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ABSTRACT  

Modeling large military targets is a challenge as they can be complex systems encompassing myriad combinations of 

human, technological, and social elements that interact, leading to complex behaviors. Moreover, such targets have 

multiple components and structures, extending across multiple spatial and temporal scales, and are in a state of change, 

either in response to events in the environment or changes within the system. Complex adaptive system (CAS) theory can 

help in capturing the dynamism, interactions, and more importantly various emergent behaviors, displayed by the targets. 

However, a key stumbling block is incorporating information from various intelligence, surveillance and reconnaissance 

(ISR) sources, while dealing with the inherent uncertainty, incompleteness and time criticality of real world information. 

To overcome these challenges, we present a probabilistic reasoning network based framework called complex adaptive 

Bayesian Knowledge Base (caBKB). caBKB is a rigorous, overarching and axiomatic framework that models two key 

processes, namely information aggregation and information composition. While information aggregation deals with the 

union, merger and concatenation of information and takes into account issues such as source reliability and information 

inconsistencies, information composition focuses on combining information components where such components may 

have well defined operations. Since caBKBs can explicitly model the relationships between information pieces at various 

scales, it provides unique capabilities such as the ability to de-aggregate and de-compose information for detailed analysis. 

Using a scenario from the Network Centric Operations (NCO) domain, we will describe how our framework can be used 

for modeling targets with a focus on methodologies for quantifying NCO performance metrics. 

Keywords: target modeling, complex adaptive systems, bayesian knowledge bases, information aggregation, information 

composition, network centric operations, self-synchronization. 

 

1. INTRODUCTION 

Recent advances in sensor and network technologies have led to a revolution in military affairs (RMA) in the form of 

Network Centric Operations (NCO)1. NCO aims to support a paradigm shift in the way warfare is conducted through the 

use of various sources of intelligence including advanced Intelligence, Surveillance and Reconnaissance (ISR) assets to 

collect and share information at various levels of the command and control hierarchy. The key advantage of adopting this 

paradigm is to move away from the top-down information sharing which is prevalent in traditional military organizations, 

and support a more dynamic fighting force based on the availability of more accurate situational awareness throughout the 

organization, including the units on the ground. In short, the network becomes a weapon. As militaries around the world, 

adopt the NCO paradigm, it becomes essential for military planners to develop computational models that can adequately 

represent the intricacies of such organizations. One particular challenge is that human actors are an integral part of the 

decision making process in NCO organizations which introduces a certain level of uncertainty in the overall system 

behaviors. In the same vein, military planners are also interested in modeling events and organizations of national interest, 

such as modeling drug cartels in Mexico2 and military conflicts in Syria and Iraq3, which are complex and have multiple 

levels, with each level consisting of components, of varying autonomy, interacting with each other. Traditional target 

modeling techniques, as exemplified by the research in the target tracking domain4, takes a simplistic approach wherein 

such organizations are considered to be monolithic and the underlying sub-systems and their interactions are either ignored 

or simplified. Although the traditional techniques have been effective when considering systems whose behaviors are well 



 

 
 

 

understood, such as modeling the trajectory of a missile, it starts to break down when considering complex systems where 

the interactions between its components or sub-systems can lead to new and unexpected behaviors.  

There has been a growing trend in moving away from traditional target tracking models to methods that consider the targets 

to be complex adaptive systems. Complex adaptive systems (CAS) theory5 models a system as a combination of 

autonomous components or units which interact with each other to generate complex behaviors. Adaptivity, emergence 

and self-organization are the key properties5 exhibited by complex adaptive systems. Adaptivity refers to the ability to 

modify existing behaviors or learn new behaviors through interactions with other units in the system and with their 

environment. The interactions of the autonomous units and their inherent adaptivity can give rise to new and unexpected 

system behaviors as part of a phenomenon observed in CAS, called emergence. The interactions also can lead to groupings 

of the units in a process called self-organization, which is responsible for spontaneous generation of structures at various 

spatial and temporal scales. This property lends a multi-scalar and multi-level organizational structure to complex adaptive 

systems, which incorporate additional modeling challenges. Although CAS theory provides a path forward, any modeling 

framework proposed for this domain should also deal with other critical challenges, such as the inherent uncertainty in 

system behaviors involving human actors, the incompleteness of intelligence and ISR information about the target and the 

need to model components and structures at various spatial and temporal scales. Traditional methods, which have greater 

success when modeling systems with homogeneity in component behaviors and interactions, start to break down when the 

components can transform itself by learning new behaviors. Moreover, these methods typically represent the components 

of the models as black boxes that make end-to-end system analysis, while providing the underlying reasons and 

explanations, difficult. 

In this paper, we present a framework called the Complex Adaptive Bayesian Knowledge Bases (caBKBs), for modeling 

real world targets as complex adaptive systems while overcoming the challenges of incorporating real-time information 

from various intelligence sources. caBKB is an extension and generalization of a well-known probabilistic reasoning 

network methodology called Bayesian Knowledge Bases (BKBs)6. BKBs have been utilized to model a number of real 

world scenario such as cross-border disease spread model7 and nation stability models8, 9. The strength of BKBs is its 

ability to systematically represent complex behaviors in terms of more fundamental behaviors which can be combined by 

using a mathematically rigorous fusion algorithm10. BKBs represent these behaviors in terms of conditional probability 

rules (CPRs), which unlike Bayesian networks, can be built with an incomplete knowledge of the conditional probabilities. 

Moreover, a rich set of tools, such as Bayesian updating and revision6, can be used with BKBs to provide analysis and 

predictions. caBKBs extends the BKB framework by allowing for the decomposition of a random variable into one or 

more BKBs, to represent underlying components. This allows caBKBs to support modeling and analysis of system 

processes at various scales, levels and entities. One of the key contributions made by caBKB is providing a rigorous 

mathematical framework for representing the two ways for incorporating information from ISR assets and other 

intelligence sources into a target model, namely information aggregation and information composition. Information 

aggregation refers to the process handled in most traditional data fusion and target modeling methodologies and is 

concerned with the incorporation of new pieces of information while handling inaccuracies and possible inconsistencies. 

On the other hand, information composition refers to the formulation of new components, along with well-defined 

operations. Although caBKB provides the framework to represent the multi-scale, multi-level and multi-entity behaviors 

of a system, other aspects such as the underlying networking infrastructure, sensor and weapons systems, that enable 

information sharing and other NCO capabilities need to be modeled. In previous work, we presented a framework for 

performance modeling and analysis of NCO environments, called the Network Centric Operations Performance and 

Prediction (N-COPP)11–13. N-COPP adopts a component based architecture that allows for the formulation of the 

mathematical representations of the underlying networks, network dynamism models, analysis tools and prediction 

techniques in separate components, which can then be used in a plug-and-play fashion. One of the contributions in the 

paper is to demonstrate how N-COPP can be used with caBKB to represent network specific properties and behaviors 

while providing the ability to define new performance metrics and to provide analysis.  

