
EECS 211 – Spring Quarter, 2010

 Program 5
Due Tuesday, May 18th, 2010 at 11:59PM

In this assignment we will form the basic looping and branching mechanism in the main

function that will be used for the remaining assignments in the project. We will also add

the data structures and functions necessary to recognize the commands that our project

will eventually be able to process. Our simulator will be driven by commands read from

a text file. Our simulator will eventually be able to handle nine commands:

system_status

halt

add_network_node

delete_network_node

create_file

ls

delete_files

print_files

transfer_file

The forms of the remaining tokens for these commands and the exact nature of what they

do is not important for this assignment. You will not be implementing any of these

commands, just recognizing them.

Background:

Command-line interpreters normally treat the first token on a line as a command. The

remaining tokens on the line are additional information to be used for that instance of that

command. For a given command, different instances of that command may have

different numbers of tokens. You are familiar with this concept in the UNIX system,

where for example the g++ command can have varying numbers of additional tokens

depending on which options you want for a particular compilation.

A typical command-line parser, then, works as follows. First parse the tokens on the line.

Then use the first token to branch to code in the project that handles that command. Each

individual command will have code that interprets or uses the remaining tokens on the

line. In this assignment we will implement the first part of this process – parsing the

tokens and using the first token to branch to different sections of our main function.

Assignment:

1. Add definitions for the following new constants to the definitions header file.

 NUMBER_OF_COMMANDS 9

 SYSTEM_STATUS 50

 HALT 51

 ADD_NETWORK_NODE 60

 DELETE_NETWORK_NODE 61

 CREATE_FILE 70

 LS 71

 DELETE_FILES 72

 PRINT_FILES 73

 TRANSFER_FILE 80

 UNDEFINED_COMMAND 99

Note that UNDEFINED_COMMAND is not a command, so the number of commands

that our system will process really is just 9. The constant NUMBER_OF_COMMANDS

will be used to declare an array to hold the information needed about our commands.

The remaining constants will be used as case labels for a switch statement in the main

function.

2. In system_utilities.cpp define a new class commandElement as follows:

 data members (These may be public, or else you can also include appropriate

access functions to accomplish the requirements of the function

getCommandNumber described below.)

o a pointer to char – this will hold the string representation of the command,

for example "ls" or "add_network_node".

o an int – this will hold the integer representation of the that token, for

example CREATE_FILE.

 function member

o commandElement(char *, int) – The constructor copies the two

arguments to the two data members. Of course, you will have to malloc

space to hold the actual command string.

Note that this class will be used only inside system_utilities.cpp. It is therefore declared

in system_utilities.cpp, not system_utilities.h, so that it can't be included into other cpp

files in the project.

3. Declare a file-level variable in system_utilities.cpp of type array of pointers to

commandElement of length NUMBER_OF_COMMANDS. (NOTE: The constant

UNDEFINED_COMMAND does not correspond to a command. It is used as a return

value on the function getCommandNumber, described below, when its argument s

points to a token which is not a command.)

4. Write the following two new functions in system_utilities.cpp, with corresponding

prototypes in system_utilities.h.

void fillCommandList()

This function fills the array of commandElement object pointers with the

following list:

"system_status" SYSTEM_STATUS

"halt" HALT

"add_network_node" ADD_NETWORK_NODE

"delete_network_node" DELETE_NETWORK_NODE

"create_file" CREATE_FILE

"ls" LS

"delete_files" DELETE_FILES

"print_files" PRINT_FILES

"transfer_file" TRANSFER_FILES

This function will be called once from the main function before it enters the loop to

read the input file.

int getCommandNumber(char *s)
This function searches the array for an element whose string data member matches

the string pointed to by s. If a matching element is found, return the corresponding

integer data member. If no match is found return UNDEFINED_COMMAND.

5. Write a new main function that first attempts to open the file p5input.txt

(http://www.eecs.northwestern.edu/~iraicu/teaching/EECS211/code/p5input.txt). If the

file is not opened, main should quit. Otherwise, main calls fillCommandList. The main

function then continues to read lines until the line beginning with the token “halt” is

encountered. In the loop your program should parse the line into tokens, search for the

first token in the list of commands, and branch to an appropriate case in a switch. Each

case of the switch should print a message saying what command was recognized and

print a list of all the tokens on that command line, one token per line. For example, if

the input line was

 add_network_node PC DELLL104 8096 “Larry’s PC”

your program should generate output like

 Recognized command to add a new node to the network.

 The tokens were:

 add_network_node

 PC

 DELL104

 8096

 Larry’s PC

Requirements and Specifications:

1. The switch statement in your main function should use the defined constants as case

labels. So, your switch should look like:

 switch(…) {

 case SYSTEM_STATUS: ….

 break;

 case HALT:

 break;

 …

http://www.eecs.northwestern.edu/~iraicu/teaching/EECS211/code/p5input.txt

 }

Comments, suggestions, and hints:

1. Adding the defined constants to your header file is easy and should be done first.

2. You could do the switch in the main program next. You wouldn’t have the command

array or the function that finds the command number, but you could still add and test the

switch in the following way. In place of code that reads and parses lines of text and the

code at the end that frees that “malloc”-ed strings write a simple prompt for an integer

input. Then use that integer as the switch variable on your case statement. This would

allow you to test each of the 10 cases (the nine actual commands and the

UNDEFINED_COMMAND case) to see if the switch was working and you liked the

first line of output. When you are satisfied with that much, you can throw away the

prompt and integer input, add the code that reads from the file and parses the tokens, and

continue with the next step.

3. The next step is to declare and initialize the array. I would use the debugger to step

through the code and then look in the watch or data window to examine the values in the

array elements to see if they are what you want.

4. Finally, implement the function that finds the command number from the input and

add a call to that function in the main program before the switch.

Test data for p5input.txt (http://www.eecs.northwestern.edu/~iraicu/teaching/EECS211/code/p5input.txt):

add_network_node PC pc1 4096 Larry

add_network_node printer pr1 2048 5

system_status

create_file pc1 f1 20

create_file pc1 f2 70

this is not a command

create_file pc1 f3 70

delete_files pc1 f1 f2

delete_network_node pr1

ls pc1

transfer_file pc1 pr1 f1

delete_files s1 "hello mom" myproject

this is also not a command

transfer_file pc1 pr1 f3

ls pr1

print_files pr1

transfer_file pc1 pc2 f3

transfer_file pc1 pr1 f4

system_status

http://www.eecs.northwestern.edu/~iraicu/teaching/EECS211/code/p5input.txt

halt

