MPI:

Message-Passing Interface

loan Raicu
Center for Ultra-scale Computing and Information Security
Department of Electrical Engineering & Computer Science
Northwestern University

EECS 395/ EECS 495
Hot Topics in Distributed Systems: Data-Intensive Computing
March 9%, 2010

MIPI Overview

* Most widely used for programming parallel
computers (clusters of workstations)

« Key attributes:
— Partitioned address space
— Explicit parallelization

* Process interactions
— Send and receive data

« Communications

— Sending and receiving messages
— Primitives
» send(buff, size, destination)
 receive(buff, size, source)
 Blocking vs non-blocking
« Buffered vs non-buffered
— Message Passing Interface (MPI)

» Popular message passing library
» ~125 functions

time to solution (sec)

le+06 |

le+04 |

1e+02

1e+00

le—02

le—04

Scale: Praciical Importance

Time required to compute the NxN matrix product C=A*B
memory required

64K 1M 16M 256M 4G 64G 1TB

1 thread

16 thread

16 MPI task
256 MPI task
4096 MPI task

}f ¢ 7 1 month

o e :.?1,.,..
: : e
: 7 Y {1 da
2, y
...... ;!fff
xd : 1 hour
/)
P

1 min

SecC

1 mSecC

10 100

1000

10000 100000 1000000
N

Assuming you can
address 64GB from one
task, can you wait a
month?

How to balance
computational goal
VS.

compute resources?

Choose the right scale!

Let’s jump to an example

Sharks and Fish Il : N2 parallel force evalulation
e.g. 4 CPUs evaluate force for 125 fish

31 31 31 32

Domain decomposition: Each CPU is “in charge” of ~31 fish, but
keeps a fairly recent copy of all the fishes positions (replicated data)

Is it not possible to uniformly decompose problems in general,
especially in many dimensions

This toy problem is simple, has fine granularity and is 2D
Let’'s see how it scales

Sharks and Fish Il : Program

Data:

n_fish = global : '

my. fish local MPI_Allgatherv(myfish_buf, len[rank], MPI_FishType...)
fish; = {x, y, ...}

Dynamics: for (1=0; 1 <my_fish; ++1) {

F=ma for(j :O;j < n_ﬁSh; ++j){ /] Il:J

V=2 1/rij }

dg/dt= m*p !

dp/dt = -dV/dg

Move fish

« 100 fish can move 1000 steps i
1 task > 5.459s
32tasks > 2.756s

n} X 1.98 speedup

« 1000 fish can move 1000 steps i
ltask > 511.14s ’} x 24.6 speedup

32 tasks - 20.815s

* So what'’s the “best” way to run?
— How many fish do we really have?
— How large a computer (time) do we have?
— How quickly do we need the answer?

Running fish_sim for 100-1000 fish on 1-32 CPUs we see

time in seconds

180

160

140

120

100

80

60

40 |

20 |

Q

Fish wail .
| 0.0001/73nx%x
0.000025% %y

100 200 300 400 500 600 /700 800 900 1000

#fish

1 Task

32 Tasks

time ~ fishz2 v/

Scaling: terminology

« Scaling studies involve changing the degree of
parallelism. Will we be changing the problem also?

— Strong scaling 2> Fixed problem size

— Weak scaling—> Problem size grows with additional
compute resources

« How do we measure success in parallel scaling?

— Speed up = T¢/T,(n) A Multiple

> definitions

— Efficiency = T/(n*T(n)) - exist!

40000

35000

30000 |

MFLOP/sec

10000 |

5000

Scaling: Analysis

30 complex—complex FFTH (N=n#*n#n)

Why does efficiency drop?

MPI Tasks

25000

20000

16 —
32
64 —
128 —
256
512 —

iPOUM &

15000 |

Serial code sections -
Amdahl’s law

Surface to Volume -
Communication bound

Algorithm complexity ol
switching
Communication
protocol switching

Scalability of computer
and interconnect

Scaling: Analysis

In general, changing problem size and
concurrency expose or remove compute
resources. Bottlenecks shift.

In general, first bottleneck wins.

Scaling brings additional resources too.
— More CPUs (of course)

— More cache(s)

— More memory BW in some cases

speed up (tn/tl)
20 T T T T

L L B

I

CPUs
T (OMP)

10—
12 ——
14 ——
15

L B S L |

0,01 0.1 1 10 100 1000

log zize of vector x in MB
{arrows show agoregate L2 cache size)

Strong Scaling:

Comimunication Bound

64 tasks , 52% comm 192 tasks , 66% comm 768 tasks , 79% comm

MPI_Allreduce
MPI_I=zend
MPI_Wait
MPI_Irecy
MPI_Waitall
MPI_Scatter
MPI_Gather
MPI_Bcast
MPI_Reduce
MPI_Comm_size
MP I _Comm_tank.