To motivate the capabilities of the caBKB framework, we also provide some initial work in using it to model Somali 

pirates, operating along the coastline in the Horn of Africa (HOA). Piracy in Somali waters grew out of the prolonged 

inter-clan conflict in Somalia that followed the collapse of the central government in the 1990s. The pirate groups, which 

started off as an ad hoc enterprise, have grown into a paramilitary operation with sophisticated employment of technology, 

organization and tactics. A key challenge is that these groups are not well understood and information about their makeup, 

hierarchy and operational tactics are scarce. The Somali piracy scenario presents unique modeling challenges that 

distinguishes it from other military scenarios. In the following sections, we provide a background into some of the relevant 

state of the art methodologies in target modeling before going into the details of the caBKB framework. We focus on the 



 

 
 

 

capabilities of caBKB to support information aggregation, and its ability to leverage representations, performance metrics 

and analysis tools of the N-COPP framework to model targets with NCO capabilities. Using the Somali piracy scenario, 

we provide an initial demonstration of the capabilities of caBKB by using it to model an important NCO performance 

measure called self-synchronization14. 

2. BACKGROUND 

Modeling military targets have been studied in various domains ranging from filtering approaches for refining sensor 

information to building complex models to analyze military operations. Earlier works on modeling targets focused on 

estimating the state of a simple target based on the information obtained from a sensor4, 15 and subsequent works focused 

on fusing information from multiple sensors16, 17. The advances in information technology and the evolution of network-

centric warfare military doctrine over the past few decades have progressively given rise to works that focus on modeling 

military targets of increasing complexity based on approaches such as complex adaptive systems5, 18 and system of 

systems19. One of the prominent approaches used in estimation and prediction of a target’s position is applying one or 

more variations of the Kalman filter15. However, the Kalman filter cannot be applied to problems where the linear Gaussian 

assumptions fail to hold4. Extended Kalman filter and unscented Kalman filter are two extensions of the Kalman filter that 

can be used for target estimation when the linear Gaussian assumptions fail to hold. Although the original Kalman filter 

focused on estimating the target state from a single sensor, later works addressed fusing information from multiple 

sensors20, 21.  

Another important issue in target tracking is that targets movement consists of both maneuvering and non-maneuvering 

motions22. This challenge is addressed in multiple model approaches by using a bank of filters. Each filter is matched with 

a different target motion and are run in parallel23. Generalized pseudo-Bayesian approach24 and interacting multiple model 

(IMM)25 are two of the commonly used multiple model approaches. Furthermore, IMM filters can be used in conjunction 

with other filters such as Joint Probabilistic Data Association (JPDA)26 to track multiple targets. A more elaborate account 

of the evolution of various methods for target tracking is also discussed in Smith et al.23 and Mazor et al.27. Although the 

accuracy of target estimation provided by a single sensor is crucial, actual military operational environments consist of 

networks of heterogeneous sensors. Many works in both military and nonmilitary domains have focused on information 

fusion in distributed sensors platforms28, 29. Some of the key challenges that need to be addressed when information is fused 

from multiple sensors are achieving consensus and cooperation among the sensors and addressing issues such as node and 

link failures. Various consensus filters and algorithms were proposed to efficiently fuse information from multiple sensors16, 

17, 28. In addition, many works have also proposed information fusion methods that are robust to unreliable communication 

links30 and sensor failures31. Although sensor based target tracking approaches are critical to model a certain class of military 

targets their utility is limited to processing information obtained from organic sensors (such as GPS, radars, sonars, 

infrareds, etc.). However, in current military environments information are not only obtained through organic sensors but 

also from various other sources such as human intelligence, expert opinions and other domain specific information sources. 

The target modeling approach presented in this work can leverage information obtained from sensor based target tracking 

methodologies along with other information sources. A key characteristic of current military operations is Network Centric 

Operations (NCO), where information from diverse mediums are integrated to provide an increased situational awareness32. 

Liang et al.32 proposed a threat assessment framework called knowledge-based ubiquitous and persistent sensor network 

(KUPS) that combine information from multiple sources. Many works have also focused on building agent-based models 

and simulation frameworks to understand the interoperability33 and communication performance34 between different 

components of the NCO framework. These techniques can be applied to model network-centric aspects of the military units. 

However, these approaches are restricted to specific warfare environments and situations and are not generalizable to 

understand the overall effectiveness and performance across all NCO/NCW networks. As described in section 4.1, in this 

work we leverage the N-COPP network performance modeling framework that provides a generic methodology to 

represent, model and analyze NCO/NCW environments of the target system. 

In addition to the network-centric components, modeling large military targets requires the ability to model the behaviors 

and interactions between complex systems comprising of various human and technological entities. The rise in 

computational capabilities over the past few decades has enabled researchers to model sophisticated military units and their 

interactions. Many works focus on modeling these complex military entities as complex adaptive systems (CAS)5, 18. Agent-

based modeling is a popular approach to model such complex adaptive models. Map Aware Non-uniform Automata 

(MANA)35 is an agent-based model where each agent in the model has a set of personality parameters that determines the 

movements of the agent18. MANA can be used to model agents and their interactions in scenarios such as maritime 



 

 
 

 

surveillance and coastal patrols36. Swarm37 provides a multi-agent platform to simulate complex adaptive systems. In this 

model, each component can be modeled as a swarm that represents a collection of agents executing a schedule of actions. 

Cil et al.38 proposed a multi-agent architecture to model military units as complex adaptive systems. This approach uses 

two layers of agents, the cognitive agents and the reactive agents. The cognitive agents build an operational plan based on 

the information obtained from various databases such as intelligence, environment, terrain, logistic and other relevant 

databases. The MANA simulation module is used to model the operational plan using reactive agents. System of systems 

(SoS) is another systems engineering approach to understand the overall behavior of a set of interlinked systems. Current 

military operations require multinational and interagency cooperation and interdependent joint command and control 

systems39. Many works have discussed the challenges involved and approaches that can be used to model military 

organizations as SoS39–41. One of the key issues in current agent-based modeling and SoS approaches is that they lack the 

ability to provide unambiguous and detailed explanations for the observed behavior. In addition, modeling complex targets 

require capturing the dynamism and emergent behaviors exhibited by the sub-components of the target systems. 

Furthermore, the real-world information available to model these targets are uncertain and incomplete. In the following 

section, we present our approaches to address these issues involved in modeling complex military targets. 

3. COMPLEX ADAPTIVE BAYESIAN KNOWLEDGE BASES 

In this paper, we propose the Complex Adaptive Bayesian Knowledge Bases (caBKBs) framework to model targets as 

complex adaptive systems. Targets of interest to military planners can vary in complexity, ranging from a single armored 

unit in the field to a complex, evolving political movement. caBKB provides a framework to model targets as CAS by 

rigorously representing behavioral information of the main actors/entities/components of a target at multiple scales and 

levels of granularity. Additionally, various factors and interactions, including the socio-cultural aspects, relevant to their 

behaviors, can be embedded in our model by representing them in the form of beliefs, goals and actions, as discussed later 

in this section. The probabilistic reasoning network framework deals with the uncertainty that is inherent in all or many of 

these behaviors. The uncertainty may be due to several reasons including gaps in our understanding of the target; inherent 

uncertainty in human decision making and behaviors; and insufficient intelligence information. Moreover, the observable 

target information generated by ISR sources generally correspond to its overall behavior, which makes it a challenge to 

make corrective changes in the sub-models of the underlying components. The goals of the caBKB are to be able to provide 

a rigorous, axiomatic methodology to incorporate information, from various intelligence sources including electronic 

intelligence (ELINT) and human intelligence (HUMINT) sources, in the target model, while providing a transparent end 

to end analysis. As such, we have generalized this into two main processes, namely information aggregation and 

information composition to distinguish between incorporating “pieces” and “parts”, respectively. The critical difference 

between incorporating “pieces” and “parts” are that parts are information encapsulation with well-defined functions or 

operations. Information aggregation refers to incorporating “pieces” that updates existing components, behaviors and 

processes of the target. Using a source based fusion algorithm42, described later in this section, caBKB is able to quickly 

aggregate new pieces of information, even competing information, in such a way so as to preserve the information and the 

source identity for future de-aggregation and analysis. On the other hand, information composition refers to a more 

fundamental change in the target model through the incorporation of “parts” that can lead to new components, interactions 

and behaviors.  

