Shared and Parallel
File Systems

loan Raicu
Center for Ultra-scale Computing and Information Security
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 395/ EECS 495
Hot Topics in Distributed Systems: Data-Intensive Computing
February 4%, 2010



Filesysteims Overview

« System that permanently stores data

» Usually layered on top of a lower-level
physical storage medium

 Divided into logical units called “files”
— Addressable by a filename (“foo.txt”)
— Usually supports hierarchical nesting
(directories)
A file path joins file & directory names into
a relative or absolute address to identify
a file ("/nome/aaron/foo.txt")



Shared/Parallel/Distributed
Filesysiteims

» Support access to files on remote servers

* Must support concurrency

— Make varying guarantees about locking, who
“‘wins” with concurrent writes, etc...

— Must gracefully handle dropped connections

» Can offer support for replication and local
caching

 Different implementations sit in different
places on complexity/feature scale



1980~1990: NFS
~2000: PVES
~2002: GPFS
~2003: Lustre
~2003: GFS
~2006: Sector
~2007: HDFS



NFS: Network File Systeim

* First developed in 1980s by Sun

* Presented with standard UNIX FS
Interface

 Network drives are mounted into local
directory hierarchy



NFS Protocol

* Initially completely stateless

— Operated over UDP; did not use TCP
streams

— File locking, etc., implemented in higher-level
protocols

* Modern implementations use TCP/IP &
stateful protocols



» Client/server system
* Single server for files

NFS Server / Node 1
Node 0 S Node 2

= ode
s

— > N °
<<
o o
2 °
2 N

Node N

Each cluster node has
dual-processor Pentium
Linux, HD, lots of memory



NFS: Server-side Implementation

* NFS defines a virtual file system
— Does not actually manage local disk layout on server
« Server instantiates NFS volume on top of local
file system

— Local hard drives managed by concrete file systems
(EXT, ReiserFs, ...)

— Other networked FS's mounted in by...?

» NFS server

User-visible filesystem Server filesystem

EXT3 fs EXT3 fs NFS client (= EXT2 fs ReiserFS

Hard Drive 1 Hard Drive 2 Hard Drive 1 Hard Drive 2




NFS Locking

* NFS v4 supports stateful locking of files
— Clients inform server of intent to lock

— Server can notify clients of outstanding lock
requests

— Locking is lease-based: clients must
continually renew locks before a timeout

— Loss of contact with server abandons locks



NFS Client Caching

 NFS Clients are allowed to cache copies of
remote files for subsequent accesses

* Supports close-to-open cache consistency

— When client A closes a file, its contents are
synchronized with the master, and timestamp is
changed

— When client B opens the file, it checks that local
timestamp agrees with server timestamp. If not, it
discards local copy.

— Concurrent reader/writers must use flags to disable
caching



NFS: Tradeoiis

* NFS Volume managed by single server
— Higher load on central server
— Simplifies coherency protocols

* Full POSIX system means it “drops in”

very easily, but isn’t “great” for any
specific need



PVFS Overview

* NFS not sufficient for high-performance
computing workloads

* At the time, other solutions either non-
existent, or did not run Iin Linux clusters

— GPFS (proprietary on some IBM machines)

— Lustre (not yet)
— GFS (proprietary to Google)

12



PVFS Access

« Native PVFS Library
— User space implementation

« Trapping I/O System calls
— Allows applications to run without recompiling

— Has limitations related to multi-process applications
(e.g. exec causes file descriptor state to be lost)

— Also requires high maintainance

* VFS Kernel Module
— A module specific for PVFS, similar to NFS module

13



#include <pvfs.h>

int main() {

int fd, bytes;
fd=pvfs open(fn,0 RDONLY,0,NULL,NULL) ;
pvEs lseek (fd, offset, SEEK SET);
bytes read = pvfs read(fd, buf ptr, bytes);

pvEs close(£fd);



C library

Iibe syscall wrappers

Eemel

C library

PVF5 syscall wrappers
= Ty

a) Standard operation

Femel PVFS IO Library

) With PVFS library loaded

15



PVFS Architecture

* One node Is a manager node
— Maintains metadata information for files

« Configuration and usage options include:
— Size of stripe
— Number of 1/O servers
— Which nodes serve as I/O servers
— Native PVFS API vs. UNIX/POSIX API



PVFS Architecture

« Also a client/server system
« Many servers for each file
* Fixed sized stripes in round-robin fashion

Network Switch

v

Node 0

]

Each cluster node still has
dual-processor Pentium
Linux, HD, lots of memory



GPFS Overview

GPFS had been used for years on IBM machines

This paper explored GPFS on the largest
supercomputers at the time, including some Linux-
based ones

GPFS aims for POSIX access semantic in a
parallel file system e = g

All nodes have the same view
Use distributed locking protoco




GPFS Detalils

 Parallel data and metadata access
« Data striping across disks

* General Large File System Issues

— Data stripping and allocation, pre-fetch, and
write-behind

— Large directory support
— Logging and recovery

19



GPFS Managing Consisiency

Locking manement
— Distributed locking
— Centralized management

GPFS distributed lock manager

Parallel data access

— Byte range locks

Synchronizing access to file metadata
Allocation maps

— Managing free space

Centralized token manager scaling

20



* Node failures
— Use recovery logs from shared disks

« Communication failures
— Heartbeat messages

* Disk failures
— RAID
— Replication

21



Lustre Overview

« Also has a distributed lock manager
— But more limited than that of GPFS

— Intent locking

« Switch between different strategies based on concurrency
level

* Object-based vs. Block-based

— Object-based protocols can help in locking and
allocation of metadata

— Lustre is backwards compatible with block-based
storage

* Client caching metadata

22



Quesiions




