

• Swift is a system for the rapid and reliable specification,

execution, and management of large-scale science and

engineering workflows. It supports applications that

execute many tasks coupled by disk-resident datasets -

as is common, for example, when analyzing large

quantities of data or performing parameter studies or

ensemble simulations.

• For example:
– Cancer research: looking for previously unknown protein changes by

comparing mass spectrum data with data known about proteome.

– A monte-carlo simulation of protein folding, 10 proteins, 1000

simulations for each configuration, inside simulated annealing algorithm

with 2x5=10 different parameter values. Each simulation component

takes ~ 5 CPU-minutes, so about ~ 1 CPU-year for a whole run;

producing 10...100Gb of data. 2

 Coordination language

 Linda[Ahuja,Carriero86], Strand[Foster,Taylor90], PCN[Foster92]

 Durra[Barbacci,Wing86], MANIFOLD[Papadopoulos98]

 Components programmed in specific language (C,

FORTRAN) and linked with system

 “Workflow” languages and systems

 Taverna[Oinn,Addis04], Kepler[Ludäscher,Altintas05],

Triana [Churches,Gombas05], Vistrail[Callahan,Freire06], DAGMan, Star-P

 XPDL[WfMC02], BPEL[Andrews,Curbera03], and BPML[BPML02],

YAWL[van de Aalst,Hofstede05], Windows Workflow Foundation
[Microsoft05]

S
w

iftS
c
r
ip

t

B
P

E
L

X
P

D
L

M
W

 W
flo

w

D
A

G
M

a
n

T
a
v
e
n

a

T
r
ia

n
a

K
e
p

le
r

V
is

tr
a
il

S
ta

r
-P

Scales to Grids ++ - - - ++ - - - - +

Typing ++ ++ ++ ++ - - - + - +

Iteration ++ -/+ - + - - - + - +

Scripting ++ - - + + + - - + ++

Dataset Mapping + - - - - - - - - -

Service Interop + - + - - - - + - -

Subflow/comp. + - + + - - + + - +

Provenance + - - + - + - + + -

Open source + + + - + + + + + -

“A 4x200 flow leads to a 5 MB BPEL file … chemists were not able to write in BPEL”
[Emmerich,Buchart06]

• ~2003: VDL - the Virtual Data Language.

express directed acyclic graphs of unix processes

processes take input and produce output through files

'virtual data' - when needed, materialise data either by

copying from elsewhere or by deriving it from other data that

is available

Lots of thinking about "graph transformations"

• ~2006: VDL2 (which became SwiftScript)

– key features:

• iterating over collections of files in the language

• accidentally became Turing-complete

• ~2010: still going - language tweaks, scaling improvements

5

• Scientific programmers use some science-domain specific

language to write the "science" bit of their application (eg R

for statistics, Root for particle physics).

• They aren't "high performance" or "distributed system"

programmers.

• Want to help them use "big" systems to run their application

- eg machines with 10^5 CPU cores.

• Traditional MPI (Message Passing Interface) is hard to think

about.

• Swift tries to provide an easier model that still allows many

applications to be expressed, and performed with

reasonable efficiency.

• SwiftScript is the language for programming in that model.6

• file output <"output.txt">; Declares output to be a

variable whose value is stored in the file system rather

than in-core.

• <"output.txt"> means that the value is stored in a file

output.txt (this can be a URL)

• This is a simple example with a literal single filename.

– More complex syntax allows mapping arrays of files, with more

dynamic behaviour (eg generating filename patterns at runtime)

• We can omit the <...> mapping expression in which case

Swift will make up a filename - useful for intermediate

files.

7

• app (file o) count(file i) { uniq "-c" stdin=@i stdout=@o; }

This is how the real work gets done - by getting some

other science-domain specific program to do it.

• app procedures execute unix processes, but not like

system() or runProcess

• The environment in which an app procedure runs is

constrainted:

Application will start in "some directory, somewhere".

There, it will find its input files, and there it should leave

its output files.

• Applications need to be referentially transparent (but

SwiftScript doesn't clearly define what equivalence is)

8

• Pick an execution site

• Transfer input files there (if they are not already

cached there)

• Put the job in an execution queue at the

execution site

• Wait for execution to finish

• Transfer output files back

• Check everything worked ok

9

• Online repository of neuroimaging

data

• A typical study comprises

3 groups,

20 subjects/group,

5 runs/subject,

300 volumes/run

 90,000 volumes, 60 GB raw 

1.2 million files processed

• 100s of such studies in total

http://www.fmridc.org

 Large user base

 World wide collaboration

 Thousands of requests

 Wide range of analyses

 Testing, production runs

 Data mining

 Ensemble, Parameter studies

• Accessing messy data

– Idiosyncratic layouts & formats

– Data integration a prerequisite to analysis

• Describing & executing complex computations

– Expression, discovery, reuse of analyses

– Scaling to large data, complex analyses

• Making analysis a community process

– Collaboration on both data & programs

– Provenance: tracking, query, application

• Accessing messy data

– Idiosyncratic layouts & formats

– Data integration a prerequisite to analysis

• Implementing complex computations

– Expression, discovery, reuse of analyses

– Scaling to large data, complex analyses

• Making analysis a community process

– Collaboration on both data & programs

– Provenance: tracking, query, application

XDTM

SwiftScript

Karajan

+Falkon

VDC

• Scientific data is often

logically structured

– E.g., hierarchical structure

– Common to map functions

over dataset members

– Nested map operations can scale to

millions of objects

• Heterogeneous storage

format & access protocols

– Same dataset can be stored

in text file, spreadsheet,

database, …

– Access via filesystem, DBMS,

HTTP, WebDAV, …

• Metadata encoded in

directory and file names

• Hinders program

development, composition,

execution

./knottastic

drwxr-xr-x 4 yongzh users 2048 Nov 12 14:15 AA

drwxr-xr-x 4 yongzh users 2048 Nov 11 21:13 CH

drwxr-xr-x 4 yongzh users 2048 Nov 11 16:32 EC

./knottastic/AA:

drwxr-xr-x 5 yongzh users 2048 Nov 5 12:41 04nov06aa

drwxr-xr-x 4 yongzh users 2048 Dec 6 12:24 11nov06aa

. /knottastic//AA/04nov06aa:

drwxr-xr-x 2 yongzh users 2048 Nov 5 12:52 ANATOMY

drwxr-xr-x 2 yongzh users 49152 Dec 5 11:40 FUNCTIONAL

. /knottastic/AA/04nov06aa/ANATOMY:

-rw-r--r-- 1 yongzh users 348 Nov 5 12:29 coplanar.hdr

-rw-r--r-- 1 yongzh users 16777216 Nov 5 12:29 coplanar.img

. /knottastic/AA/04nov06aa/FUNCTIONAL:

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0001.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0001.img

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0002.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0002.img

-rw-r--r-- 1 yongzh users 496 Nov 15 20:44 bold1_0002.mat

-rw-r--r-- 1 yongzh users 348 Nov 5 12:32 bold1_0003.hdr

-rw-r--r-- 1 yongzh users 409600 Nov 5 12:32 bold1_0003.img

• Typed parallel programming notation

– XDTM as data model and type system

– Typed dataset and procedure definitions

• Scripting language

– Implicit data parallelism

– Program composition

from procedures

– Control constructs

(foreach, if, while, …)

Clean application logic

Type checking

Dataset selection, iteration

Discovery by types

Type conversion

A Notation and System for Expressing and Executing Cleanly Typed Workflows on

Messy Scientific Data [SIGMOD05]

17