caBKB is a generalization of the Bayesian Knowledge Bases (BKBs) frameworks. BKBs is a probabilistic reasoning 

network framework that has also been utilized to model complex social, cultural and behavioral characteristics of actors 

or entities in real world scenarios43, 44. caBKB builds on the theoretical foundations of BKBs and focuses on providing a 

rigorous framework for incorporating information in models, namely information aggregation and composition. Before 

going into details of the caBKB framework, we first provide a discussion of BKBs. BKBs are a generalization of Bayesian 

networks that can be used to represent these knowledge fragments as conditional probability rules (CPRs) linking random 

variables (rvs) in an “if-then” fashion6. However, unlike Bayesian networks, BKBs can handle incomplete information 

which is especially critical when modeling real-world scenarios. BKBs are graphically represented as directed graphs and 

consist of two types of nodes: instantiation nodes (I-nodes) and support nodes (S-nodes). The I-nodes represent various 

states of a random variable and the S-nodes represent the probabilistic values linking these random variables. BKBs can 

be formally represented as a tuple and is based on the correlation graph defined in Santos Jr. et al.6.  



 

 
 

 

 

Definition 145. A correlation-graph is a directed graph 𝐺 = (𝐼 ∪ 𝑆, 𝐸) in which 𝐼 ∩ 𝑆 = ∅, 𝐸 ⊂ {𝐼×𝑆} ∪ {𝑆×𝐼}, and ∀𝑞 ∈

𝑆, there exists a unique 𝑎 ∈ 𝐼 such that (𝑞, 𝑎) ∈ 𝐸. If there is a link from 𝑞 ∈ 𝑆 to 𝑎 ∈ 𝐼, we say that 𝑞 supports 𝑎. 

1. 𝑃𝑟𝑒𝑑𝐺(𝑞) represents the set of I-nodes pointing to 𝑞, i.e. 𝑃𝑟𝑒𝑑𝐺(𝑞) = {𝑎 ∈ 𝐼|𝑎 → 𝑞 ∈ 𝐸} where 𝑞 ∈ 𝑆 

2. 𝐷𝑒𝑠𝑐𝐺(𝑞) represents the I-node supported by 𝑞, such that 𝑞 → 𝑎 ∈ 𝐸 

3. I-nodes, 𝛼1 and 𝛼2 are said to be mutually exclusive if they are different instantiations of the same random 

variable  

Definition 245. A BKB is a tuple 𝐾 = (𝐺, 𝑤) where 𝐺 = (𝐼 ∪ 𝑆, 𝐸) is a correlation–graph, and 𝑤 ∶ 𝑆 → [0,1] such that 

1. 𝑃𝑟𝑒𝑑𝐺(𝑞) contains at most one instantiation of each random variable 

2. 𝑃𝑟𝑒𝑑𝐺(𝑞1) and 𝑃𝑟𝑒𝑑𝐺 (𝑞2) are mutually exclusive for distinct S-nodes 𝑞1, 𝑞2 that support the same I-node 

3. Any complementary set of S-nodes 𝑅 ⊆ 𝑆, 𝑅 is normalized: ∑ 𝑤(𝑞)𝑞𝜖𝑅 ≤ 1 where 𝑤(𝑞) is a weight function that 

represents the conditional probability 𝑃(𝐷𝑒𝑠𝑐𝐺(𝑞)|𝑃𝑟𝑒𝑑𝐺(𝑞)) 

BAYESIAN-KNOWLEDGE-FUSION (𝐾1, 𝐾2, … , 𝐾𝑛) 

1. Let 𝐺′ = (𝐼′, 𝑆′, 𝐸′) be an empty correlation graph and 𝑤′ a weight function 

2. 𝐼′ ←∪𝑖=1
𝑛 𝐼𝑖  

3. 𝑆′ ←∪𝑖=1
𝑛 𝑆𝑖   

4. 𝐸′ ←∪𝑖=1
𝑛 𝐸𝑖 

5. for all fragments 𝐾𝑖 with 𝑖 ← 1 to 𝑛 

6.     for all S-nodes 𝑞 ∈ 𝑆𝑖 

7.         Let 𝛼 ← 𝐻𝑒𝑎𝑑𝐺𝑖
(𝑞) 

8.         Let the source I-node for 𝑞 be 𝑠 = (𝑆𝑅𝛼
= 𝜎𝑖 

9.         Add 𝑠 to 𝐼′ and add a new S-node 𝑞𝑠 to 𝑆′ 

10.         Add the edges 𝑞𝑠 →  𝑠 and 𝑠 →  𝑞 to 𝐸′ 

11.         Let 𝑤′(𝑞) ← 𝑤𝑖(𝑞) 

12. for all source variables 𝑆𝑅𝛼
 

13.  Let Λ = {𝑠 | 𝑠 𝑖𝑠 𝑎 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎 𝑠𝑡𝑎𝑡𝑒 𝑜𝑓 𝑆𝑅𝛼
} 

14.  Let 𝜌 ← ∑ 𝑟(𝑠)𝑠∈Λ               

15.     for each 𝑠 ∈ Λ, let 𝑞𝑠 be the S-node such that 𝑞𝑠 →  𝑠 ∈ 𝐸′ 

16.         Let 𝑤′(𝑞𝑠) ← 𝑟(𝑠)/𝜌 

17. return 𝐾′ = (𝐺′, 𝑤′) 
Figure 2. Bayesian knowledge fusion algorithm 42 

The behavioral and decision making characteristics of an entity/actor is based on its intent and knowledge possessed by 

it. Based on the adversarial intent inferencing (AII) model46 we represent intent using four categories: 1) Axioms (X): 

represent the entity’s beliefs about self, 2) Beliefs (B): represent the entity’s belief about other entities, 3) Goals (G): 

represent the aims and goals of an entity and what it tries to achieve, and 4) Actions (A): represent the possible strategies 

Figure 1. Example Bayesian Knowledge Bases (BKBs) 



 

 
 

 

or actions to pursue the goals. Figure 1 provides an example of a BKB related to a piracy scenario. If a fisherman 

possesses a self-belief (axiom) that his fishing income is low, then he will be highly likely to have a goal to join piracy 

related activities. Similarly, if a pirate believes that the coast guard presence is high then he or she will be less likely to 

pursue an attack on any merchant vessel in that region.  

