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ABSTRACT 

Modeling Situation awareness (SA) in NCO/NCW environments is inherently challenging due to the complexity of the 
underlying network, highly dynamic nature of processes, and the need for real time analysis.  In this paper, we present a 
performance model for SA using the Network Centric Operations Performance & Prediction (NCO-PP) framework, an 
established framework for analyzing and predicting performance of NCO/NCW networks. In this paper, we continue to 
formulate a realistic model that represents dynamism in both the information and network spaces and also their effects 
on each other. We validate our model via simulations that compare the performance of SA under various information 
sharing and filtering paradigms. We provide and define a number of relevant performance metrics for SA and show with 
experimental results that modeling the dynamism in the network lead to superior SA. We also show that the performance 
of the SA can be significantly improved with proactive resource allocation that takes into account the real time 
predictions of the future states of the network and the environment. 
Keywords: Situation Awareness, Performance Modeling, Network Centric, Complex Networks, NCO Framework  
 
 

1. INTRODUCTION 
 

Network Centric Warfare (NCW)[1][2][4][6][8] is “the conduct of military operations using networked information 
systems”[1]. Network Centric Operations (NCO) is the application of NCW to a wide spectrum of operations from peace 
to crisis to war. It is called “Network Centric”[3] because the network and the information carried in the network is key 
to all aspects of the operations. Network Centric Operations have gained center stage in modern military and security 
organizations around the world. The NCO doctrine aims at effectively leveraging information in order to better 
coordinate the deployment and activities of various entities in highly dynamic conditions. NCO/NCW is facilitated by 
emergence of reliable and portable communication systems which has made it possible for even actors on the “edges”, 
such as war-fighters, to quickly relay the situation on the ground to their superiors. Efficient sharing of information leads 
to a better understanding of the ground reality. The perception that each node has about the situation is termed as 
Situational Awareness (SA). SA includes information about the status of friendly and enemy forces, deployment of 
resources etc.  Traditional models[10][11][15] in SA have concentrated on the cognitive/decision making aspects. 
Although these aspects are important, abstracting the characteristics of the underlying network is crucial for a realistic 
SA model in the NCO/NCW domain. Understanding the key networking factors in the modeling of Situational 
Awareness and how it affects other aspects such as decision making is a key concern in this paper. 
 
NCO/NCW networks are typically complex with multiple technologies, working together in a conglomeration of sub-
networks. SA process which depends on information getting to the right place at the right time is highly dependent on 
the underlying network. Conversely, the decision making/information sharing in turn depends on the dynamism in the 
network. Additionally, users actively change the configuration of the network based on requirements that have a ripple 
effect on the other aspects. As such, extreme and erratic network behavior is observed in NCO/NCW networks. 
Traditional frameworks are not broad enough to take all these aspects into account. Current network modeling methods 
which heavily favor average analysis[22][23] and heuristics[16][17] will fail to adequately model the real time processes 
in NCO/NCW network. A computational/simulation framework that mathematically abstracts the underlying functional 
mapping between the different aspects of the NCO/NCW network is required. One such framework is the Network 
Centric Operations Performance & Prediction (NCO-PP)[5], which is a flexible, interactive components based 
framework. Each of the components represents the various aspects of the NCO/NCW such as network 
architecture/hierarchy, network dynamism, metrics and analysis tools. By defining the functional mappings between 
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these components, the framework models their interaction and in the process, gives a more realistic representation of the 
real time dynamism in the network.  NCO-PP has plug-n-play features wherein modeling techniques can be introduced 
in a component quickly and without making changes to other components. Prediction and optimization schemes can also 
be incorporated in NCO-PP. All these properties of NCO-PP make this framework ideal for modeling the SA process in 
NCO/NCW network. In NCO-PP, we model SA by abstracting the network space and information space separately and 
defining interactions between these two layers. We will validate our model and certain hypotheses about the information 
sharing and resource allocation paradigms using meaningful experiments. In the next section, we will elaborate on the 
issues faced while modeling SA. This will be followed by the section describing our model in detail, followed by 
experimental validation of the model. We note that for brevity, a number of discussions, results, analysis, and other 
information may have been only briefly described in this paper. For a full discussion, please refer to [21]. 
 

