Lecture 36:
Parallel Programming Systems and Models

Ioan Raicu
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 211
Fundamentals of Computer Programming II
May 28th, 2010
• Moore’s Law
 – The number of transistors that can be placed inexpensively on an integrated circuit will double approximately every 18 months.
 – Self-fulfilling prophecy
 • Computer architect goal
 • Software developer assumption
• Impediments to Moore’s Law
 – Theoretical Limit
 – What to do with all that die space
 – Design complexity
 – How do you meet the expected performance increase?
• von Neumann model
 – Execute a stream of instructions (machine code)
 – Instructions can specify
 • Arithmetic operations
 • Data addresses
 • Next instruction to execute
 – Complexity
 • Track billions of data locations and millions of instructions
 • Manage with:
 – Modular design
 – High-level programming languages
• Parallelism
 – Continue to increase performance via parallelism.
• From a software point-of-view, need to solve demanding problems
 – Engineering Simulations
 – Scientific Applications
 – Commercial Applications

• Need the performance, resource gains afforded by parallelism
• Engineering Simulations
 – Aerodynamics
 – Engine efficiency
Introduction to Parallel Computing

- Scientific Applications
 - Bioinformatics
 - Thermonuclear processes
 - Weather modeling
Introduction to Parallel Computing

- Commercial Applications
 - Financial transaction processing
 - Data mining
 - Web Indexing
• Unfortunately, greatly increases coding complexity
 – Coordinating concurrent tasks
 – Parallelizing algorithms
 – Lack of standard environments and support
• The challenge
 – Provide the abstractions, programming paradigms, and algorithms needed to effectively design, implement, and maintain applications that exploit the parallelism provided by the underlying hardware in order to solve modern problems.