» \We now discuss the second part of our
Introduction to inheritance by creating and
testing (a completely new and independent)
class BasePlusCommissionEmployee
(Figs. 12.7-12.8), which contains a first name,
last name, social security number, gross sales
amount, commission rate and base salary.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 28

4 #ifndef BASEPLUS_ H

5 #define BASEPLUS_H

6

7 #include <string> // C++ standard string class

8 using namespace std;

9

10 class BasePlusCommissionEmployee

Il {

12 public:

13 BasePlusCommissionEmployee(const string &, const string &,
14 const string &, double = 0.0, double = 0.0, double = 0.0);
15

16 void setFirstName(const string &); // set first name

17 string getFirstName() const; // return first name

18

19 void setlLastName(const string &); // set last name
20 string getlLastName() const; // return last name
21
22 void setSocialSecurityNumber(const string &); // set SSN
23 string getSocialSecurityNumber() const; // return SSN
24

Fig. 12.7 | BasePlusCommissionEmployee class header file. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 29

28 void setCommissionRate(double); // set commission rate

29 doubTle getCommissionRate() const; // return commission rate
30

31 void setBaseSalary(double); // set base salary

32 double getBaseSalary() const; // return base salary

33

34 doubTe earnings() const; // calculate earnings

35 void print() const; // print BasePlusCommissionEmployee object
36 private:

37 string firstName;

38 string lastName;

39 string socialSecurityNumber;

40 doubTe grossSales; // gross weekly sales

41 double commissionRate; // commission percentage

42 double baseSalary; // base salary

43 }; // end class BasePlusCommissionEmployee

44

45 #endif

Fig. 12.7 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

30

4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;

6

7 // constructor

8 BasePlusCommissionEmployee::BasePTusCommissionEmployee(

9 const string &first, const string &last, const string &ssn,
10 double sales, double rate, double salary)

11 {

12 firstName = first; // should validate

13 lastName = last; // should validate

14 socialSecurityNumber = ssn; // should validate

15 setGrossSales(sales); // validate and store gross sales
16 setCommissionRate(rate); // validate and store commission rate
17 setBaseSalary(salary); // validate and store base salary
I8 } // end BasePlusCommissionEmployee constructor

19

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

31

23 firstName = first; // should validate

24 1} // end function setFirstName

25

26 // return first name

27 string BasePlusCommissionEmployee::getFirstName() const

28 {

29 return firstName;

30 } // end function getFirstName
31

32 // set last name
33 void BasePlusCommissionEmployee::setLastName(const string &last)

34 {

35 TastName = last; // should validate
36 } // end function setLastName

37

38 // return last name

39 string BasePlusCommissionEmployee::getLastName() const
40 {

41 return lastName;

42 } // end function getLastName

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 32

46 const string &ssn)

47 {

48 socialSecurityNumber = ssn; // should validate
49 1} // end function setSocialSecurityNumber

50

51 // return social security number
52 string BasePlusCommissionEmployee::getSocialSecurityNumber() const

53 {

54 return socialSecurityNumber;

55 1} // end function getSocialSecurityNumber
56

57 // set gross sales amount
58 void BasePlusCommissionEmployee::setGrossSales(double sales)

59 {

60 grossSales = (sales < 0.0) ? 0.0 : sales;
61 } // end function setGrossSales

62

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 33

66 return grossSales;

67 } // end function getGrossSales

68

69 // set commission rate

70 void BasePlusCommissionEmployee::setCommissionRate(double rate)

71 {

72 commissionRate = (rate > 0.0 & & rate < 1.0) ? rate : 0.0;
73 } // end function setCommissionRate

74

75 // return commission rate
76 double BasePlusCommissionEmployee::getCommissionRate() const

7 {

78 return commissionRate;

79 1} // end function getCommissionRate
80

81 // set base salary

82 void BasePlusCommissionEmployee::setBaseSalary(double salary)
83 {

84 baseSalary = (salary < 0.0) ? 0.0 : salary;

85 1} // end function setBaseSalary

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 34

89
90
91
92
93
94
95
96
97
98
929
100
101
102
103
104
105
106
107

// return base salary
doubTle BasePlusCommissionEmployee::getBaseSalary() const
{
return baseSalary;
} // end function getBaseSalary

// calculate earnings
doubTe BasePlusCommissionEmployee::earnings() const
{
return baseSalary + (commissionRate * grossSales);
} // end function earnings

// print BasePlusCommissionEmployee object
void BasePTusCommissionEmployee::print() const

{

cout << "base-salaried commission employee: << firstName <<
<< lastName << "\nsocial security number: " << socialSecurityNumber
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate
<< "\nbase salary: " << baseSalary;
} // end function print

Fig. 12.8 | BasePlusCommissionEmployee class represents an employee who
receives a base salary in addition to a commission. (Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

35

12.4.2 Creating a
BaselPlusCommissionEmployee Class

Without Usiing Inheritance (comnt.)

The BasePlusCommissionEmployee header flle (Fig. 12.7)
specifies class BasePlusCommissionEmp loyee’s public
services, which include the BasePlusCommissionEmployee
constructor and member functions earnings and print.

Lines 16-32 declare pub 11 c get and set functions for the class’s
private data members firstName, lastName, social-
SecurityNumber, grossSales, commissionRate and
baseSalary.

Note the similarity between this class and class Commission-
Employee (Figs. 12.4-12.5)—in this example, we won’t yet exploit
that similarity.

