


• Most widely used for programming parallel 

computers (clusters of workstations)

• Key attributes:

– Partitioned address space

– Explicit parallelization

• Process interactions

– Send and receive data

2



• Communications
– Sending and receiving messages
– Primitives

• send(buff, size, destination)
• receive(buff, size, source)
• Blocking vs non-blocking
• Buffered vs non-buffered

– Message Passing Interface (MPI)
• Popular message passing library
• ~125 functions

3



Time required to compute the NxN matrix product C=A*B 

Assuming you can 

address 64GB from one 

task, can you wait a 

month?

How to balance

computational goal

vs.

compute resources?

Choose the right scale!



• Sharks and Fish II : N2 parallel force evalulation

• e.g. 4 CPUs evaluate force for 125 fish 

• Domain decomposition: Each CPU is “in charge” of ~31 fish, but 

keeps a fairly recent copy of all the fishes positions (replicated data) 

• Is it not possible to uniformly decompose problems in general, 

especially in many dimensions

• This toy problem is simple, has fine granularity and is 2D

• Let’s see how it scales

31 31 31 32 



Data:

n_fish global

my_fish local

fishi = {x, y, …}

Dynamics:

F = ma

…

V = Σ 1/rij

dq/dt =  m * p

dp/dt = -dV/dq

MPI_Allgatherv(myfish_buf, len[rank], MPI_FishType…)

for (i = 0; i < my_fish; ++i) {                        

for (j = 0; j < n_fish; ++j) {  //  i!=j 

ai += g * massj * ( fishi – fishj ) / rij

}

}

Move fish



• 100 fish can move 1000 steps in

1 task  5.459s

32 tasks  2.756s

• 1000 fish can move 1000 steps in 

1 task  511.14s

32 tasks  20.815s

• So what’s the “best” way to run?

– How many fish do we really have?

– How large a computer (time) do we have? 

– How quickly do we need the answer?

x 24.6 speedup

x 1.98 speedup



1 Task

32 Tasks

…

Running  fish_sim for 100-1000 fish on 1-32 CPUs we see

time ~ fish2    




• Scaling studies involve changing the degree of 
parallelism. Will we be changing the problem also?

– Strong scaling Fixed problem size

– Weak scaling Problem size grows with additional 
compute resources

• How do we measure success in parallel scaling?

– Speed up = Ts/Tp(n)

– Efficiency = Ts/(n*Tp(n))

Multiple 

definitions 

exist!



Why does efficiency drop?

– Serial code sections 

Amdahl’s law

– Surface to Volume 

Communication bound

– Algorithm complexity  or 

switching

– Communication 

protocol switching

– Scalability of computer 

and interconnect


W

h
o
a!



• In general, changing problem size and 

concurrency expose or remove compute 

resources. Bottlenecks shift. 

• In general, first bottleneck wins. 

• Scaling brings additional resources too. 

– More CPUs (of course)

– More cache(s)

– More memory BW in some cases



# CPUs

(OMP)



64 tasks , 52% comm 192 tasks , 66% comm 768 tasks , 79% comm

MPI_Allreduce buffer size is 32 bytes.

Q: What resource is being depleted here?

A: Small message latency 

1) Compute per task is decreasing

2) Synchronization rate is increasing

3) Surface:Volume ratio is increasing



Universal App
Unbalanced:

Balanced:

Time saved by load balance
Will define synchronization later 



MPI ranks sorted by total communication time 

Communication Time: 64 tasks show 200s, 960 tasks show 230s



while(1) {

do_flops(Ni);

MPI_Alltoall();

MPI_Allreduce();

}

960 

x

64

x 



Sync

Flops

Exchange

Time 

M
P

I 
R

an
k

  




Time 

M
P

I
 
R

a
n

k
 


Sync

Flops

Exchange



• The 64 slow tasks (with more compute work) 

cause 30 seconds more “communication” in 

960 tasks

• This leads to 28800 CPU*seconds (8 

CPU*hours) of unproductive computing

• All load imbalance requires is one slow task 

and a synchronizing collective!

• Pair well problem size and concurrency.

• Parallel computers allow you to waste time 

faster!



four

orders of 

magnitude



• It’s hard to discuss synchronization outside of 
the context a particular parallel computer

• MPI timings depend on HW, SW, and 
environment 
– How much of MPI is handled by the switch adapter?

– How big are messaging buffers?

– How many thread locks per function?

– How noisy is the machine (today)?

• This is hard to model, so take an empirical 
approach based on an IBM SP which is largely 
applicable to other clusters…



Colony 

Switch

PG F S

Resource Speed Bytes

Registers 3 ns 2560 B

L1 Cache 5 ns 32  KB

L2 Cache 45 ns 8  MB

Main Memory 300 ns 16  GB

Remote Memory 19 us 7  TB

GPFS 10 ms 50  TB

HPSS 5 s 9  PB

380 x

HPS

S

CSS0

CSS1

•6080 dedicated CPUs, 96 shared login CPUs

•Hierarchy of caching, speeds not balanced 

•Bottleneck determined by first depleted resource

16 way SMP NHII Node 

Main Memory

GPFS

IBM SP



message size and task placement are key to performance 

Intra

Inter



The set of all possibly

latencies describes

the interconnect geometry 

from the application

perspective



• As a programmer you can control

– Which MPI calls you use (it’s not required to 

use them all). 

– Message sizes, Problem size (maybe) 

– The temporal granularity of synchronization, 

i.e., where do synchronization occur. 

• Language writers and system architects 

control

– How hard is it to do the above

– The intrinsic amount of noise in the machine



MPI

Disk

Some strategies 

fall down at 

scale



• A parallel file system is great, but it is also another place to create contention. 

• Avoid uneeded disk I/O, know your file system 

• Often avoid file per task I/O strategies when running at scale



28