 

Figure 3. BKB fusion example 

Information Aggregation and Composition: As mentioned before, caBKBs provide a framework to conduct information 

aggregation and composition. caBKB supports information aggregation, which deals with updating existing components 

and processes within the system, using the BKB fusion algorithm42. The BKB fusion algorithm (pseudocode provided in 

Figure 2) combines a set of 𝑛 BKB fragments {𝐾1, 𝐾2, … , 𝐾𝑛} where 𝐾𝑖 = (𝐺𝑖 , 𝑤𝑖 , 𝜎𝑖, 𝑟(𝜎𝑖)) and 𝐺𝑖 = (𝐼𝑖 ∪ 𝑆𝑖 , 𝐸𝑖) and 

generates a new BKB, 𝐾′ = (𝐺′, 𝑤′) with 𝐺′ = (𝐼′ ∪ 𝑆′, 𝐸′). Fragments representing various attributes of an entity can be 

combined using the fusion algorithm to create an overall representation of that entity. Furthermore, BKB fusion can be 

used to capture the dynamism involved in real-world scenarios by fusing the BKB fragments representing an entity’s 

beliefs with the fragments representing the events in a scenario. Figure 3 shows a simple BKB fusion example for a Somali 

piracy scenario. A detailed explanation of BKB fusion process can be found in our previous work42. Fused fragments can 

be analyzed using BKB reasoning algorithms. BKBs supports two form of reasoning algorithms, belief revision and belief 

updating. Belief revision algorithm can be used to determine the most probable outcome of the world that contains a given 

set of evidence. Belief updating computes the posterior probability of a target random variable state for a given evidence 

combination. A more detailed discussion on belief updating and belief revision can be found in Rosen et al.47. 

caBKB extends the BKB framework by providing the capability to decompose a random variable, in terms of underlying 

BKBs. In this manner, caBKBs model the hierarchy within a system where the overall systems may be decomposed into 

components, and components may be further decomposed into sub-components and so on. Consider a collection of finite 

discrete random variables (rvs), V where r(A) denotes the set of possible discrete values for random variable A in V. A 

conditional probability rule (CPR), R, defined using the BKB framework on V is of the form R: 𝐼𝑓 𝐴1 = 𝑎1 𝑎𝑛𝑑 𝐴2 =
𝑎2  …  𝑎𝑛𝑑 𝐴𝑛 = 𝑎𝑛 , 𝑡ℎ𝑒𝑛 𝐶 = 𝑐, where the rv 𝐶 = 𝑐 is conditioned by the its antecedents 𝐴𝑖 = 𝑎𝑖  for each i. Under 

caBKBs, the CPR R can be extended where C may be considered as a composition of subsystems β1, β2, …, βm, where 

each are represented by random variables B1, B2, …, Bm, respectively, as long as the interactions of the rvs with C observe 

the mutual exclusivity principle. Moreover, each of the rvs Bi may be further decomposed into rvs representing its 

subsystems and so on. In this manner, the caBKB framework provides a way to represent various levels within a complex 

adaptive system model while leveraging the strengths of the BKB reasoning algorithms. There are multiple ways to 

represent this decomposition in the caBKB framework. For example, consider the CPR R defined earlier. Here, the I-node 

C=c may be decomposed in terms of one or more BKBs constructed from a set of rvs that includes the antecedents of the 

I-node C=c. The value of the s-node leading to the I-node C=c may change based on the underlying BKBs. We have 

provided an example of decomposition from our Somali piracy scenario in Figure 6, where the mission objective of the 

group’s central command, represented by the s-node (G) Hijack vessel, is affected by the mission objectives of the 

subordinate sea crews. The mission objectives of the sea crews may change due to the incorporation of new information 



 

 
 

 

from intelligence sources. Therefore the caBKB framework helps to model the ripple effects of the changing behaviors of 

the underlying sub-systems on the overall system behavior and vice versa. 

Typically targets employ various technologies, including sensing, communication, and information processing/fusion 

technologies, that facilitate the interactions between system entities and components. This is apparent when modeling 

traditional military targets with ISR assets such as a navy flotilla. Other non-traditional targets such as political movements 

(e.g. the Arab spring movement44) have increasingly used sophisticated internet based technologies to share information, 

organize protests while allowing the participants to remain anonymous. In short, the underlying technical and social 

networks are critical for facilitating interactions between the system components and lead to the emergence of new 

behaviors. We will complement the capabilities of caBKBs by employing graph theoretic methods in the Network Centric 

Operations Performance and Prediction (N-COPP) framework to represent these interactions; mathematical functions to 

model dynamic changes in the system and its components; and define performance measures for the impact of these 

interactions on system behavior. 

4. TECHNICAL BACKGROUND 

In the previous section, we introduced caBKB, as a paradigm for modeling targets as complex adaptive systems. While 

caBKB provides a rigorous axiomatic framework for integrating and composing new information from various sources, 

modeling present day military targets requires the representation and analysis of the underlying technology including 

sensor networks, weapon systems, fusion and decision making algorithms, and even the social networks formed through 

the interactions between human actors within the organization. Modeling the underlying network of the target system is 

key towards identifying fusion points for information obtained from several sources. Furthermore, systematically modeling 

the dynamic network changes helps us to capture how the changes in behavior in one or more entities propagates 

throughout the entire target system. In order to provide these additional capabilities to the caBKB based target models, we 

will leverage our previous work in modeling network centric environments, and specifically our work in formulating a 

framework for network performance modeling and analysis called the Network Centric Operations Performance and 

Prediction (N-COPP) framework11–13. Below, we provide a brief description of the N-COPP framework, followed by a 

discussion on the integration of N-COPP with caBKB, in the next section. 

4.1 Network Centric Operations Performance & Prediction (N-COPP)  

N-COPP11–13 is a theoretical framework to accurately model, predict the performance and identify optimization strategies 

for NCO/NCW networks. Robustness and reliability of a network infrastructure are critical especially in NCO/NCW 

networks since these networks need to continuously adapt to the changes in their environment. The N-COPP framework 

enables strategists and modelers to model the performance and also determine the robustness of a NCO/NCW networks 

by identifying the weaknesses in that network. The framework consists of four key components, network representation 

component (NRC), performance measures component (PMC), performance tool suite component (PTSC) and submodel 

interaction component (SIC).  

The NRC component is used to formally represent the NCO/NCW network infrastructure. This component represents 

nodes and node interactions using graph-theoretic network representations. The nodes in the network represent various 

entities such as sensors, weapon systems, relay nodes, fusion nodes, etc. The links between the nodes represent connection 

properties such as link bandwidth, speed, connectivity, etc. Although the NRC model focus on the static snapshot of the 

network it should be able to represent network information that changes such as node mobility, network reconfiguration 

and fault propagation since the PMC component focus on analyzing network performance over time. Two important 

classes of metrics evaluated in the NRC component are labels and weights. The type a node or edge belongs to is 

represented by its label and the values of a metric at a given time is represented by the collection of weight at that time. 

As discussed earlier the NRC component provides the ability to analyze the network at a fixed time step. However, it is 

critical to analyze the network’s performance over time and the PMC component provides the ability to accurately 

represent target structure for dynamic network analysis. PMC is represented as a collection of functions that can use the 

network variables (labels and weights) and predict the state of the network in a future time frame. The combination of 

NRC and PMC components provides the ability to obtain both current and future snapshots of the underlying network. 

The PTSC component contains performance analysis tools and methodologies to measure the performance of the 

underlying network based on the metrics and measures provided by NRC and PMC components. The type of performance 

analysis provided by the PTSC component could be based on various factors and metrics, and therefore can be changed as 

required by the framework. For instance, network reliability can be evaluated using various methods such as analyzing the 



 

 
 

 

connectedness of the network, analyzing the signal strength and information drop rates. The performance of the current 

state of the network can be obtained using NRC and PTSC components. On the other hand, the performance of the future 

states of the network can be obtained by using NRC, PMC, and PTSC components. Moreover, NRC, PMC, and PTSC 

components can be used to obtain a quantitative analysis for a given set of metrics and measures of the network.  