2. ISSUES IN MODELING SITUATIONAL AWARENESS 
 
Endsley[9] describes SA as “the perception of elements in the environment within a volume of time and space, the 
comprehension of their meaning and the projection of their status in the near future”. The three main aspects of SA is 
perception, comprehension and projection [9][11]. Perception is the first step during which situational entities such as 
objects, people and events are detected and monitored for changes in state or behavior. In the comprehension phase, 
information from various heterogeneous sources is integrated and its relevance to goals/objectives and to the overall “big 
picture” is gauged. In the projection stage, the future impact of the SA is gauged. These concepts of Situation Awareness 
are applied to diverse fields and specific models have been built for domains such as air traffic control[10], emergency 
response [12], public health system[13], homeland security[15]  and many others. Although these models are interesting, 
they are limited by their relevance specific to their fields. Most of these models also do not take network characteristics 
into account, which can be a serious drawback in the NCO/NCW domain.   
 
We now review some of the works that take network behavior into account in their models. Lu[16] derived an 
expression to determine maximum allowed delay over the network to keep position error estimates within bounds and 
perform analysis of the average SA age, using the speed of the mobile platforms and transmission failure probability. 
White[17], in addition to using traditional network metrics like end-to-end delay and throughput, defines some new 
metrics such as average end-to-end delay, message completion rate etc in their SA model. Manikopoulos[18] models 
information staleness for TCP and UDP protocols in a stock update application using average delay and packet delivery 
ratio metrics. The work described here are limited to only the perception aspect of SA. They are not generalized models 
that can be applied to other aspects of SA such as comprehension and projection. These models also do not take the 
dynamics of the environment into account. In short, current methods will not provide realistic models for NCO/NCW. 

 
One of the challenges in modeling NCO/NCW networks is due to the presence of node and link heterogeneity. Some of 
the heterogeneity commonly observed are in the form of node functionality (sensor node, command node etc.), node 
mobility and communication technology used. The network is also dynamic and changing due to the nature of the nodes 
themselves or because of the environment. Since nodes are mobile, they may move in and out of groups and subnets, 
creating new virtual organizations and collaborations. The environment can be challenging with nodes coming under 
duress in the form of enemy fire or adverse weather conditions. In such cases, the nodes may temporarily fail or 
altogether be destroyed. Thus network heterogeneity and network dynamism are key factors that affect the information 
flow in the NCO/NCW networks. Network delay in the information created by the network can lead to inconsistencies in 
SA and nodes in the same subnet may end up having different Common Operating Picture(COP) or the big picture. This 
can jeopardize the decision making mechanism and lead to chaos. By leveraging information about the underlying 
network architecture and dynamism in our SA models, we can design novel information sharing paradigms resulting in 
better and faster SA. Modeling the network will also help us to proactively allocate resources and mitigate the adverse 
effects of network dynamism on SA. We will now describe how we abstract the details of the network architecture, 
heterogeneity and dynamism in our model and seamlessly meld it with the decision making aspects of the NCO/NCW. 
 

3. MODELING SITUATIONAL AWARENESS WITHIN NCO-PP 
 
In this paper, we formulate a performance model for Situational Awareness (SA) for NCO/NCW networks within the 
NCO-PP framework. The NCO-PP framework consists of 4 components: 1) Network Representation Component(NRC) 
2) Performance Module Component(PMC) 3)Performance Tools Suite Component(PTSC) 4) Sub-module Interaction 
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Component (SIC). For more details about components of NCO-PP, refer to [5]. We model the various aspects and 
factors involved in the SA process in the different components of NCO-PP. The underlying functional mapping between 
the components helps in modeling their interaction and their influence on each other. To begin with, the network 
attributes such as architecture, hierarchy and node properties are modeled in the NRC. Specifically, we use graph 
theoretic concepts to represent the network in NRC. Additionally, the network graph in NRC has additional attributes to 
represent the flow of information. Since changes in the network graph will automatically alter the information flow, 
NRC is able to represent the interaction between the network and information layers. With NRC, we can model the 
conditions of the network at a static snapshot in time. To represent the dynamism in NCO/NCW networks, we define 
mathematical functions within PMC for mapping the transitions between successive snapshots of the network 
represented by the NRCs. In order to conduct performance analysis with our model, we define metrics in the PTSC 
module. Due to the plug-n-play nature of NCO-PP, the labels/attributes in the NRC, the functional mapping in the PMC 
and the metrics used in the PTSC are not fixed. In fact, each component can be modified independently of other 
components. Although we are able to model and analyze the SA performance using NRC+PMC+PTSC, the SIC 
component in NCO-PP helps in utilizing this information in order to come with recommendations for optimal behavior.  
 