MPI1_Allreduce buffer size is 32 bytes.

Q: What resource is being depleted here?
A: Small message latency

1) Compute per task is decreasing
2) Synchronization rate is increasing
3) Surface:Volume ratio is increasing

Unbalanced: Universal App

Task 1

Sync
Task 2
Task 3 Flop
Tacsk 4
as I/0

Balanced:

Task 1

Tasgk 2
Tasgk 3
Task 4

Time saved by load balance

Will define synchronization later

Load Balance : periormance daia

Communication Time: 64 tasks show 200s, 960 tasks show 230s

MPI_Alltoall

00 MPI_Allreduce

MPI_Bcast
MPI_Reduce
MPI_Send

e 150 MPI_Comm_t-atk.

12 MPI_Comm_zize

0 MPI_Recy

1)

7

=

=0

)

£

.-

Fa}

i)

L
L
zorted inde®”

= =
] <
[] b=

MPI ranks sorted by total communication time

(a1l
Ly

while (1) {

do flops (Ny);
MPI Alltoall();
MPI Allreduce();

J

EEFFFFARENFEFFERNARN N RLEN FRERR RRM Ii‘] .

____x_._ ____

§-3F

< Uy IdIN

Time =

1200

1000

800

BOO

400

200

juey IdiN

wen

walker

singu me—

islbm

Time -

bal_gpnu

step O

Load Balance : analysis

The 64 slow tasks (with more compute work)
cause 30 seconds more “communication” in
960 tasks

This leads to 28800 CPU*seconds (8
CPU*hours) of unproductive computing

All load imbalance requires is one slow task
and a synchronizing collective!

Pair well problem size and concurrency.

Parallel computers allow you to waste time
faster!

MPI_Barrier (log seconds)

0.1F

0,01

0,001

1e-04

1e-05

le-06

’

10

100

log Number of tasks

1000

four
orders of
magnitude

Synchronization

 It's hard to discuss synchronization outside of
the context a particular parallel computer

* MPI timings depend on HW, SW, and
environment
— How much of MPI is handled by the switch adapter?
— How big are messaging buffers?
— How many thread locks per function?
— How noisy is the machine (today)?
* This Is hard to model, so take an empirical

approach based on an IBM SP which is largely
applicable to other clusters...

Memory Hierarchy

16 way SMP NHII Node
Resource Speed Bytes ey lineyliney ey
| o
L1 Cache 5ns 32 KB
L2 Cache 45 ns 8 MB
| o
Main Memory 300 ns 16 GB
Remote Memory 19 us 7 TB
GPFS 10ms | 50 TB Main Memory
HPSS 5s 9 PB GPFS

6080 dedicated CPUs, 96 shared login CPUs
*Hierarchy of caching, speeds not balanced
Bottleneck determined by first depleted resource

Bandwidth (MB/s) MPI_Send/Recv pingpong
600 .

shared memory 2,4.8.16 tasks —
2.4,.8.16 tasks —

500 | colony switch

400

300 |

200

100 |

a

100 1000 10000 100000 1e+06 le+07
Message size (Bytes)

message size and task placement are key to performance

The set of all possibly
latencies describes

the interconnect geometry
from the application
perspective

ohe way ping-pong latency (usec)

=2 =2 T =+ B = 3 R = > T = B = 5 B = N = 3
(=2 B T 1 * T < = N 4 o L = e L=~ B = R |

Watson BG — 4x4x2 machine : interconnect hierarchy

T L L L L L
all pairwise latencies —=—

0 100 200 300 400 500 600 700 800 900 1000
sort index (sort by latency)

Synchronization : Summary

« As a programmer you can control

— Which MPI calls you use (it's not required to
use them all).

— Message sizes, Problem size (maybe)

— The temporal granularity of synchronization,
l.e., where do synchronization occur.

» Language writers and system architects
control
— How hard is it to do the above
— The intrinsic amount of noise in the machine

Parallel File /O : Straiegies

1) serial 2) multiple file
Taskl =—* File Tagkl «— Filel
-~
-—
Taskd Tagkd =—— Filed
3) POSIXI/O 4) MPII/O
Taskl File Tacskl
KAHPIHF
«—"I/0
Taskd Tack4

A
v

MPI

P n
<« »

Some strategies
fall down at
scale

« Often avoid file per task I/O strategies when running at scale

Scaling distributions of concurrent mkdirs

90
16 —
32 —
80 e
128 —
A0 256 ——
in
% 60}
]
-
AN
== I
S 40Ff
{
=
= 301
o
20
1'l3i="|__I
01 1 —_—]
0 2 q 6 8 10 12

time to mkdir {(seconds)

Questions

