
EECS 211 – Spring Quarter, 2010

 Program 8
Due Thursday, June 10th, 2010 at 11:59PM

Background:

Recall that the medium on typical disk drives is partitioned into blocks. In our simulation

the block size is 64. Most files contain more bytes than will fit into a single block, so the

data of the file are distributed across many blocks. Operating systems control how the

data are assigned to blocks, and modern operating systems have elaborate algorithms that

attempt to optimize data access against the physical characteristics of the drive itself

(rotational latency, head movement, etc.) In our simulation we will implement a very

simple algorithm – the data of a file will be stored in consecutive blocks. The data will

be taken from the input stream following the create_file command.

Assignment:

(1) Add the following function to the public section of the diskDrive class:

 int findNBlocks(int n, int start) – finds a sequence of n contiguous free blocks

on the disk drive occurring at or after block number start. The function should

return the block number of the first block of the sequence if there is one and –1 if

there isn’t. This function will be used to find where to store the data of a file.

The argument start will indicate where the first block after the file descriptor

table is.

 (2) Augment your function createFile to store the actual data of the file. The data will

be taken from the next lines of the input. For example, a sequence of lines in the

command file might be:

create_file pc1 dearmom 65

123456789

123456789

123456789

123456789

123456789

123456789

1234

system_status

Note, that <ENTR> counts as a character in a file, just as it would in a text file or a

WORD document. Thus, the first line of the file above has 9 readable characters plus the

ENTR that terminates the line. Store the data in contiguous blocks of the disk drive, and

set the first-block element of the file descriptor to indicate the first block of the file. For

example, the above file would require two blocks. If these were blocks 9 and 10, then the

file descriptor should have its first block number set to 9. Add argument containing

buffer (main case malloc per file size, read, pass in, then free) or make input file extern.

(3) Add the following function to the private or protected section of the computer class:

 int findFile(char *fname, fileDescriptor *fd) – Argument fname is a file name.

This function returns the file descriptor number of the file with that name or –1 if

the file does not exist in the directory. If the file does exist, the function copies

the file descriptor to fd.

(4) Add the following pair of functions to the computer class:

 void printFiles(int argc, char *argv[]) – public function member. Argument

argc is the token count from the command line for the print_files command, and

argument argv is the array of parsed tokens. For each file named in argv, if that

file exists on this computer, then print it, otherwise print an error message.

 void printOneFile(fileDescriptor fd) – protected function member. Argument

fd is a (copy of a) file descriptor of a file on this computer. This function prints

that file.

(5) Implement the PRINT_FILES command in main.cpp. Your case should check to see

if the indicated computer exists. If not, print an error message. If it does, pass the

number of tokens and the array of tokens into the printFiles member function.

Requirements and Specifications:

(1) Your project should process the command list in the file p8input.txt

(http://www.eecs.northwestern.edu/~iraicu/teaching/EECS211/code/p8input.txt).

(2) If a request to create a file fails (no file descriptor position available or not enough

disk space for the data), print a suitable error message. Note, in this case your program

will need to skip past the file contents in p8input.txt to get to the next command.

(3) The command line for the print_files command has the form:

 print_files computer file1 file2 …

where computer is the name of a computer in the network and the remaining tokens are

file names. If the computer does not exist, your project should print a suitable error

message. Otherwise, pass the token count and token array to the printFiles function

member of the indicated computer. A suitable format for printOneFile would be:

Printing file name:

text of file, including carriage returns

End of file.

http://www.eecs.northwestern.edu/~iraicu/teaching/EECS211/code/p8input.txt

Comments, suggestions, and hints:

The functions from program 7 and this program are designed to make the following

algorithm for create_files:

 Find a sequence of blocks of storage for the data.

 If none exists, print error and exit.

 Find an empty file descriptor

 If none exists, print error and exit.

 Create and store the file descriptor.

 Read 64 bytes at a time and store in successive blocks.

The algorithm for finding N consecutive blocks is also relatively simple.

 Set candidate first block to the next free block after the file entry table.

 While not past the end of the disk

o See if the next N-1 blocks are free

o If yes, return candidate first block

o If not, set candidate first block to the next free block after the block that

was NOT free.

For example, if the candidate first block was 21 and we needed 5 blocks, but we found

block 24 was not free, we would start searching for another free block at 25, the next one

after 24.

Remember that the file name from command line is string and needs to be converted to

padded 8 characters. Similarly, the byte count is a string and must be converted to

integer.

The get() member function of the iostream class returns one character from the input

stream, including end-of-line characters. A simple loop using the get() function can be

used to read the data for each new file.

See next page for test data.

Test data:

add_network_node PC pc1 4096 Larry

add_network_node printer pr1 2048 5

system_status

ls pr1

create_file pc1 f1 20

123456789

abcdefghi

ls pc1

create_file pr1 f1 16

File f1 on pr1.

create_file pc1 f2 70

111111111

222222222

333333333

444444444

555555555

666666666

777777777

create_file pc1 f3 70

aaaaaaaaa

bbbbbbbbb

ccccccccc

ddddddddd

eeeeeeeee

fffffffff

ggggggggg

ls pc1

ls pr1

print_files pr1 f2 f1

print_files pc1 f2 f1 f3

system_status

halt