Class BasePlusCommissionEmployee’s earnings member
function computes the earnings of a base-salaried commission
employee.

Figure 12.9 tests class BasePlusCommissionEmployee.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 36

4 #include <iomanip>

5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7

8

9

int main()
{
10 // instantiate BasePlusCommissionEmployee object
11 BasePTusCommissionEmployee
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04, 300);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getlLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()
23 << "\nCross sales is " << employee.getGrossSales()

Fig. 12.9 | BasePTusCommissionEmployee class test program. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

37

<< "\nBase salary is " << employee.getBaseSalary() << endl;

27 employee.setBaseSalary(1000); // set base salary

28

29 cout << "\nUpdated employee information output by print function: \n"
30 << endl;

31 employee.print(); // display the new employee information

32

33 // display the employee's earnings

34 cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;

35 } // end main

Fig. 12.9 | BasePlusCommissionEmployee class test program. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 38

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Fig. 12.9 | BasePlusCommissionEmployee class test program. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

39

12.4).22 Creating a
BasePlusCommiss1onEmployee Class

Without Usiing Inheritance (comnt.)

Most of the code for class
BasePlusCommissionEmployee (Figs. 12.7-12.8) is
similar, if not 1dentical, to the code for class
CcommissionEmployee (Figs. 12.4-12.5).

In class BasePlusCommissionEmployee, private
data members f1rstName and 1astName and member
functions setFi1rstName, getFirstName,
setLastName and getLastName are identical to those
of class CommissionEmployee.

Both classes contain private data members
socialSecurityNumber, commissionRate and
grossSales, as well as get and set functions to
manipulate these members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 40

12.4).22 Creating a
BasePlusCommiss1onEmployee Class

Without Usiing Inheritance (comnt.)

« The BasePlusCommissionEmployee constructor is
almost identical to that of class CommissionEmployee,
except that BasePlusCommissionEmployee’s
constructor also sets the baseSalary.

« The other additions to class
BasePlusCommissionEmployee are private data
member baseSalary and member functions
setBaseSalary and getBase-Salary.

e Class BasePlusCommissionEmployee’s print
member function is nearly identical to that of class
CcommissionEmployee, except that
BasePlusCommissionEmployee’s print also
outputs the value of data member baseSalary.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 41

12.4.2 Creating a
BasePlusCommiss1onEmployee Class

Without Usiing Inheritance (comnt.)

« We literally copied code from class
commissionEmployee and pasted it into class
BasePlusCommissionEmp loyee, then
modified class = | _
BasePlusCommissionEmployee to include
a base salary and member functions that
manipulate the base salary.

 This “copy-and-paste” approach is error prone
and time consuming.

» Worse yet, It can spread many physical copies of
the same code throughout a system, creating a
code-maintenance nightmare.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 42

Software Engineering Observation 12.3

Copying and pasting code from one class to another can
spread errors across multiple source code files. To avoid
duplicating code (and possibly errors), use inheritance,
rather than the “copy-and-paste” approach, in situations
where you want one class to “absorb” the data members
and member functions of another class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

43

Software Engineering Observation 12.4
With inheritance, the common data members and
member functions of all the classes in the hierarchy are
declared in a base class. When changes are required for
these common features, you need to make the changes
only in the base class—derived classes then inberit the
changes. Without inheritance, changes would need to be
made to all the source code files that contain a copy of the
code in question.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 44

12.4..3 Creating a Commi sST0REMP | oyee=
BaseP1usCommiss1onEmployee Inheritance
Hierarehy

« Now we create and test a new BasePlusCommissionEmployee
class (Figs. 12.10-12.11) that derives from class
CommissionEmployee (Figs. 12.4-12.5).

 Inthis example, a BasePlus-CommissionEmployee objectis a
commissionEmp loyee (because inheritance passes on the
capabilities of class CommissionEmployee), but class
BasePlusCommission-Employee also has data member
baseSalary (Fig. 12.10, line 23).

« The colon (:) in line 11 of the class definition indicates inheritance.
« Keyword pub11c indicates the type of inheritance.

« Asa derived class (formed with pub 11 c inheritance),
BasePlusCommissionEmployee inherits all the members of class
CommissionEmployee, except for the constructor—each class
provides its own constructors that are specific to the class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 45

12.4.3 Creating & Conmm1Ss70REMP | oyee=
BasePlusCommissTonEmp | Inheritance
Hierarchy (cont.)

e Destructors, too, are not inherited

e Thus, the pub11c services of
BasePlusCommissionEmployee include its
constructor and the pub 11 ¢ member functions inherited
from class Comm1ssionEmp loyee—although we cannot
see these inherited member functions in
BasePlusCommissionEmployee’s source code,
they’re nevertheless a part of derived class
BasePlusCommissionEmployee.