 

The first three components provide performance analysis for the NCO/NCW network. However, the quantitative 

performance measures need to be assessed to identify relevant modifications to handle any performance weaknesses. The 

SIC component contains methodologies to efficiently utilize the information obtained from NRC, PMC, and PTSC to 

detect performance bottlenecks and suggests subsequent modifications to resolve such issues. Various optimization 

techniques, learning algorithms and probabilistic modeling approaches can be employed to predict the quality of the 

network performance based on various performance criteria such as network reliability, efficiency, etc. Each component 

in the N-COPP framework addresses a specific aspect of the network performance. This modular approach provides a 

plug-and-play property to swiftly incorporate existing analysis methods and at the same time adapt to future changes in 

the technology. The utility of the N-COPP framework to model dynamic NCO/NCW networks was illustrated in Santos 

et al.12. A detailed explanation and applications of the N-COPP framework can be found in our previous works11, 13. 

5. INTEGRATION OF caBKB WITH N-COPP  

For the target modeling work described in this paper, we integrate the capabilities of caBKB and N-COPP by focusing on 

two key groups or layers of components within the target, namely the network layer and the behavioral layer. The network 

layer encompasses the underlying technologies that support interactions between the components in the target. This may 

include ISR and weapon platforms used by the target, communication networks, information fusion systems, decision 

support systems, command hierarchies, and even the social networks that link human actors in the system. Recall that in 

the CAS based models, the target is considered to be a set of components of varying autonomy that interact with each 

other. The representations and methods of the network layer focus on modeling these interactions between the components. 

The behaviors of the components and the overall system, is the focus of the behavioral layer. In this work, caBKB has 

been used to model the behavioral layer while N-COPP focuses on the network layer. Specifically, the network 

representation component (NRC) of the N-COPP framework is used to represent the network using graph theoretic 

methods with the nodes representing the components/entities within the target and the edges represent the interactions 

between them. An important strength of the N-COPP is its flexibility, which allows for heterogeneous networks of various 

types and capabilities to be represented. The nodes have labels to represent relevant properties including the 

communication technology being used (e.g. wireless transmission) and weights to represent their respective metrics (e.g. 

communication range). Similarly, the edges in the network have labels and weights that may represent the characteristics 

of the communication link such as connectivity. Social networks, representing the interactions between human actors, 

within the system, are also represented in the NRC component. It is clear that interactions between the different networks 

may have an impact on the overall system behaviors. For example, the strength of ties in the social network is dependent 

on the opportunities for interaction, which in turn is facilitated by the underlying communications technologies.  

Using our previous work on modeling actor intent46, specific behaviors of the technological and human components of a 

target are modeled within caBKBs by breaking them down in terms of available information or beliefs, objectives or goals, 

feasible strategies or actions for achieving the goals and knowledge of its internal state or axioms. We have discussed how 

these elements relate to behaviors of human actors in section 3. The notion of intent can be extended to technology 

components, where axioms may represent its internal state, beliefs may include its knowledge of conditions in its 

environment and other components, goals may include its objective functions and actions may include possible 

modifications it can make to its internal state to achieve its objectives and respond to changes in the environment. Since 

the behaviors of a component undergo changes due to interactions with other components, there needs to be a careful 

Figure 4. Network Centric Operations Performance and Prediction (N-COPP) Framework11 



 

 
 

 

integration of the N-COPP based representations and methods with those of caBKB. There are a number of ways to achieve 

this integration. In this work, we have utilized the NRC component as the lynchpin for the integration, with the nodes in 

the graph representations helping to map entities/components/actors to their behaviors encapsulated as caBKBs and the 

edges helping to direct the interactions between the components. Moreover, N-COPP helps to model the propagation of 

the changes to the caBKBs throughout the system.  

One of our goals is to demonstrate the capability of caBKBs to deal effectively with information aggregation. As part of 

this effort, N-COPP can be used to identify fusion points for incoming information and to analyze how the effect of various 

changes propagate across the target system. The fusion points represent the entities in the organization to which the 

incoming information correspond to. We will also analyze the target by leveraging a commonly used metric from the NCO 

domain called self-synchronization14, and study the link between aggregating intelligence of varying reliability and 

changes in self-synchronization. 

5.1 Information Aggregation 

The information available to model real-world complex military targets is usually obtained from multiple sources including 

electronic intelligence (ELINT), human intelligence (HUMINT), and subject matter experts. Various forms of information 

obtained from these diverse sources need to be effectively combined to analyze the targets. Additionally, the information 

obtained from various sources may have different reliabilities, and a piece of information could have varying levels of 

impact across multiple entities in the target system. Furthermore, changes encountered at a certain part of the target system 

could cause a subsequent ripple effect across multiple levels of the target system and could lead to an overall change in 

their behaviors. For instance, events such as a change in the leadership or failure in critical communication infrastructure 

can affect the goals and momentum of the overall system. Therefore, it is critical for our modeling framework to have the 

capability to efficiently handle these nuances involved in incorporating real-world information. Efficiently aggregating 

information from various sources is also essential to understand the target’s level of situational awareness which is critical 

for modeling and measuring self-synchronization. 

As mentioned in section 3, information aggregation is supported within caBKB by using the BKB fusion algorithm, which 

uses reliabilities of the sources to incorporate the new information. Analysis of N-COPP based network representations 

can provide insights on the appropriate fusion points in the model and estimates of their reliabilities. In some cases, 

information from ISR assets are tagged with location and time information, which may be used to determine the specific 

entity or component that the information is relevant to. In the absence of the tag information, graph representations within 

NRC can be used to determine the fusion points. In cases where the target is highly dynamic, the tag information may be 

outdated by the time it is incorporated into the model. The graph representations in the NRC along with the dynamism 

models in PMC can then be used to predict the fusion points. Similarly, N-COPP representations can be used to determine 

source reliabilities for the incoming information. For example, analysis of the social networks within the NRC component 

of N-COPP can be used to determine the level of trust for a HUMINT source, which can then be used to determine its 

reliability measure. 

5.2 Self-Synchronization 

In the NCO domain, self-synchronization is considered to be the main outcome of situational awareness and leads to better 

mission effectiveness. Various definitions for self-synchronization have been provided with emphases on the coordination 

of actions among groups, decentralized execution of commander’s intent, individual decision making and common goals. 

As described by Araki14, the underlying common theme in all these definitions is that self-synchronization is about “doing 

the right thing at the right time for the right reason without having to be told to do so”48. In self-synchronization, 

organizational goals are achieved by individuals proactively responding to actions of other teams based on a shared 

situational awareness. Although developing a quantitative measure for self-synchronization has been a challenging task, 

factors such as mission objective, situational awareness and trust have been identified as factors influencing self-

synchronization. The BKB reasoning algorithms can be utilized with network based metrics, defined by N-COPP, to 

quantify these factors. For the modeling scenario, described in the next section, we will define a new quantitative measure 

for the effectiveness of self-synchronization, which will make use of the posterior probabilities of relevant random 

variables (rvs). 

In the preceding sections, we described the caBKB and N-COPP framework and provided some initial ways for integrating 

them to model both the network and behavioral layers in the target. In the next section, we will develop an initial caBKB 

based target model for a fictional Somali pirate group and use the model to analyze the changes in self-synchronization, 



 

 
 

 

brought about by variations in its situational awareness, as simulated by the change in the reliability of the available 

information. 