NCO-PP is a generic framework which allows for wide ranging models representing different aspects of NCO/NCW to 
work together. And by modeling SA within NCO-PP, we retain our model’s ability to extend to various scenarios, 
conditions and incorporate different modeling tools and techniques. As a preliminary step towards validating our model, 
we provide specifics of techniques, representations and algorithms that may be used within our model as an initial 
realistic implementation of the SA analysis process. It may be noted that our model is not tied down to these specific 
representations or assumptions, and modifications and/or new approaches can be made according to the requirements. 
For a detailed explanation and analysis, please refer to [21].  
 
3.1 Network Representation Component (NRC)[5]  
 
As mentioned before, we use the graph-theoretic concepts of nodes and edges in order to model the effects of 
heterogeneity, hierarchy and dynamism on SA in typical NCO/NCW network. For the purposes of validating this model, 
we classify the nodes in our experimental setup into three types based on their roles. They are: 

1) Sensor Nodes: contain sensors that monitor the environment for changes/events  
2) Relay Nodes: are base stations that collect information from the sensor nodes belonging to its subnet  
3) Fusion Nodes: receive event information from its subordinate relay nodes and assimilate the information and build 
the COP of the environment. Due to the hierarchical nature of the network, fusion nodes at the upper hierarchical 
levels have a broader view of the world. 

In the network graph, delay in information flow due to queuing and transmission is modeled as part of the edge behavior. 
We use a Weibull distribution function ),;( λkxf [20] in order to represent the delay characteristics on each link. 
Weibull probability is mathematically more tractable for analysis and the shape of the curve can be easily controlled 
using just two parameters k, λ.  
 
The nodes and connection in the NCO/NCW network is represented as a graph ܩሺܸ, ܸ ሻwhereܧ ൌ ܨீ ீܤڂ  is the ீܵڂ
vertex set representing the nodes in the graph and ܧ ൌ ாܨ ாܤڂ ܨீ .ா represent the edge setܵڂ , ,ீܤ ܵீ  are the set of fusion, relay and sensor nodes respectively. ܨா ൌ ሼሺܽ, ܾሻ א ܨீ ൈ ܨீ : ܽ, ܾ א ܨீ , ܽ ൌ ாܤ ,ሺܾሻሽݕݐ݅ݎ݋݄ݐݑܣ ൌ ሼሺܽ, ܾሻ א ܨீ ൈ :ீܤ ܽ א ܨீ , ܾ א ,ீܤ ܽ ൌ ሺܾሻሽ  ܵாݕݐ݅ݎ݋݄ݐݑܣ ൌ ሼሺܽ, ܾሻ א ீܤ ൈ ܵீ: ܽ א ,ீܤ ܾ א ܵீ, ܽ ൌ  ሺܾሻሽݕݐ݅ݎ݋݄ݐݑܣ
Each element ݒ א ܸ in ܩ has a set of labels that define its properties. Each label may have an associated weight when 
combined denote its qualitative/ quantitative measure. We now enumerate the labels and corresponding weights for the 
nodes and edges in the graph. We choose these particular labels to use in the experimental setup and validation. It may 
be noted that this choice of labels and weights is not rigid and can be changed according to our requirements. 
 
Sensor Node: 

a. Sensing ability: Type of events or properties of an event detected by the node 
b. Authority: relay node that caters to this node 
c. Failure characteristics: A probability distribution of the frequency with which the node moves out of its 

neighbors’ transmission range. In this paper, we have defined failure characteristics for only sensor nodes. The 
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rationale being that sensor nodes work in the field and are also the most dynamic. Relay and fusion node are 
comparatively less mobile and better protected. 

Relay Node: 
a. Authority: fusion node that collect the information from this relay node 
b. Observation Zone: is the geographic zone of operations associated with the sensor nodes working under the 

relay node 
Fusion Node: 

a. Authority: Other fusion nodes higher up in the hierarchy that this node sends the data to. 
b. Hierarchy level: is the number of hops that this fusion node is away from the apex of the hierarchy. 

Link: 
a. Delay characteristics: We use Weibull distribution function ),;( λkxf  in order to represent the delay 

characteristics on each link. 
  