« The derived class’s pub 11 c services also include member
functions setBaseSalary, getBaseSalary,
earnings and print.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 46

4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6

7 #include <string> // C++ standard string class

8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10

Il class BasePlusCommissionEmpTloyee : public CommissionEmpTloyee
12 {

13 public:

14 BasePlusCommissionEmployee(const string &, const string &,

15 const string &, double = 0.0, double = 0.0, double = 0.0);
16

17 void setBaseSalary(double); // set base salary

18 double getBaseSalary() const; // return base salary

19

20 doubTe earnings() const; // calculate earnings

21 void print() const; // print BasePlusCommissionEmployee object

Fig. 12.10 | BasePlusCommissionEmployee class definition indicating
inheritance relationship with class CommissionEmployee. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

47

25
26 #endif

Fig. 12.10 | BasePlusCommissionEmployee class definition indicating
inheritance relationship with class CommissionEmpTloyee. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 48

4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;

6

7 // constructor

8 BasePlusCommissionEmployee::BasePTusCommissionEmployee(

9 const string &first, const string &last, const string &ssn,
10 doubTle sales, double rate, double salary)

11 // explicitly call base-class constructor

12 : CommissionEmployee(first, last, ssn, sales, rate)

13 {

14 setBaseSalary(salary); // validate and store base salary

I5 } // end BasePlusCommissionEmployee constructor

17 // set base salary
I8 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {

20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22

Fig. 12.11 | BasePlusCommissionEmpTloyee implementation file: private base-
class data cannot be accessed from derived class. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

49

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

return baseSalary;
} // end function getBaseSalary

// calculate earnings

double BasePlusCommissionEmployee::earnings() const

{
// derived class cannot access the base class’s private data
return baseSalary + (commissionRate * grossSales);

} // end function earnings

// print BasePlusCommissionEmployee object
void BasePTusCommissionEmployee::print() const
{
// derived class cannot access the base class’s private data
cout << "base-salaried commission employee: " << firstName <<
<< lastName << "\nsocial security number: " << socialSecurityNumber
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate
<< "\nbase salary: " << baseSalary;
} // end function print

Fig. 12.11 | BasePlusCommissionEmpTloyee implementation file: private base-
class data cannot be accessed from derived class. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

50

C:\cpphtp7_examples\chl2\Figl2_ 10_11\BasePlusCommissionEmployee.cpp(33)
error C2248: 'CommissionEmployee::commissionRate'
cannot access private member declared in class 'CommissionEmployee'

C:\cpphtp7_examples\ch12\Figl2_10_11\BasePlusCommissionEmployee.cpp(33)
error C2248: 'CommissionEmployee::grossSales’
cannot access private member declared in class 'CommissionEmployee'

C:\cpphtp7_examples\chl2\Figl2_10_11\BasePlusCommissionEmployee.cpp(40)
error C2248: 'CommissionEmployee::firstName'
cannot access private member declared in class 'CommissionEmployee'

Fig. 12.11 | BasePlusCommissionEmpTloyee implementation file: private base-
class data cannot be accessed from derived class. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 51

C:\cpphtp7_examples\chl12\Figl2_ 10 11\BasePlusCommissionEmployee.cpp(41)
error C2248: 'CommissionEmployee::lastName'
cannot access private member declared in class 'CommissionEmployee'’

C:\cpphtp7_examples\ch12\Figl2_10_11\BasePlusCommissionEmployee.cpp(41)
error C2248: 'CommissionEmployee::socialSecurityNumber'
cannot access private member declared in class 'CommissionEmployee'

C:\cpphtp7_examples\ch1l2\Figl2_ 10 11\BasePlusCommissionEmployee.cpp(42)
error C2248: 'CommissionEmployee::grossSales'
cannot access private member declared in class 'CommissionEmployee'’

C:\cpphtp7_examples\ch1l2\Figl2_10_11\BasePlusCommissionEmployee.cpp(43)
error C2248: 'CommissionEmployee::commissionRate’
cannot access private member declared in class 'CommissionEmployee'

Fig. 12.11 | BasePlusCommissionEmployee implementation file: private base-
class data cannot be accessed from derived class. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

52

12.4.3 Creating & Conmm1Ss70REMP | oyee=

BasePlusCommissTonEmp | Inheritance

Hierarchy (cont.)

« Figure 12.11 shows BasePlusCommissionEmployee’s
member-function implementations.

« The constructor introduces base-class initializer syntax, which
uses a member initializer to pass arguments to the base-class
constructor.

« C++ requires that a derived-class constructor call its base-class
constructor to initialize the base-class data members that are
Inherited into the derived class.

« |fBasePlusCommissionEmployee’s constructor did not
invoke class CommissionEmployee’s constructor explicitly,
C++ would attempt to invoke class CommissionEmployee’s
default constructor—but the class does not have such a
constructor, so the compiler would issue an error.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 53

Common Programming Error 12.1

When a derived-class constructor calls a base-class con-
structor, the arguments passed to the base-class construc-
tor must be consistent with the number and types of
parameters specified in one of the base-class constructors;
otherwise, a compilation error occurs.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 54

. Performance Tip 12.1

In a derived-class constructor, initializing member 0b-
jects and invoking base-class constructors explicitly in the
member initializer list prevents duplicate initialization

in which a default constructor is called, then data mem-
bers are modified again in the derived-class constructor’s

body.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 55

12.4.3 Creating & Conmm1Ss70REMP | oyee=
BasePlusCommissTonEmp | Inheritance
Hierarchy (cont.)

« The compiler generates errors for line 33 of Fig. 12.11 because base
class CommissionEmployee’s data members commissionRate
and grossSales are private—derived class
BasePlusCommissionEmployee’s member functions are not
gllowed to access base class CommissionEmployee’s private

ata.

« We used red text in Fig. 12.11 to indicate erroneous code.

» The compiler issues additional errors in lines 40-43 of BasePlus-
commission-Employee’s print member function for the same
reason.

- C++rigidly enforces restrictions on accessing private data _
members, so that even a derived class (which is intimately related to its
base class) cannot access the base class’s private data.

