
Automatic Parallelism 

Discovery

Hongyu Gao



Introduction

D

A

CB

A

B

C

D

Sequential vs Parallel execution



Introduction

 Why do we need parallel execution?

 Ever increasing computation scale

 Limited computational power of a single core



Introduction

 A dilemma:

 Emerging need for parallel computing

 Difficulty of parallel programming

 A solution:

 Automatic parallel execution of sequential 
program



Related work

 Swift:

 “A system for the rapid and reliable 
specification, execution, and management of 
large-scale science and engineering workflows.”

 Seems like all we need?



Related work

 Drawbacks:

 Language limitation:

 Single assignment

 Scalability issue

 Proposed solution:

 Dependency graph generation 

+ execution engine



Dependency graph generation

 A directed acyclic graph

 A node:

The smallest block of code that is scheduled for 
parallel execution

 An edge:

A node depends on the completion of another 
node before it can be executed

A B



An example

divide_raw_input(in_file, in_file_1, …, in_file_MAPSIZE)

for (i = 0; i<MAPSIZE ; i++):

Map(in_file_i, intermed_file_i_1, …, 
intermed_file_i_REDUCESIZE)

for (i = 0; i<REDUCESIZE ; i++):

Reduce(intermed_file_1_i, …, intermed_file_MAPSIZE_i, 
out_file_i)

Combine_output(out_file_1, …, out_file_REDUCESIZE, out_file)



An example



Task execution

 A node (task) can be executed if:

 It has no in-edge

 All nodes that it depends on have been 
completed



Task execution

 A set of nodes ready to be executed

 A dependency factor for each node

 Update the dependency factor upon the 
completion of every node

 Update the “ready set”

 O(E) time complexity



Further optimization

 Pipeline the graph building and the task 
execution

 A window of size n on the dependency graph 
will be enforced while the execution is working

 Address the scalability issue



Questions?



Thank you!