The NRC also models the information space using the concepts of events and event chains. A significant change in the 
environment detected by a sensor is called an event. We define event to be the fundamental units of the information layer 
with spatial and temporal characteristics. Typical scenarios consist of chains of events occurring one after another and 
culminating in a major event. We use Bayesian Knowledge Bases (BKBs)[7] to model the uncertainty and temporal 
dynamism of events and the emerging event chains. The framework for BKBs put forth by Santos and Santos[7] unifies 
the if-then-else style rules with probability theory, making it semantically sound, flexible and intuitive to understand. 
BKBs have an advantage over traditional Bayesian Networks because of their ability to provide representation to real 
world scenarios. BKBs represent objects, world states and the relationships between them using a directed graph. The 
graph consists of nodes which denote various random variable instantiations while the edges represent conditional 
dependencies/independencies between them. Let ℜ  denote the real numbers, +ℜ   denote the non-negative reals, and 
φ  denote the empty set. 
 
Definition 1 (Def 1 from [7]): A correlation graph  E)S, (I G U= is a directed graph such that φ=SI I  and 

}{}{ ISSIE ××⊆ U . Furthermore, for all ),(, baSa∈ and ሺܽ, ܾᇱሻ are in E if and only if ܾ ൌ ܾᇱ. }{ SI U are the 
nodes of G and E are the edges of G. A node in I is called an instantiation-node (I-node) and a node in S is called a 
support-node (S-node). 
 
In our initial validation, we use the following set of labels in NRC to represent the information space. The labels are: a) 
Active chains: are event chains that are considered to be important and currently in progress. b) Success Chains: is the 
list of event chains that have been completed. c) Failed chains/false alarms: are chains that do not reach the leaf BKB 
node even after a long duration of time. d) Event Record: Each fusion node also has a list of events from the information 
passed on to it by other nodes. The time of occurrence and its positional coordinates are also stored. Fusion nodes also 
make prediction of the future events for the active chains it is monitoring and these prediction are also stored in the event 
record waiting for confirmation. These predictions are used by the node to make a decision on whether to continue 
monitoring this event chain and also if this information needs to be shared with other nodes. 
 
3.2 Performance Measures Component (PMC)[5]  
 
We formulate the SA model within NCO-PP by using the NRC component to represent the static network graph and the 
Performance Module Component to represent the dynamism. Prediction strategies for future events in the information 
space and changes in the network space are used for mapping the network state at different time snapshots. Based on 
these predictions of the future conditions of the network, each node can decide on how long to monitor particular events. 
This in turn affects the information sharing and filtering process in the network.  
 
The various blocks (see Figure 1) in the implementation of PMC are the Projection component, Network Effect 
Calculator and the Information Sharing component. When a new event is received by a node, the Projection component 
will check its event record to determine if the event belongs to an existing event chain. The event record is updated 
regularly using the information from the NRC. The knowledge base contains some commonly occurring event chains. 
Using the information in the knowledge base, the prediction algorithm block calculates a set of future events. This set of 
events is relayed to the Network Effect Calculator to determine the network conditions in the regions where these future 
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events are likely to happen. The Network Effect Calculator uses the information from the NRC to determine the network 
effect on the predicted future events, which is then relayed to the Information sharing component. The list of future 
events is also relayed to this component. Using the predicted network conditions and the predicted events, an optimal 
monitoring time is calculated. This is the time period for which the node will monitor the event chain. Depending on the 
occurrence of future events, this event chain may be downgraded or upgraded. An upgraded event chain will likely be 
sent to a higher level node and a downgraded event chain is sent to a lower level chain.  The nodes at the highest levels 
have a broader perspective about the field, so there is a higher probability of “joining the dots” at this level. Hence there 
is a better chance for a more complete SA if the inference of the events is done at higher levels.  In the Optimal 
Monitoring Time Component, we use a Cost-Reward methodology to model the information sharing in the network. 
There is a cost to a particular node paying attention to a particular event list. This cost increases monotonically with 
hierarchy level. Hence the cost of keeping an event chain in active list with higher level nodes is more than lower level 
nodes. This is to make sure that only the most important chains are considered by the higher level nodes and once the 
event chain priority decreases it is immediately pulled down. But in order to balance the effect of the cost, we have a 
reward system in the nodes for identifying a successful chain. This reward also increases monotonically with hierarchy. 
Each fusion nodes will try to maximize the rewards and minimize the cost based on the evidence they have about a 
particular event chain and in the process drive the information sharing and filtering paradigm in the network. By 
changing the values of the cost and reward, we can simulate various forms of information sharing and filtering including 
centralized processing and standalone/scattered processing. 
 