« We purposely included the erroneous code in Fig. 12.11 to emphasize
that a derived class’s member functions cannot access its base class’s
private data.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 56

12.4.3 Creating & Conmm1Ss70REMP | oyee=

BasePR1lusCommi s enEmMpP | Inheritance
Hierarchy (cont.)

e Theerrors in BasePlusCommissionEmployee could
have been prevented by using the get member functions
inherited from class CommissionEmployee.

« For example, line 33 could have invoked
getCommissionRate and getGrossSales to access
commissionEmployee’s private data members
commissionRate and grossSales, respectively.

« Similarly, lines 40-43 could have used appropriate get
member functions to retrieve the values of the base class’s
data members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 57

12,48 Creating a Commi sS10REMpP | oyea=
BasePlusConmissionEmployee Inheritance

Hierarchy (cont.)

« Notice that we #1nc lude the base class’s

header file 1n the derived class’s header file (line
8 of Fig. 12.10).

* This Is necessary for three reasons.

— The derived class uses the base class’s name 1n line 10,
so we must tell the compiler that the base class exists.

— The compiler uses a class definition to determine the
size of an object of that class. A client Rrogram that
creates an object of a class must #1nclude the class
definition to enable the comgl_ler to reserve the proper
amount of memory for the object.

— The compiler must determine whether the derived
class uses the base class’s inherited members properly.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 58

12,48 Creating a Commi sS10REMpP | oyea=
BasePlusConmissionEmployee Inheritance

Rierarehy (cont.)

* In Section 3.8, we discussed the Iinkincl:l(process
for creating an executable GradeBoo
application.

* The linking process is similar for a program that
uses classes In an inheritance hierarchy.

» The process requires the object code for all
classes used In the program and the object code
for the direct and indirect base classes of any
derived classes used by the program.

* The code Is also linked with the object code for
any C++ Standard Library classes used in the
classes or the client code.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 59

12.4).4) CommT SSTOREMP | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarchy Using protected Daia

« To enable class
BasePlusCommissionEmployee to directly
access CommissionEmployee data members
fi1rstName, lastName,
socialSecurityNumber, grossSales and
commissionRate, we can declare those members

as protected in the base class.

« A base class’s protected members can be
accessed by members and friends of the base class
and by members and friends of any classes derived

from that base class.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 60

M Good Programming Practice 12.1
Declare pub1ic members first, protected members
second and private members last.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 61

12.4).4) CommT SSTOREMP | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarehy Using protected Data (eont.)

« Class CommissionEmployee (Figs. 12.12—
12.13) now declares data members
fi1rstName, lastName,
socialSecurityNumber, grossSales
and commissionRate as protected
(Fig. 12.12, lines 32—37) rather than
private.

« The member-function implementations In
Fig. 12.13 are identical to those In Fig. 12.5.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 62

ooOo~NSONNLA W

10
11
12
13
14
15
16
17
18
19
20

#ifndef COMMISSION H
#define COMMISSION H

#include <string> // C++ standard string class
using namespace std;

class CommissionEmployee
{
public:
CommissionEmployee(const string &, const string &, const string &,
double = 0.0, double = 0.0);

void setFirstName(const string &); // set first name
string getFirstName() const; // return first name

void setLastName(const string &); // set last name
string getLastName() const; // return last name

Fig. 12.12 | CommissionEmployee class definition that declares protected data
to allow access by derived classes. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

63

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

void setGrossSales(double); // set gross sales amount
double getGrossSales() const; // return gross sales amount

void setCommissionRate(double); // set commission rate
double getCommissionRate() const; // return commission rate

doubTe earnings() const; // calculate earnings

void print() const; // print CommissionEmployee object
protected:

string firstName;

string lastName;

string socialSecurityNumber;

double grossSales; // gross weekly sales

double commissionRate; // commission percentage
}; // end class CommissionEmployee

#endif

Fig. 12.12 | CommissionEmployee class definition that declares protected data
to allow access by derived classes. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

64

4 #include "CommissionEmployee.h"” // CommissionEmployee class definition
5 using namespace std;

6

7 // constructor

8 CommissionEmployee::CommissionEmployee(

9 const string &first, const string &last, const string &ssn,

10 double sales, double rate)

1 {

12 firstName = first; // should validate

13 TastName = last; // should validate

14 socialSecurityNumber = ssn; // should validate

15 setGrossSales(sales); // validate and store gross sales

16 setCommissionRate(rate); // validate and store commission rate
17T } // end CommissionEmployee constructor

18

19 // set first name
20 void CommissionEmpTloyee::setFirstName(const string &first)

21 |

22 firstName = first; // should validate
23 1} // end function setFirstName

24

Fig. 12.13 | CommissionEmployee class with protected data. (Part | of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 65

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

return firstName;
} // end function getFirstName

// set last name
void CommissionEmpTloyee::setLastName(const string &last)
{
TastName = Tlast; // should validate
} // end function setLastName

// return Tast name
string CommissionEmployee::getLastName() const
{
return TastName;
} // end function getLastName

// set social security number
void CommissionEmployee::setSocialSecurityNumber(const string &ssn)
{
socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

Fig. 12.13 | CommissionEmployee class with protected data. (Part 2 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

66

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

return socialSecurityNumber;
} // end function getSocialSecurityNumber

// set gross sales amount
void CommissionEmployee::setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end function setCGrossSales