6. INITIAL SOMALI PIRACY SCENARIO AND MODEL 

To demonstrate the effectiveness of our approach, we use a real-world scenario in the NCO domain that exhibits CAS 

characteristics, and have both technological and human elements. In particular, we chose the Somali piracy scenario43, 49 

to demonstrate our target modeling approach. The Somali pirate groups50 are complex paramilitary organizations 

consisting of diverse units, of varying autonomy, that play different roles while seeking to achieve the organizational 

objectives.  

6.1 Somali Piracy Scenario 

Somalia piracy had its genesis in the early 1990s43 and has continued up until now51, 52 due to the effects of illegal fishing, 

illegal toxic waste dumping and 2004 Indian Ocean tsunami which threatened the livelihood of the fishing communities 

along the coastal regions of Somalia. The lack of other opportunities and enticements of financial gain made piracy a 

popular choice among youths in these communities. Even recently the Somali pirates have hijacked a Sri Lankan oil 

tanker51 and an Indian cargo vessel52 off the coast of Somalia. Although piracy in Somalia started as a crime of opportunity, 

the current level of planning involved in choosing and attacking targets, and the ensuing ransom negotiations show a vast 

improvement in their organizational capability. Somali pirate groups are commonly organized based on the functions and 

roles of the individuals. Based on the information obtained about the Somali pirate groups network and operational 

structure from various case studies43, 49, 50, 53–56 we developed a representative organizational structure for a fictional pirate 

group (shown in Figure 5). While the attack and further negotiations are carried out under a leader, the pirate groups are 

funded through various sources including shareholders (local population, merchants, etc.), and in some cases by warlords. 

The pirate groups usually employ middlemen who are fluent in English to conduct hostage negotiations. The pirates also 

receive intelligence from both overseas sources at various international ports and from local spotters. The pirates may 

employ local fishermen as spotters to identify target merchant vessels and navy patrols in the vicinity. Based on the 

available reports about the pirates and their tactics, we have further divided the operational unit into land-based and sea-

based crews. The sea-based crew uses the intelligence and other information from the spotters to track and attack the ship 

using a combination of mother ship and skiffs. The sea-based crew contains individuals with seafaring skills as navigators, 

military skills to handle the weapons and technology skills to utilize GPS, satellite phones and other devices to track the 

target and also to communicate with rest of the crew. Once the ship is captured, it is moved to a pirate-friendly port. The 

land-based crew is responsible for guarding the ship, providing food and water for the crew during the course of the 

negotiations. The negotiators are usually highly trusted middlemen with English speaking skills, hired to make contact and 

negotiate with the ship owners. In order to understand the overall behavior of such complex organizations it is essential to 

analyze and combine the behavior of the individual entities in the organization. 

6.2 Initial Somali Piracy Model 

 

Figure 5. Representative organizational structure of a Somali pirate group 

One key challenge when modeling real-world targets is that the information about the targets are continuously obtained 

from multiple sources and are often uncertain and incomplete. In order to utilize this diverse information, the target 



 

 
 

 

modeling framework should have the capability to dynamically aggregate information obtained from multiple sources. 

Another important aspect when modeling real-world targets as CAS is that these systems consist of several components 

that interact with each other at various scales to produce the overall system behaviors. The overall behaviors of these 

components are uncertain and can change based on factors such as changes in the environment, changes in the behavior 

of the neighboring components and a multitude of other factors. Hence the modeling framework should have the ability to 

represent the individual behaviors and interactions between these components at various scales. Moreover, the modeling 

framework should handle the inherent uncertainty, and incompleteness of information in real-world scenarios. Using the 

Somali piracy scenario, we will illustrate how the caBKB framework can be utilized to address these information 

aggregation challenges. A key performance metric that represents the overall effectiveness of a NCO based military target 

system is the level of self-synchronization48. Self-synchronization is based on the ability to the target system’s entities to 

organize and adapt to achieve the overall mission objectives. By modeling the behavior of sea-based Somali pirate crews, 

we have analyzed how the effectiveness of self-synchronization changes as the events unfold in the scenario. 

Behavioral Layer Modeling 

We used the information collected from various open source articles50, 55, 56 and publications43, 49, 53, 54 about the tactics used 

by Somali pirates during the hijacking and capturing of merchant vessels to construct the scenario. Here we focus on 

modeling the role of the sea based pirate crews within the group. Figure 6 illustrates how information aggregation and 

composition can be performed using caBKBs. In this example, the pirate group organization is delineated into a central 

command and sea-based crews. The central command’s goal to hijack a merchant vessel is pursued by two sea crews and 

this process is captured by the interactions between the random variable “Hijack vessel A” present in each sub-group. 

Based on the information aggregated from different intelligence sources the sea crews adopt different strategies to hijack 

the target vessel and handle maritime security. Finally, the central command may alter its goal to hijack the target vessel 

based on the behaviors and actions of the sea crews. This illustrates the ability of the caBKB to model complex interactions 

between sub-components of a target system, and also across levels within the system. In this work, we focus on 

demonstrating the information aggregation procedure using caBKBs. 

 

Figure 6. Example of a caBKB illustrating information aggregation and composition 

Network Layer Modeling 

A key factor in launching a successful hijack is the availability of reliable and up-to-date situational awareness. Efficiently 

representing and modeling the underlying communication infrastructure of the pirates is essential to understand the quality 

and evolution of situational awareness. In this work, we leverage the Network Centric Operations Performance and 

Prediction (N-COPP) framework11–13 to represent, model and analyze the social, communication and information sharing 

networks of the pirate groups. Recall that the N-COPP framework has a component based architecture with each 

component having the capability to handle the key challenges in modeling network-centric environments such as 

heterogeneity, network dynamism and network performance.  



 

 
 

 

Network Representation Component (NRC): In our modeling methodology, the interactions among the individuals and 

groups in a Somali pirate group is represented using the NRC component. Two key aspects that are critical to understand 

the military targets are their underlying physical and social network structures12. Here we use the NRC to represent these 

two network structures. The social network can be represented as a graph 𝐺𝑆(𝑉𝑆, 𝐸𝑆), where the set of nodes 𝑉𝑆 represents 

the actors in the network and the set of edges 𝐸𝑆 represents their social ties. Each node 𝑣𝑆 ∈ 𝑉𝑆 and edge 𝑒𝑆 ∈ 𝐸𝑆 have a 

label and an associated weight to represent both qualitative and quantitative characteristics of the network elements. Using 

case studies49–51, 53–56 we developed an initial social network structure of a sea-based pirate crew as shown in Figure 7. 

Each node represents an individual or a group of actors with specific roles within the organization. The navigators are the 

individuals with seafaring skills and the attackers are the individuals with military skills. The spotters are members of 

pirate group  and/or local fishermen who provide information about merchant vessels and patrol vessels. The leaders are 

the individuals involved in planning and decision making process at their appropriate chain of command. The edges 

represent social and communication ties between these actors. 

