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Filesysteims Overview

« System that permanently stores data

» Usually layered on top of a lower-level
physical storage medium

 Divided into logical units called “files”
— Addressable by a filename (“foo.txt”)
— Usually supports hierarchical nesting
(directories)
A file path joins file & directory names into
a relative or absolute address to identify
a file ("/nome/aaron/foo.txt")



Shared/Parallel/Distributed
Filesysiteims

» Support access to files on remote servers

* Must support concurrency

— Make varying guarantees about locking, who
“‘wins” with concurrent writes, etc...

— Must gracefully handle dropped connections

» Can offer support for replication and local
caching

 Different implementations sit in different
places on complexity/feature scale



1980~1990: NFS
~2000: PVES
~2002: GPFS
~2003: Lustre
~2003: GFS
~2006: Sector
~2007: HDFS



NFS: Network File Systeim

* First developed in 1980s by Sun

* Presented with standard UNIX FS
Interface

 Network drives are mounted into local
directory hierarchy



NFS Protocol

* Initially completely stateless

— Operated over UDP; did not use TCP
streams

— File locking, etc., implemented in higher-level
protocols

* Modern implementations use TCP/IP &
stateful protocols



» Client/server system
* Single server for files
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NFS: Server-side Implementation

* NFS defines a virtual file system
— Does not actually manage local disk layout on server
« Server instantiates NFS volume on top of local
file system

— Local hard drives managed by concrete file systems
(EXT, ReiserFs, ...)

— Other networked FS's mounted in by...?

» NFS server

User-visible filesystem Server filesystem

EXT3 fs EXT3 fs NFS client (= EXT2 fs ReiserFS
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NFS Locking

* NFS v4 supports stateful locking of files
— Clients inform server of intent to lock

— Server can notify clients of outstanding lock
requests

— Locking is lease-based: clients must
continually renew locks before a timeout

— Loss of contact with server abandons locks



NFS Client Caching

 NFS Clients are allowed to cache copies of
remote files for subsequent accesses

* Supports close-to-open cache consistency

— When client A closes a file, its contents are
synchronized with the master, and timestamp is
changed

— When client B opens the file, it checks that local
timestamp agrees with server timestamp. If not, it
discards local copy.

— Concurrent reader/writers must use flags to disable
caching



NFS: Tradeoiis

* NFS Volume managed by single server
— Higher load on central server
— Simplifies coherency protocols

* Full POSIX system means it “drops in”

very easily, but isn’t “great” for any
specific need



PVFS Overview

* NFS not sufficient for high-performance
computing workloads

* At the time, other solutions either non-
existent, or did not run Iin Linux clusters

— GPFS (proprietary on some IBM machines)

— Lustre (not yet)
— GFS (proprietary to Google)
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PVFS Access

« Native PVFS Library
— User space implementation

« Trapping I/O System calls
— Allows applications to run without recompiling

— Has limitations related to multi-process applications
(e.g. exec causes file descriptor state to be lost)

— Also requires high maintainance

* VFS Kernel Module
— A module specific for PVFS, similar to NFS module
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#include <pvfs.h>

int main() {

int fd, bytes;
fd=pvfs open(fn,0 RDONLY,0,NULL,NULL) ;
pvEs lseek (fd, offset, SEEK SET);
bytes read = pvfs read(fd, buf ptr, bytes);

pvEs close(£fd);



C library

Iibe syscall wrappers

Eemel

C library

PVF5 syscall wrappers
= Ty

a) Standard operation

Femel PVFS IO Library

) With PVFS library loaded
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PVFS Architecture

* One node Is a manager node
— Maintains metadata information for files

« Configuration and usage options include:
— Size of stripe
— Number of 1/O servers
— Which nodes serve as I/O servers
— Native PVFS API vs. UNIX/POSIX API



PVFS Architecture

« Also a client/server system
« Many servers for each file
* Fixed sized stripes in round-robin fashion
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GPFS Overview

GPFS had been used for years on IBM machines

This paper explored GPFS on the largest
supercomputers at the time, including some Linux-
based ones

GPFS aims for POSIX access semantic in a
parallel file system e = g

All nodes have the same view
Use distributed locking protoco




GPFS Detalils

 Parallel data and metadata access
« Data striping across disks

* General Large File System Issues

— Data stripping and allocation, pre-fetch, and
write-behind

— Large directory support
— Logging and recovery
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GPFS Managing Consisiency

Locking manement
— Distributed locking
— Centralized management

GPFS distributed lock manager

Parallel data access

— Byte range locks

Synchronizing access to file metadata
Allocation maps

— Managing free space

Centralized token manager scaling
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* Node failures
— Use recovery logs from shared disks

« Communication failures
— Heartbeat messages

* Disk failures
— RAID
— Replication

21



Lustre Overview

« Also has a distributed lock manager
— But more limited than that of GPFS

— Intent locking

« Switch between different strategies based on concurrency
level

* Object-based vs. Block-based

— Object-based protocols can help in locking and
allocation of metadata

— Lustre is backwards compatible with block-based
storage

* Client caching metadata
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