// return gross sales amount
double CommissionEmployee::getGrossSales() const
{
return grossSales;
} // end function getGrossSales

// set commission rate
void CommissionEmployee: :setCommissionRate(double rate)
{
commissionRate = (rate > 0.0 & rate < 1.0) ? rate : 0.0;
} // end function setCommissionRate

Fig. 12.13 | CommissionEmployee class with protected data. (Part 3 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

67

76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

return commissionRate;
} // end function getCommissionRate

// calculate earnings
double CommissionEmployee::earnings() const
{
return commissionRate * grossSales;
} // end function earnings

// print CommissionEmployee object
void CommissionEmpTloyee::print() const

{

"

cout << "commission employee: << firstName << ' ' << TastName
<< "\nsocial security number: " << socialSecurityNumber
<< "\ngross sales: " << grossSales
<< "\ncommission rate: " << commissionRate;
} // end function print

Fig. 12.13 | CommissionEmployee class with protected data. (Part 4 of 4.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

68

12.4).4) CommT SSTOREMP | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarehy Using protected Data (eont.)

The version of class BasePlusCommissionEmployee in
Figs. 12.14-12.15 inherits from class CommissionEmp loyee
In Figs. 12.12-12.13.

Obijects of class BasePlusCommissionEmployee can
access inherited data members that are declared protected in
class CommissionEmployee (i.e., data members
firstName, TastName, socialSecurityNumber,
grossSales and commissionRate).

As a result, the compiler does not generate errors when compiling
the BasePlusCommissionEmployee earnings and
print member-function definitions in Fig. 12.15 (lines 30-34
and 37-45, respectively).

Obijects of a derived class also can access protected members
in any of that derived class’s indirect base classes.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 69

4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6

7 #include <string> // C++ standard string class

8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10

Il class BasePlusCommissionEmpTloyee : public CommissionEmpTloyee
12 {

13 public:

14 BasePlusCommissionEmployee(const string &, const string &,

15 const string &, double = 0.0, double = 0.0, double = 0.0);
16

17 void setBaseSalary(double); // set base salary

18 double getBaseSalary() const; // return base salary

19

20 doubTe earnings() const; // calculate earnings

21 void print() const; // print BasePlusCommissionEmployee object

Fig. 12.14 | BasePlusCommissionEmployee class header file. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

70

25
26 #endif

Fig. 12.14 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 71

4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;

6

7 // constructor

8 BasePlusCommissionEmployee::BasePTusCommissionEmployee(

9 const string &first, const string &last, const string &ssn,
10 doubTle sales, double rate, double salary)

11 // explicitly call base-class constructor

12 : CommissionEmployee(first, last, ssn, sales, rate)

13 {

14 setBaseSalary(salary); // validate and store base salary

I5 } // end BasePlusCommissionEmployee constructor

17 // set base salary
I8 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {

20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22

Fig. 12.15 | BasePlusCommissionEmployee implementation file for
BasePlusCommissionEmpTloyee class that inherits protected data from
CommissionEmployee. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

72

26 return baseSalary;
27 } // end function getBaseSalary
28

29 // calculate earnings
30 double BasePlusCommissionEmployee::earnings() const

31 {
32 // can access protected data of base class
33 return baseSalary + (commissionRate * grossSales);

34 } // end function earnings

35

36 // print BasePlusCommissionEmployee object
37 void BasePlusCommissionEmployee::print() const

38 {

39 // can access protected data of base class

40 cout << "base-salaried commission employee: " << firstName << ' '

41 << lastName << "\nsocial security number: " << socialSecurityNumber
42 << "\ngross sales: " << grossSales

43 << "\ncommission rate: " << commissionRate

44 << "\nbase salary: " << baseSalary;

45 1} // end function print

Fig. 12.15 | BasePlusCommissionEmpTloyee implementation file for
BasePlusCommissionEmpTloyee class that inherits protected data from

CAamma cea AanCmnlAviAan ID'\rf o] f\r 0 \

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

73

12.4).4) CommT SSTOREMP | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarchy Using protected Data (cont.)

Figure 12.16 uses a BasePlusCommissionEmployee
object to perform the same tasks that Fig. 12.9 performed on an
object of the first versign of class _
BasePlusCommissionEmployee (Figs. 12.7-12.8).

The code and outputs of the two programs are identical.

The code for class BasePlusCommissionEmployee, which
IS 71 lines, Is considerably shorter than the code for the
noninherited version of the class, which Is 152 lines, because the
Inherited version absorbs part of its functionality from
CommissionEmployee, whereas the noninherited version
does not absorb any functionality.

Also, there Is now only one copy of the _ _
CommissionEmployee functionality declared and defined in
class CommissionEmployee.

— Makes the source code easier to maintain, modify and debug.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 74

4 #include <iomanip>

5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7

8

9

int main()
{
10 // instantiate BasePlusCommissionEmployee object
11 BasePTusCommissionEmployee
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04, 300);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getlLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()

Fig. 12.16 | protected base-class data can be accessed from derived class. (Part |
of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

75

26
27
28
29
30
31
32
33
34
35

<< "\nBase salary is

<< employee.getBaseSalary() << endl;

employee.setBaseSalary(1000); // set base salary

cout << "\nUpdated employee information output by print function: \n"

<< endl;

employee.print(); // display the new employee information

// display the employee's earnings
cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;

} // end main

Fig. 12.16 | protected base-class data can be accessed from derived class. (Part 2

of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

76

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Fig. 12.16 | protected base-class data can be accessed from derived class. (Part 3
of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

77

12.4).4) CommT SSTOREMP | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarehy Using protected Data (eont.)