The physical network can be represented as a graph 𝐺𝑃(𝑉𝑃 , 𝐸𝑃). Here the set of nodes 𝑉𝑃 may represent the communication 

devices used to receive and transmit information, and the set of edges 𝐸𝑃 represents the information transmission between 

the nodes. Similar to the social network graph, node 𝑣𝑃 ∈ 𝑉𝑃 and edge 𝑒𝑃 ∈ 𝐸𝑃  has a label and an associated weight to 

represent the qualitative and quantitative characteristics of the network element. For instance, labels can represent features 

such as device type and network protocol used. The weights can represent network properties including network 

bandwidth, packet drop rate, etc. Based on their role in the organizational hierarchy and the nature of the mission, the 

pirates may use different modes of communication. For instance, the pirate leaders could have access to different 

communication devices such as devices connected to the internet, cell phones, satellite phones and intelligence from local 

military and foreign spies at the ports. The sea-based crews could have access to satellite phones, cell phones, marine very 

high frequency (VHF) radios, GPS, radar and other equipment onboard in their mothership and skiffs. Figure 8 shows a 

physical network example for the pirate group and the hierarchy based on the social network in Figure 7. The labels show 

both the devices used and the actors that use these devices. The edges represent the direction of information transmission. 

 
Figure 7. Example of a social network of a sea-based pirate 

crew 

 
Figure 8. Example of a physical (communication) network of a 

sea-based pirate crew 

Based on our previous work, nodes in the physical network can be broadly classified into three types13: 1) Sensor Nodes: 

Nodes such as radars and GPS that monitor the environment, 2) Relay Nodes: Nodes that collect and transmit the 

information obtained from the sensors, and 3) Fusion Nodes: Nodes that assimilate information obtained from the relay 

nodes and therefore possess a broader view of the environment. Decomposing the overall interaction network of the pirate 

groups into a social and a physical network enables us to capture the intricacies in the human ties and at the same time 

efficiently model the technical characteristics of the underlying physical network. Furthermore, information available to 

model these targets in real-world scenarios are obtained from multiple sources and are often incomplete and may focus on 

describing only limited aspects of the target system. Decomposing the target system’s networks to a reasonable granularity 

of detail enables us to efficiently incorporate the partial real-world information within the appropriate parts of the network.  

Performance Measures Component (PMC): The NRC component represents the state of the network at a fixed time step. 

However, the network structures in a dynamic environment adapt continuously based on node mobility, unfolding events 

and changes in the environment. The PMC component of the N-COPP framework uses prediction strategies to estimate 

the future state of the network. Furthermore, as mentioned earlier, the information available to model these targets are 

usually incomplete and partial. The PMC component can use the available information and estimate how the network 



 

 
 

 

evolves in future time steps. The communication behavior of the pirate groups at future time steps can be estimated by 

simulating the dynamic changes in the pirates’ physical network using methods such as discrete event simulation tools and 

agent-based modeling techniques12. Based on factors such as node position, network hierarchy, number of communication 

links, signal strength, information drop rates and other relevant characteristics, we can estimate how the network conditions 

change with time. The changes in the strength of social ties at future time steps can be estimated by analyzing changes in 

the intent of pirates over time, brought about by new information being incorporated using BKB fusion42. 

Performance Tool Suite Component (PTSC): In this work, we measure the effectiveness of self-synchronization by 

analyzing how the probability of achieving the overall goal (mission objective) of the organization changes when entities 

within the organization proactively adopt tactics based on the situational awareness. In particular, by modeling the 

behavioral aspects of various entities in the organization using caBKBs, we measure self-synchronization by analyzing 

how the actions performed by the entities affect the probability of achieving the mission objective. Let 𝑃𝑡(𝑀𝑂𝑆) be the 

probability that the mission objective can be accomplished at time step 𝑡 and conversely, 𝑃𝑡(𝑀𝑂𝐹) be the probability that 

the mission objective cannot be accomplished. Then, the effectiveness of self-synchronization is given by the odds ratio, 
𝑃𝑡(𝑀𝑂𝑆)

𝑃𝑡(𝑀𝑂𝐹)
 and its change between two time steps is given by 

𝑃𝑡(𝑀𝑂𝑆)

𝑃𝑡(𝑀𝑂𝐹)
−

𝑃𝑡−1(𝑀𝑂𝑆)

𝑃𝑡−1(𝑀𝑂𝐹)
. Entities that share beliefs or intent with the 

organization towards achieving the final objective can perform actions that will increase the degree of self-synchronization, 

i.e.,  
𝑃𝑡(𝑀𝑂𝑆)

𝑃𝑡(𝑀𝑂𝐹)
−

𝑃𝑡−1(𝑀𝑂𝑆)

𝑃𝑡−1(𝑀𝑂𝐹)
> 0. On the other hand, entities that share different beliefs with the organization towards 

achieving the final objective can perform actions that will lead to lower self-synchronization, 

i.e.  
𝑃𝑡(𝑀𝑂𝑆)

𝑃𝑡(𝑀𝑂𝐹)
−

𝑃𝑡−1(𝑀𝑂𝑆)

𝑃𝑡−1(𝑀𝑂𝐹)
< 0.  

6.3 Initial Analysis 

Table 1. Description of events in the scenario 

Pirates: Central command, sea crew 1 (SC1) and sea crew 2 (SC2) 

Other entities: Merchant vessels A and B, and a maritime patrol vessel 

Objective: Hijack the merchant vessel A 

Event Sub-scenario 1 (without 

intelligence sharing) 

Sub-scenario 2 (with intelligence sharing) 

1 Central command orders Sea crew 

1 (SC1) and Sea Crew 2 (SC2) to 

hijack vessel A (Baseline). 

Central command orders SC1 and SC2 to hijack vessel A 

(Baseline). 

2 Both SC1 and SC2 using skiffs sails 

towards vessel A. 

Both SC1 and SC2 using skiffs sails towards vessel A. 

3 The sea crews are spotted by a 

nearby maritime patrol vessel and 

are attacked. 

 

Sub-scenario 2.1 Sub-scenario 2.2 

Sea crew receives information 

about a maritime patrol vessel in 

the vicinity of the merchant 

vessel A. 

SC1: slows down their pursuit. 

SC2: stages a decoy raid by 

approaching another merchant 

vessel B that is far away from the 

merchant vessel A and thereby 

lures the maritime patrol away 

from vessel A. 

Sea crew receives 

information about a 

maritime patrol vessel in 

the vicinity of the 

merchant vessel A. 

Both SC1 and SC2 

expedites their attack on 

Vessel A to avoid 

interception with the 

patrol vessel. 

 

4 Both sea crews are overwhelmed by 

the maritime patrol and they 

surrender. 

As the patrol vessel approaches 

the merchant vessel B, SC2 

evades and retreats. SC1 attacks 

and captures the vessel A. 

Both SC1 and SC2 attacks 

and captures the vessel A. 

 

Here we model how the actions of the two sea crews (SC1 and SC2) changes the likelihood of hijacking a merchant vessel. 

SC1 is the lead attack group and SC2 is the secondary attack group. To emphasize the importance of information sharing, 



 

 
 

 

situational awareness and autonomous decision making we designed three sub-scenarios. Table 1 shows the events in our 

synthetic scenario developed based on the case studies43, 49, 50, 53–56. We used the BKBs to model the belief, goals and 

actions of the pirate groups. 