The monitoring time allocation by a fusion node for a particular event chain can be formulated as a non-linear 
optimization problem. Let us consider a network with i hierarchy levels and the root node is said to be at level 1. An 
event chain represented as a BKB fragment is being processed by a node at level j. The optimal time for monitoring the 
particular event chain can be calculated from 

∑
=

∑
=

−
i

j
jfc

i

j
jfr

11
)(Maximize  

Where,   ݂ݎ௝ and ݂ܿ௝ are the expected reward and cost respectively, for node at level j 
 

 
Figure 1 Implementation of PMC 

 
 3.3 Performance Tool Suite Component (PTSC)[5]  
 
In PTSC, we define performance metrics that will measure the “completeness” of the SA generated and also seek to 
measure the efficiency of the information sharing and event prediction strategy adopted by the fusion nodes. These are 
measured using the General Awareness Factor (GAF) and Signal-To-Noise Ratio (SNR) measures respectively. 
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Let: ݁௦: set of events belonging to successful chains ௙݁: set of events flagged by fusion nodes from false alarms ௦ܶ: set of events from successful event chains  
 

General Awareness Factor Signal to Noise ratio ࡲ࡭ࡳ ൌ ࡾࡺࡿ |࢙ࢀ||࢙ࢋ| ൌ |࢙ࢋ||࢙ࢋ| ൅ หࢌࢋห 
 
3.4 Sub-component Interaction Component (SIC)[5] 
 
Resource Allocation (RA) is an important aspect in any network and the resources considered may be in the form of 
bandwidth, computational resources or new nodes. RA is especially important in a dynamic network environment such 
as NCO/NCW where a certain performance is expected. The changing network conditions may adversely affect the 
information sharing in the NCO network leading to deterioration of SA and this can have very adverse repercussions on 
the mission at hand. The NCO-PP based SA model that we have described helps us in the real time analysis of the effects 
of network layer on the information layer. This analysis can be used to proactively allocate appropriate network 
resources so that the quality of the SA can be improved. We employ such a RA strategy in SIC that will recommend 
appropriate levels of resource allocation. In Figure 2, we describe the various blocks in our implementation of the SIC. 
When a new event is detected by a node, the SIC gets a set of possible future events from the PMC. In the Event 
Visibility Calculation block, the SIC gets the possible locations of these events and checks whether there are enough 
resources to observe the events. In the Resource Allocator block, the algorithm allocates sufficient resources based on 
the probability and importance of the future events. Then a recommendation for this resource allocation is made to the 
NRC. The two types of resources considered in our implementation are 1) Feeds and 2) Special Sensor nodes. Feeds are 
special information pathways attached to a node that can receive information from sensor nodes that are not in the same 
branch. These feeds allow lower level fusion nodes to get information that in normal conditions they are not entitled to. 
Special sensor nodes are highly mobile sensor nodes that can be quickly deployed in a geographical area that is not well 
covered. There are only a limited number of such sensors and their allocation is based on the importance of observing an 
event. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 Sub-components of the SIC 
 

4. EVALUATION 
 

We run a set of experiments to evaluate our framework’s ability to model various aspects of the SA process. For our first 
step, we experiment and evaluate the need for filtering information by comparing a hierarchical sensor system (A) with a 
system (B) which processes all information centrally at the apex node. Inherent simplicity of behavior, interaction and 
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more complete awareness as a result of centrally available information are a few advantages system B has over system 
A.  On the other hand, System A is scalable in terms of processing power and memory as the amount of incoming 
information grows; a situation which will render system B largely infeasible. In the next step, we explore if our model is 
able to test whether network dynamism has an apparent effect on SA in NCO/NCW systems; a largely unexplored 
intuition when we discuss such overarching frameworks. After establishing the effects of network dynamism on SA, we 
utilize the NCO-PP framework to explore whether adapting information sharing and resource allocation behavior by 
intuitively incorporating key network characteristics (network delay and node failure probability) can improve the level 
of SA in information systems. With these experiments we intend to test and verify the ability of this framework to model 
interactions between factors in network and information space. We also look to explore this framework’s ability to 
provide insights into the performances of such systems while we try to analyze and predict theoretically intractable 
interactions.  
 