« Inheriting protected data members slightly
Increases performance, because we can
directly access the members without incurring
the overhead of calls to set or get member
functions.

» In most cases, it’s better to use private data
members to encourage proper software
engineering, and leave code optimization
Issues to the compiler.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 78

12.4).4) CommT SSTOREMP | oyee=

BaseP |l usCommissTonEmp loyee Inheritance
Hierarehy Using protected Data (eont.)

« Using protected data members creates two serious
problems.

— The derived-class object does not have to use a member function to
set the value of the base class’s protected data member.

— Derived-class member functions are more likely to be written so
that they depend on the base-class implementation. Derived classes
should depend only on the base-class services (i.e., non-private
member functions) and not on the base-class implementation.

« Wit

h protected data members in the base class, if the

base-class implementation changes, we may need to modify
all derived classes of that base class.

e Suc

n software is said to be fragile or brittle, because a small

change in the base class can “break” derived-class

Imp

ementation.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 79

Software Engineering Observation 12.5

It appropriate to use the protected access specifier
when a base class should provide a service (i.e., a member
function) only to its derived classes and friends.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 80

Software Engineering Observation 12.6
Declaring base-class data members private (as opposed
to declaring them protected) enables you to change the
base-class implementation without having to change
derived-class implementations.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 81

Error-Prevention Tip 12.1
S When possible, avoid including protected data mem-
bers in a base class. Rather, include non-private mem-
ber functions that access private data members,
ensuring that the object maintains a consistent state.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

82

12.4.5 CommT $STOREMP | oyee=
BaseP1usCommiss1onEmployee Inheritance
Hierarchy Using private Daia

« We now reexamine our hierarchy once more, this time using the best
software engineering practices.

e Class CommissionEmployee (Figs. 12.17-12.18) now declares data
members f1rstName, TastName, socialSecurityNumber,
grossSales and commissionRate as private (Fig. 12.17,
lines 32—-37) and provides pub11c member functions
setFirstName, getFirstName, setLastName,
getLastName, setSocialSecurityNumber,
getSocialSecurityNumber, setGrossSales,
getGrossSales, setCommissionRate,
getCommissionRate, earnings and print for manipulating
these values.

« Derived class BasePlusCommissionEmployee (Figs. 12.19—
12.20) inherits CommissionEmployee’s member functions and can
access the private base-class members via the inherited non-
private member functions.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 83

SQD&“IG\UIQ

11
12
13
14
15
16
17
18
19
20
21
22

#define COMMISSION H

#include <string> // C++ standard string class
using namespace std;

class CommissionEmployee
{
public:
CommissionEmployee(const string &, const string &, const string &,
double = 0.0, double = 0.0);

void setFirstName(const string &); // set first name
string getFirstName() const; // return first name

void setLastName(const string &); // set last name
string getLastName() const; // return last name

void setSocialSecurityNumber(const string &); // set SSN
string getSocialSecurityNumber() const; // return SSN

Fig. 12.17 | CommissionEmployee class defined using good software engineering
practices. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

84

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

void setCommissionRate(double); // set commission rate
doubTe getCommissionRate() const; // return commission rate

doubTle earnings() const; // calculate earnings

void print() const; // print CommissionEmployee object
private:

string firstName;

string lastName;

string socialSecurityNumber;

double grossSales; // gross weekly sales

double commissionRate; // commission percentage
}; // end class CommissionEmpTloyee

#endif

Fig. 12.17 | CommissionEmployee class defined using good software engineering
practices. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

85

12,45 CommT SSTOREMpP | 0yee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarchy Using private Data (cont.)

« |Inthe CommissionEmployee constructor
Implementation (Fig. 12.18, lines 8-15), we use member
initializers to set the values of members 1 rstName,
TastName and socialSecurityNumber.

« We show how derived-class
BasePlusCommissionEmployee (Figs. 12.19-12.20)
can invoke non-private base-class member functions
(setFirstName, getFirstName, setLastName,
getLastName, setSocialSecurityNumber and
getSocialSecurityNumber) to manipulate these data
members.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 86

<35 Performance Tip 12.2

P27 Using a member function to access a data member’s val-
ue can be slightly slower than accessing the data directly.
However, today’s optimizing compilers are carefully de-
signed to perform many optimizations implicitly (such as
inlining set and get member-function calls). You should
write code that adberes to proper software engineering
principles, and leave optimization to the compiler. A
good rule is, “Do not second-guess the compiler.”

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

87

4 #include "CommissionEmployee.h” // CommissionEmployee class definition
5 using namespace std;

6

7 // constructor

8 CommissionEmployee::CommissionEmployee(

9 const string &first, const string &last, const string &ssn,

10 doubTle sales, double rate)

11 : firstName(first), TastName(last), socialSecurityNumber(ssn)
12 {

13 setGrossSales(sales); // validate and store gross sales

14 setCommissionRate(rate); // validate and store commission rate

I5 } // end CommissionEmployee constructor

16

17 // set first name

I8 void CommissionEmployee::setFirstName(const string &first)
19 {

20 firstName = first; // should validate

21 1} // end function setFirstName

Fig. 12.18 | CommissionEmployee class implementation file:
CommissionEmpTloyee class uses member functions to manipulate its private data.
(Part | of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

