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MIPI Overview

* Most widely used for programming parallel
computers (clusters of workstations)

« Key attributes:
— Partitioned address space
— Explicit parallelization

* Process interactions
— Send and receive data



« Communications

— Sending and receiving messages
— Primitives
» send(buff, size, destination)
 receive(buff, size, source)
 Blocking vs non-blocking
« Buffered vs non-buffered
— Message Passing Interface (MPI)

» Popular message passing library
» ~125 functions
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Scale: Praciical Importance

Time required to compute the NxN matrix product C=A*B
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Assuming you can
address 64GB from one
task, can you wait a
month?

How to balance
computational goal
VS.

compute resources?

Choose the right scale!




Let’s jump to an example

Sharks and Fish Il : N2 parallel force evalulation
e.g. 4 CPUs evaluate force for 125 fish

31 31 31 32

Domain decomposition: Each CPU is “in charge” of ~31 fish, but
keeps a fairly recent copy of all the fishes positions (replicated data)

Is it not possible to uniformly decompose problems in general,
especially in many dimensions

This toy problem is simple, has fine granularity and is 2D
Let’'s see how it scales



Sharks and Fish Il : Program

Data:

n_fish = global : '

my. fish  local MPI_Allgatherv(myfish_buf, len[rank], MPI_FishType...)
fish; = {x, y, ...}

Dynamics: for (1=0; 1 <my_fish; ++1) {

F=ma for(j :O;j < n_ﬁSh; ++j){ /] Il:J

V=2 1/rij }

dg/dt= m*p !

dp/dt = -dV/dg

Move fish




« 100 fish can move 1000 steps i
1 task > 5.459s
32tasks > 2.756s

n} X 1.98 speedup

« 1000 fish can move 1000 steps i
ltask >  511.14s ’} x 24.6 speedup

32 tasks - 20.815s

* So what'’s the “best” way to run?
— How many fish do we really have?
— How large a computer (time) do we have?
— How quickly do we need the answer?



Running fish_sim for 100-1000 fish on 1-32 CPUs we see
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Scaling: terminology

« Scaling studies involve changing the degree of
parallelism. Will we be changing the problem also?

— Strong scaling 2> Fixed problem size

— Weak scaling—> Problem size grows with additional
compute resources

« How do we measure success in parallel scaling?

— Speed up = T¢/T,(n) A Multiple

> definitions

— Efficiency = T/(n*T(n)) - exist!
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Scaling: Analysis
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Scaling: Analysis

In general, changing problem size and
concurrency expose or remove compute
resources. Bottlenecks shift.

In general, first bottleneck wins.

Scaling brings additional resources too.
— More CPUs (of course)

— More cache(s)

— More memory BW in some cases
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Strong Scaling:

Comimunication Bound

64 tasks , 52% comm 192 tasks , 66% comm 768 tasks , 79% comm

MPI_Allreduce
MPI_I=zend
MPI_Wait
MPI_Irecy
MPI_Waitall
MPI_Scatter
MPI_Gather
MPI_Bcast
MPI_Reduce
MPI_Comm_size
MP I _Comm_tank.

MPI1_Allreduce buffer size is 32 bytes.

Q: What resource is being depleted here?
A: Small message latency

1) Compute per task is decreasing
2) Synchronization rate is increasing
3) Surface:Volume ratio is increasing




Unbalanced: Universal App

Task 1

Sync
Task 2
Task 3 Flop
Tacsk 4
as I/0

Balanced:

Task 1

Tasgk 2
Tasgk 3
Task 4

Time saved by load balance

Will define synchronization later



Load Balance : periormance daia

Communication Time: 64 tasks show 200s, 960 tasks show 230s

MPI_Alltoall
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while (1) {

do flops (Ny);
MPI Alltoall();
MPI Allreduce();

J
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Load Balance : analysis

The 64 slow tasks (with more compute work)
cause 30 seconds more “communication” in
960 tasks

This leads to 28800 CPU*seconds (8
CPU*hours) of unproductive computing

All load imbalance requires is one slow task
and a synchronizing collective!

Pair well problem size and concurrency.

Parallel computers allow you to waste time
faster!



MPI_Barrier (log seconds)

0.1F

0,01

0,001

1e-04

1e-05

le-06

’

10

100

log Number of tasks

1000

four
orders of
magnitude



Synchronization

 It's hard to discuss synchronization outside of
the context a particular parallel computer

* MPI timings depend on HW, SW, and
environment
— How much of MPI is handled by the switch adapter?
— How big are messaging buffers?
— How many thread locks per function?
— How noisy is the machine (today)?
* This Is hard to model, so take an empirical

approach based on an IBM SP which is largely
applicable to other clusters...



Memory Hierarchy

16 way SMP NHII Node
Resource Speed Bytes ey lineyliney ey
| o
L1 Cache 5ns 32 KB
L2 Cache 45 ns 8 MB
| o
Main Memory 300 ns 16 GB
Remote Memory 19 us 7 TB
GPFS 10ms | 50 TB Main Memory
HPSS 5s 9 PB GPFS

6080 dedicated CPUs, 96 shared login CPUs
*Hierarchy of caching, speeds not balanced
Bottleneck determined by first depleted resource
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message size and task placement are key to performance



The set of all possibly
latencies describes

the interconnect geometry
from the application
perspective

ohe way ping-pong latency (usec)
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Synchronization : Summary

« As a programmer you can control

— Which MPI calls you use (it's not required to
use them all).

— Message sizes, Problem size (maybe)

— The temporal granularity of synchronization,
l.e., where do synchronization occur.

» Language writers and system architects
control
— How hard is it to do the above
— The intrinsic amount of noise in the machine



Parallel File /O : Straiegies

1) serial 2) multiple file
Taskl =—* File Tagkl «— Filel
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fall down at
scale



«  Often avoid file per task I/O strategies when running at scale

Scaling distributions of concurrent mkdirs
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Questions