4. 1 Experimental Setup 
 
In order to simulate aforementioned experiments, we built a Discrete Event simulator in Python[19]. It was used to 
simulate a simple NCO/NCW network consisting of three levels of fusion nodes beginning at the apex level 1. Each 
fusion node in level 1 has two children, level 2 has 4 children. Each fusion node at level 3 receives information from 2 
relay nodes. Each relay node has authority over 2 sensor nodes. The environment is divided into 9 distinct zones and 
each of the relay nodes is randomly placed in one of the zones. As far as simulating the information space is concerned, 
90 types of events are considered. These events are scenario neutral in the sense that they do not denote any real life 
event. We form a number of event chains from the events making sure that the transition properties (e.g. Interval 
between two events) of these events correlate to real life situations. These event chains have around 8 I-nodes and 10 S-
nodes. During the experimental run, 30 event chains are made to simultaneously evolve so as to realistically simulate the 
fast paced nature of the NCO/NCW environments. Each experimental run is for a period of 1000 time steps. The 
simulation is run in a LINUX environment on a machine with 2.2 GHz dual-core Centrino processor and 2GB RAM. 
Lindo API is used to do the non-linear optimization for Monitoring time calculations in the PMC. 
 
4.2 Experiment 1 

 
The aim of the first experiment is to contrast two approaches in information filtering: Hierarchical (Static Approach) and 
Centralized (Primitive Approach). Though it is a well established fact that hierarchical filtering is better (as evidenced by 
its wide spread adoption in NCO/NCW), we experimentally prove it as a way to validate our idea of using NCO-PP to 
build a model for SA. We now describe these two approaches in detail: (a) Primitive Approach: Information is 
centrally processed in the root node only. In the pseudo code given in  
Table 1, a) Predictions(k) refers to the predicted future events at fusion node k, b) Level(k) refers to the tier of hierarchy 
to which the fusion node k belongs and c) Level(apex node) is 1. (b) Static Approach: There is progressive information 
filtering at each level. In the pseudo code given in  
Table 1, a) Records(k) refers to the event record register at fusion node k and b) EndConfidence(l,k) refers to the 
probability of instantiating an end event if the scenario l progresses, according to the understanding of node k. We term 
the hierarchical approach as “static” since dynamic network information is not used. 
Hypothesis: We perform experimental runs to test the following hypothesis: Information filtering at different levels in 
the hierarchy improves the quality of information in the general awareness picture (GAP).   
 
Results 
In the experimental runs, we measure the quality of the SA in terms of Signal-To-Noise Ratio (SNR) at every time step. 
The run is repeated for different values of the network dynamism. Additionally, we count the number of false alarms 
among the events monitored by the network nodes. From the analysis of the results, we see that the quality of SA is 
better when hierarchical filtering strategy is adopted over centralized processing of events with no filtering. For lack of 
space, we present only a sample of the experimental results. We present the SNR Vs time graphs in Figure 3(a). A bar 
chart comparing the number of false alarms between the primitive and static system are shown in Figure 3(b). From the 
experimental results, we see that there is consistent better quality of information (SNR) in the system adopting 
hierarchical information filtering under dynamic conditions. In the Primitive System, apex operator will be overwhelmed 
by false alarms. This can be observed from the bar graph (Figure 3(b)) where we see that the number of false alarms 
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(thought to be important) in Primitive approach is roughly twice the size of the Static approach. Hierarchical filtering 
retains significantly less percentage of false alarms, allowing more effective focus on critical situations.  
 

Procedure for Primitive System Procedure for Static System 
for all event i do 

for all sensor j such that j records i do 
j routes i to the apex node k 

end for 
k adds i to update Records(k) 
k updates future event predictions 
k updates the corresponding scenario as (in)active 

end for 
At the apex fusion node k 
for all Active scenario l א Records(k) do 

if EndConfidence(l, k) ൒ 20% then 
Flag all knowledge and recorded events for the scenario 

l 
Reflect the flagged information in GAP 

end if 
end for 

for all event i do 
for all sensor j which records i do 

j routes i to a fusion node k 
end for 
for all fusion node k such that k receives i do 

k adds i to update Records(k) 
k updates future event predictions 
k updates the corresponding scenario as (in)active 

end for 
end for 
At the each fusion node k: 
for all prediction m א Predictions(k) do 

Share prediction m up/down the hierarchy following the 
schedule obtained by Optimal Monitoring Time 
calculations 

end for 
for all Active scenario l א Records(k) do 

if EndConfidence(l, k) ൒20% ൈLevel(k) then 
Flag all knowledge and recorded events for the 

scenario l 
Reflect the flagged information in GAP 

end if 
end for

 
Table 1 Pseudo code for the information filtering in Primitive and Static Approach 

 

(a)SNR Vs Time with Avg. Duration between failures = 10 (b) Ratio of false alarms 
Figure 3 Results for various Dynamic Conditions in the Network in Experiment 1 

 
4.3 Experiment 2 

 
After validating the effect of information filtering on SA, we utilize our framework to understand the effect of 
incorporating the critical network characteristics into our model. We also try to determine whether incorporating the real 
time network information leads to substantial improvements in SA. In this experiment, we test the intuition “Intuitively 
incorporating network delay characteristics in the information sharing/filtering process may improve the GAF factor” 
and it should be significant under increased network dynamism.  
 