88

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

{

return firstName;
} // end function getFirstName

// set last name
void CommissionEmployee::setLastName(const string &last)
{
TastName = last; // should validate
} // end function setLastName

// return last name
string CommissionEmployee::getlLastName() const
{
return lastName;
} // end function getLastName

Fig. 12.18 | CommissionEmployee class implementation file:

CommissionEmpTloyee class uses member functions to manipulate its private data.
(Part 2 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

89

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

socialSecurityNumber = ssn; // should validate
} // end function setSocialSecurityNumber

// return social security number
string CommissionEmployee::getSocialSecurityNumber() const
{
return socialSecurityNumber;
} // end function getSocialSecurityNumber

// set gross sales amount
void CommissionEmployee::setGrossSales(double sales)
{
grossSales = (sales < 0.0) ? 0.0 : sales;
} // end function setGrossSales

Fig. 12.18 | CommissionEmployee class implementation file:
CommissionEmpTloyee class uses member functions to manipulate its private data.
(Part 3 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

90

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

return grossSales;
} // end function getGrossSales

// set commission rate
void CommissionEmployee::setCommissionRate(double rate)
{
commissionRate = (rate > 0.0 & rate < 1.0) ? rate : 0.0;
} // end function setCommissionRate

// return commission rate
double CommissionEmployee::getCommissionRate() const

{

return commissionRate;
} // end function getCommissionRate

Fig. 12.18 | CommissionEmployee class implementation file:
CommissionEmpTloyee class uses member functions to manipulate its private data.
(Part 4 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

91

80 return getCommissionRate() * getGrossSales();
81 1} // end function earnings

82
83 // print CommissionEmployee object

84 void CommissionEmpTloyee::print() const

85 {

86 cout << "commission employee: "

87 << getFirstName() << ' ' << getlLastName()

88 << "\nsocial security number: " << getSocialSecurityNumber()
89 << "\ngross sales: " << getGrossSales()

90 << "\ncommission rate: " << getCommissionRate();

91 1} // end function print

Fig. 12.18 | CommissionEmployee class implementation file:
CommissionEmployee class uses member functions to manipulate its private data.

(Part 5 of 5.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

92

12,455 CommissT1onEmp | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarchy Using private Data (cont.)

« Class BasePlusCommissionEmployee
(Figs. 12.19-12.20) has several changes to Its
member-function implementations (Fig. 12.20)
that distinguish it from the previous version of
the class (Figs. 12.14-12.15).

« Member functions earnings (Fig. 12.20,
lines 30-33) and print (lines 36-44) each
invoke getBaseSalary to obtain the base
salary value.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 93

4 #ifndef BASEPLUS_H

5 #define BASEPLUS_H

6

7 #include <string> // C++ standard string class

8 #include "CommissionEmployee.h" // CommissionEmployee class declaration
9 using namespace std;

10

Il class BasePlusCommissionEmpTloyee : public CommissionEmpTloyee
12 {

13 public:

14 BasePlusCommissionEmployee(const string &, const string &,

15 const string &, double = 0.0, double = 0.0, double = 0.0);
16

17 void setBaseSalary(double); // set base salary

18 double getBaseSalary() const; // return base salary

19

20 doubTe earnings() const; // calculate earnings

21 void print() const; // print BasePlusCommissionEmployee object

Fig. 12.19 | BasePlusCommissionEmployee class header file. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

94

25
26 #endif

Fig. 12.19 | BasePlusCommissionEmployee class header file. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 95

4 #include "BasePlusCommissionEmployee.h"

5 using namespace std;

6

7 // constructor

8 BasePlusCommissionEmployee::BasePTusCommissionEmployee(

9 const string &first, const string &last, const string &ssn,
10 doubTle sales, double rate, double salary)

11 // explicitly call base-class constructor

12 : CommissionEmployee(first, last, ssn, sales, rate)

13 {

14 setBaseSalary(salary); // validate and store base salary

I5 } // end BasePlusCommissionEmployee constructor

17 // set base salary
18 void BasePlusCommissionEmployee::setBaseSalary(double salary)
19 {

20 baseSalary = (salary < 0.0) ? 0.0 : salary;
21 } // end function setBaseSalary
22

Fig. 12.20 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data. (Part | of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

96

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

return baseSalary;
} // end function getBaseSalary

// calculate earnings
double BasePlusCommissionEmployee::earnings() const
{
return getBaseSalary() + CommissionEmployee::earnings();
} // end function earnings

// print BasePlusCommissionEmployee object
void BasePTusCommissionEmployee::print() const

{

cout << "base-salaried ";

// invoke CommissionEmployee's print function
CommissionEmployee::print();

"

cout << "\nbase salary: << getBaseSalary();

} // end function print

Fig. 12.20 | BasePlusCommissionEmployee class that inherits from class
CommissionEmployee but cannot directly access the class’s private data. (Part 2 of 2.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

97

Common Programming Error 12.2

When a base-class member function is redefined in a de-
rived class, the derived-class version often calls the base-
class version to do additional work. Failure to use the : :
operator prefixed with the name of the base class when
referencing the base class’s member function causes infi-
nite recursion, because the derived-class member func-
tion would then call itself.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 98

12,45 CommT SSTOREMpP | 0yee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarchy Using private Data (cont.)

e Class BasePlusCommissionEmployee’s earnings
function (Fig. 12.20, lines 30—33) redefines class
CcommissionEmployee’s earnings to calculate the
earnings of a base-salaried commission employee. It also
calls CommissionEmployee’s earnings function.

— Note the syntax used to invoke a redefined base-class member
function from a derived class—place the base-class name and the
binary scope resolution operator (: :) before the base-class
member-function name.

— Good software engineering practice: If an object’s member function
performs the actions needed by another object, we should call that
member function rather than duplicating its code body.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 99

12.4.5 CommT SSTONEmMpP | oyee=
BaseP |l usCommissTonEmp loyee Inheritance
Hierarchy Using private Data (cont.)

e BasePlusCommissionEmployee’s
print function (Fig. 12.20, lines 36-44)
redefines class CommissionEmployee’s
print to output the appropriate base-salaried
commission employee information. It also
calles Commission-Employee’s print.

By using inheritance and by calling member
functions that hide the data and ensure
consistency, we’ve efficiently and effectively
constructed a well-engineered class.

©1992-2010 by Pearson Bduca tion, Inc. All Rights Res 100

4 #include <iomanip>

5 #include "BasePlusCommissionEmployee.h"
6 using namespace std;
7

8

9

int main()
{
10 // instantiate BasePlusCommissionEmployee object
11 BasePTusCommissionEmployee
12 employee("Bob", "Lewis", "333-33-3333", 5000, .04, 300);
13
14 // set floating-point output formatting
15 cout << fixed << setprecision(2);
16
17 // get commission employee data
18 cout << "Employee information obtained by get functions: \n"
19 << "\nFirst name is " << employee.getFirstName()
20 << "\nLast name is " << employee.getlLastName()
21 << "\nSocial security number is "
22 << employee.getSocialSecurityNumber()

Fig. 12.21 | Base-class private data is accessible to a derived class via pubTlic or
protected member function inherited by the derived class. (Part | of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

101

26
27
28
29
30
31
32
33
34
35

<< "\nBase salary is

<< employee.getBaseSalary() << endl;

employee.setBaseSalary(1000); // set base salary

cout << "\nUpdated employee information output by print function: \n"

<< endl;

employee.print(); // display the new employee information

// display the employee's earnings
cout << "\n\nEmployee's earnings: $" << employee.earnings() << endl;

} // end main

Fig. 12.21 | Base-class private data is accessible to a derived class via public or
protected member function inherited by the derived class. (Part 2 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

102

Employee information obtained by get functions:

First name is Bob

Last name is Lewis

Social security number is 333-33-3333
Gross sales is 5000.00

Commission rate is 0.04

Base salary is 300.00

Updated employee information output by print function:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333

gross sales: 5000.00

commission rate: 0.04

base salary: 1000.00

Employee's earnings: $1200.00

Fig. 12.21 | Base-class private data is accessible to a derived class via pub1ic or
protected member function inherited by the derived class. (Part 3 of 3.)

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

103

13.1 Polymorphisim

We now continue our study of OOP by explaining and
demonstrating polymorphism with inheritance hier-archies.

Polymorphism enables us to “program in the general” rather than
“program 1in the specific.”
— Enables us to write programs that process objects of classes that are

part of the same class hierarchy as if they were all objects of the
hierarchy’s base class.

Polymorphism works off base-class pointer handles and base-
class reference handles, but not off name handles.

Relying on each object to know how to “do the right thing” in
response to the same function call is the key concept of
polymorphism.

The same message sent to a variety of objects has “many forms”
of results—hence the term polymorphism.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 104

13.1 Polymorphisim (cont.)

 With polymorphism, we can design and
Implement systems that are easily extensible.

— New classes can be added with little or no
modification to the general portions of the
program, as long as the new classes are part of the
Inheritance hierarchy that the program processes
generically.

— The only parts of a program that must be altered to
accommodate new classes are those that require
direct knowledge of the new classes that you add
to the hierarch

©19924010 by Pearson Education, Inc. All Rights Reserved. 105

13.2 Polymorphisii Examples

« With polymorphism, one function can cause different actions to
occur, Eegendmg on the type of the object on which the function
IS invoked.

« |fclass Rectangle is derived from class Quadrilateral,
then a Rectang l.e object is a more specific version of a
Quadrilateral object.

— Any operation that can be performed on an object of class

Quadrilateral also can be performed on an object of class
Rectangle.

— Such operations also can be performed on other kinds of
Quadrilaterals, suchas Squares, Paral lelogramsand
Trapezoids.

« Polymorphism occurs when a program invokes a virtual
function through a base-class pointer or reference.

— C++ dynamically (i.e., at execution time) chooses the correct function
for the class from which the object was instantiated.

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 106

Software Engineering Observation 13.1

With virtual functions and polymorphism, you can
deal in generalities and let the execution-time
environment concern itself with the specifics. You can
direct a variety of objects to behave in manners
appropriate to those objects without even knowing their
types—as long as those objects belong to the same
inheritance hierarchy and are being accessed off a
common base-class pointer or a common base-class
reference.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

107

Software Engineering Observation 13.2
Polymorphism promotes extensibility: Software written
to invoke polymorphic behavior is written independently
of the types of the objects to which messages are sent.
Thus, new types of objects that can respond to existing
messages can be incorporated into such a system without
modifying the base system. Only client code that
instantiates new objects must be modified to
accommodate new types.

©1992-2010 by Pearson Education, Inc. All Rights Reserved.

108

Questions

©1992-2010 by Pearson Education, Inc. All Rights Reserved. 109