Approaches 
Here we compare the Static approach used in Experiment 1 with a Dynamic approach. The Dynamic approach is similar 
to the Static approach but with the additional capability to use network delay characteristics during information sharing. 
It uses real time state of the network in order to determine the events to monitor and the monitoring period. For details 
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about the operation of these two approaches, please refer to the pseudo code in Table 2 where, a) SendingDown(m, t, k) 
checks if node k needs to send down/degrade the prediction/event m at time t according to the schedule obtained from 
calculation in the Optimal Monitoring Time calculation, b) PathExists(k,m) refers to all possible logical paths through 
which information about occurrence of event m will reach the fusion node k, c) Delay(p) refers to the current network 
delay on the logical network path p and d) DelaySending(m, k,Mindelay) is the routine which accommodates minimum 
delay information to defer degradation of event prediction. 
 

In Static Approach In Dynamic Approach 
for all fusion node k and time step t do 

for all prediction m א Predictions(k) do 
Share prediction m up/down the hierarchy following the 

schedule obtained from Optimal Monitoring Time 
Calculations 

end for 
end for 
 
 
 

for all fusion node k and time step t do 
for all prediction m א Predictions(k) do 

Share prediction m up the hierarchy following the 
schedule obtained from Optimal Monitoring 
Time Calculations 

if SendingDown(m, t, k) then 
Mindelay ՚ ∞  
for all path p א PathExists(k,m) do 

MinDelay  ՚ Min(MinDelay,Delay(p)) 
DelaySending(m, k,MinDelay) 

end for 
end if 

end for 
end for

Table 2 Pseudo Code for the Static and Dynamic Approaches in Experiment 2 
 
Results 
In this experiment, we record the GAF at each time step of the experiment. This experiment is repeated for different 
values of the network dynamism. For lack of space, we provide the graphs for only two node failure rates in Figure 4. 
Table 3 gives the lower range of the GAF experimental results of the Dynamic approach and the upper range of the 
Static approach. We expect that the quality of the SA for the Dynamic Approach will be better than Static and this 
contrast will be magnified when the network dynamism is high. We make the following main observations from the 
experimental results. In Figure 4, (a) displays the GAF for highly dynamic network and (b) is for lightly dynamic 
network. By comparing these two graphs, we see that the quality of the SA in the Dynamic approach is better than the 
static approach and this divergence is greater when the network dynamism is high. Hence we observe a decisive 
advantage of using network delay characteristics while sharing information in a hierarchical network. We included Table 
3 to demonstrate how the difference in the lower GAF range of the Dynamic approach and the upper GAF range of the 
Static approach, increases with higher dynamic conditions. It also indicates that the dynamic approach has increased 
resistance as compared to the static approach against the deteriorating effect of network dynamism. Our experimental 
results help in recognizing the positive impact of incorporating network delay in information sharing on the 
completeness of SA in highly unstable environments. 
 
 

(a)Avg. Duration between failures = 60 (b)Avg. Duration between failures = 10 

Figure 4 Cumulative General Awareness Factor Plots for different dynamic conditions in Experiment 2 
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We make the following main observations from the experimental results. In Figure 4, (a) displays the GAF for lightly 
dynamic network and (b) is for highly dynamic network. By comparing these two graphs, we see that the quality of the 
SA in the Dynamic approach is better than the static approach and this divergence is greater when the network 
dynamism is high. Hence we observe a decisive advantage of using network delay characteristics while sharing 
information in a hierarchical network. We included Table 3 to demonstrate how the difference in the lower GAF range 
of the Dynamic approach and the upper GAF range of the Static approach, increases with higher dynamic conditions. It 
also indicates that the dynamic approach has better resistance against the deteriorating effect of network dynamism than 
the static approach. Our experimental results helps in recognizing the positive impact that incorporation of network delay 
in information sharing, has on the completeness of SA in highly unstable environments. 
 

 60 50 40 30 20 10 
Static U-range 0.737 0.712 0.714 0.687 0.624 0.472 
Dynamic L-range 0.737 0.731 0.716 0.690 0.618 0.522 
Dynamic L - Static U 0 0.019 0.002 0.003 -0.006 0.05 

Table 3 Comparison of Lower(L) and Upper(U) GAF Ranges for the Two Approaches in Experiment 2 
 
4.4 Experiment 3 

 
As the next step to Experiment 2, where we demonstrated the significance of incorporating network delay characteristics 
in effectively modeling situation awareness, we now focus on using the dynamic network information for proactive 
resource allocation decisions. 
 
Hypothesis:  This experiment allows us to explore if modeling the dynamic information and network space can lead to 
effective and better utilization of limited resources.  This is in contrast to a more naïve approach of resource allocation 
guided solely by the information state requirements. Hence the hypothesis that we seek to prove is: Taking sensor node 
failure characteristics into account while making decisions for dynamic resource allocation will improve the 
completeness of resulting situation awareness or GAF. 
Our Approaches: We compare Proactive-Base, resource allocation guided by requirements of information space only, 
with Proactive-limited where resources are allocated taking into consideration both network dynamism and information 
space requirements. Both of these approaches are extended from the dynamic approach described in Experiment 2 and 
allow us to increase the complexity of our framework in a controlled manner. This experiment further tests the ability of 
NCO-PP framework to represent increasing complexity and bring together advances in different network and 
information domains under a common lens.   
In the following section we describe the salient features of both the approaches compared in this experiment.  
Proactive-Base: 
1) This approach represents hierarchical distributed information gathering systems following information filtering 
paradigm and leveraging information about network characteristics for sharing information. 
2) The approach does not take into account network state/characteristics while allocating resources.  
3) This approach does not have upper-bound on the amount of deployable resources.  
4) Overall probability that a particular prediction may not be observed goes to zero if at least one sensor node can 
monitor the event and the information can be delivered to the concerned fusion node. 
Proactive-Limited:  
1) This approach represents hierarchical distributed information gathering systems following the hierarchical 
information filtering paradigm and leverages network characteristics while sharing information. 
2) This approach takes network characteristics into consideration while allocating resources in real time. 
3) This approach has specific upper bounds on the number of resources it could deploy. 
4) For a fusion node predicting an event, the probability of not being able to observe the event decreases by the factor of 
the sensor node failure probability for each sensor that can detect instantiation of the prediction and evidence relayed to 
the fusion node. 
 
Results  
As before, we record the GAF for each time step. We not only run the experiment under various dynamism rates but also 
with different amounts of available resource for the proactive-limited approach. These are essentially Special sensors 
(described in Section 3.4) available for temporary deployment. We run experiments on proactive-limited keeping the 
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upper bounds on the special sensors to be 6, 8, 24 and 32. From Figure 5, we can decisively say that proactive-limited 
approach provides better and more complete GAP as compared to proactive-base. The results displayed show the 
minimum resources required by the proactive-limited to perform better than the proactive-base approach. It may be also 
noted at higher rates of dynamism, proactive-limited require more sensors to beat proactive-base. As the proactive-
limited approach is a heuristics based approach, it does not always guarantee the optimum solution. As part of the future 
work, we aim to develop more sophisticated resource allocation strategies. However we were able to demonstrate with 
this experiment that a simple and intuitive heuristics based approach can provide consistently better results and 
maximum GAF when network characteristics are considered during resource allocation. 
 

(a)Avg. Duration between failures = 60 (b)Avg. Duration between failures = 40 

(c)Avg. Duration between failures = 20 (d)Avg. Duration between failures = 10 
Figure 5 Cumulative GAF for various network dynamism rates in Experiment 3 

 
5. CONCLUSION 

 
In this paper, we formulated a performance model within the framework of NCO-PP. By conducting simulations studies 
on a 3-tier hierarchical sensor network, we successfully demonstrated the necessity of representing the decision making 
and network aspects of SA and their interactions for a realistic SA model. As an initial step, we used our model to 
validate the fact that information filtering is necessary for scalable performance of SA. Specifically, we showed that 
there is a 47% reduction in the number of false alarm events with hierarchical information filtering over centralized 
processing. We also demonstrated the information sharing policies which are vital for effective SA should take the 
deteriorating effect of highly dynamic network conditions into account. In fact by doing so, we see that there is a 10% 
improvement in SA performance. Our model can also be used to guide the users in deploying resources efficiently. The 
resource allocation strategies that we deployed in our experimental studies led to a 5% improvement in SA performance 
over baselines that did not take network dynamism into account. In short, we have successfully demonstrated the 
superiority of our modeling paradigm over traditional SA models that make simplifying assumptions of the network 
conditions. 
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