Sub-scenario 1 

 

Figure 9a. BKB fragment for central command’s intent 

 

Figure 9b. BKB fragment for sea crews baseline 

In sub-scenario 1, we model how the absence of intelligence information could adversely affect the sea crews in achieving 

the organizational objective, and thereby their self-synchronization behavior. Figure 9a shows the BKB fragment 

representing the beliefs and goals of a pirate organization described in event 1. In particular, we model how the need for 

money and the presence of maritime security influences the pirate organization’s objective to hijack a certain merchant 

vessel. In this scenario, two groups of pirates equipped with skiffs and weapons carry out the hijack. The baseline behavior 

of sea crew is shown in Figure 9b. By fusing these two fragments, we model how the pirate organization’s goal drives the 

sea crews’ behavior to capture the merchant vessel A. In sub-scenario 1, the sea crews do not receive any real-time 

intelligence regarding nearby movements of maritime patrol vessels. Once they encounter the maritime patrol they are 

overwhelmed and eventually surrender as described in events 4 and 5 (Figure 10). This sub-scenario clearly illustrates how 

the lack of intelligence sharing could hinder entities attempting to accomplish organizational objectives in a real-world 

military scenario. In subsequent scenarios, we will illustrate the alternate case when real-time information could enable 

entities to efficiently self-synchronize. 

 

Figure 10. BKB event fragment for sea crews being approached by patrol 

 



 

 
 

 

Sub-scenario 2.1 & 2.2 

In sub-scenario 2.1 and 2.2 both groups, SC1 and SC2, receive information about an approaching maritime military 

security patrol and change their tactics to achieve the mission objective. Events in sub-scenario 2.1 diverges from sub-

scenario 2.2 starting at event 3 when both sea crews SC1 and SC2 receive information about a maritime patrol vessel in 

the vicinity of the target merchant vessel A. While SC1 slows down its pursuit of the vessel (see BKB in Figure 11) in 

sub-scenario 2.1, SC2 proactively engages in a decoy tactic (Figure 12) and lures the maritime patrol away from the target 

vessel A. SC1 is able to hijack the target vessel A and achieve the overall mission objective. As in sub-scenario 2.1, both 

SC1 and SC2 receive information about the maritime patrol vessel in sub-scenario 2.2. SC1 and SC2 adopt a different 

tactic where they expedite their plan to hijack vessel A before the patrol vessel arrives (see BKB in Figure 13).  

 

Figure 11. BKB fragment for SC1's behavior based on intel 

update 

 

 

Figure 12. BKB fragment for SC2's behavior based on intel 

update 

 

Figure 13. BKB fragment for SC1 and SC2’s behavior to expedite their pursuit  

Initial Experimental Results and Analysis 

In this preliminary set of results, first we focus on analyzing the changes in the level of self-synchronization with respect 

to the events in the scenario and the actions performed by the sea-based crew. We measure self-synchronization by 

computing the success to failure ratio of the mission objective using the posterior probability of the random variable “(A) 

Capture vessel A”. In addition, the reliability values of the information can affect the actions performed by the sea crews. 

Here Figure 14a and Figure 14b shows the level of self-synchronization across the three scenarios for low and high 

information reliability values, where the incoming intelligence information are fused with source reliability values of 0.2 

and 0.95, respectively. 



 

 
 

 

 

Figure 14a. Level of self-synchronization for low reliability 

value of intelligence information source 

 

Figure 14b. Level of self-synchronization for high reliability 

value of intelligence information source 

 

In our scenario, during the first two events, the central command issues an order to SC1 and SC2 to capture a specific 

merchant vessel. Since these two events are similar across the three scenarios, the models should exhibit similar level of 

self-synchronization. Since the sea crews in scenario 1 do not receive real-time intelligence information, they fail to adopt 

new strategies to handle the maritime patrol presence in event 3 and surrender in event 4. This explains the drop in self-

synchronization levels in scenario 1, following event 2. Both sub-scenarios 2.1 and 2.2 demonstrate how enhanced 

situational awareness provides skiff groups the opportunity to dynamically change tactics when faced with unforeseen 

challenges. We can observe from the BKBs (Figure 11 and Figure 12) that the tactic adopted by the sea crews in sub-

scenario 2.1 can improve the probability of mission success since the patrol vessel is lured by the SC2 and therefore 

provides sufficient time for SC1 to capture the merchant vessel. On the other hand, in sub-scenario 2.2, there is a higher 

likelihood of the pirates being intercepted during their attack. This explains the higher self-synchronization levels achieved 

in scenario 2.1 when compared to scenario 2.2. Thus, by evaluating the posterior probability of achieving the mission 

objective we can explain the variations in the self-synchronization levels observed across different scenarios. Furthermore, 

the effects of change in the reliability values of intelligence information can be observed by comparing the level of self-

synchronization in Figure 14a and Figure 14b. We fuse the intelligence information for sub-scenarios 2.1 and 2.2 at event 

3. When the intelligence information about maritime patrol presence is given a higher reliability of 0.95 as shown in Figure 

14b, it increases the credibility of the intelligence information. This results in an overall decrease in the likelihood of 

mission success on both sub-scenarios 2.1 and 2.2 when compared to Figure 14a, where the intelligence information is 

given a lower reliability (0.2). 

During the course of a scenario/simulation the level of self-synchronization can vary significantly, therefore it is critical 

to analyze the change in the level of self-synchronization with respect to the current state to understand the effects of each 

individual event. Figure 15a and Figure 15b shows the change in the effectiveness of self-synchronization (as described in 

section 6.3) between consecutive events for different intelligence information reliability values. Here positive and negative 

values correspond to increase and decrease in the level of self-synchronization between current and previous event. The 

level of self-synchronization increases from event 1 to event 2 in all three scenarios. This can be attributed to the fact that 

in event 2 both sea crews start pursuing the order received from the central command in event 1 and the first two events 

are similar across all the scenarios. However, in event 3, the appearance of maritime patrol obstructs the sea crews’ initial 

plan to hijack the merchant vessel and therefore affects their previous level of self-synchronization. In particular, the sea 

crews in scenario 1 do not receive any intelligence information about the maritime patrol whereas in sub-scenarios 2.1 and 

2.2 the sea crews receive intelligence information which increases their situational awareness. Therefore, the decrease in 

the level of self-synchronization is substantially higher in scenario 1 when compared to sub-scenarios 2.1 and 2.2. 

Although the sea crews in both sub-scenarios receive the same intelligence information, the tactics adopted by them affects 

the level of self-synchronization. For instance, the crews in sub-scenario 2.1 adopt a decoy strategy and crews in sub-
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scenario 2.2 attempts to expedite their attack before the maritime patrol could reach the target merchant vessel. However, 

expediting the attack increases their likelihood of facing the maritime patrol when compared to luring the maritime patrol 

away as in sub-scenario 2.1. In event 4, the sea crews in scenario 1 surrender to the maritime patrol and results in a decrease 

in the level of self-synchronization. However, in sub-scenario 2.1 and 2.2 the sea crews successfully capture the target 

vessel and this increase the level of self-synchronization when compared to the previous event. Similar to the previous 

results (Figure 14a and Figure 14b), increase in the reliability of intelligence information about maritime patrol presence 

decreases the likelihood of mission success and consequently reduces the level of self-synchronization. Therefore, the drop 

in the level of self-synchronization at event 3 for sub-scenario 2.1 and 2.2 is higher when the intelligence information has 

a higher reliability value (Figure 15b). 

 

Figure 15a. Changes in the level of self-synchronization for 

intelligence reliability value of 0.2 

 

Figure 15b. Changes in the level of self-synchronization for 

intelligence reliability value of 0.95 

In this work, we have demonstrated how information about the sea-based crews’ behaviors can be systematically 

aggregated using the caBKB framework and can subsequently be used to measure the changes in the level of self-

synchronization in the target system. In addition, this preliminary scenario shows the capability of our framework to 

aggregate information from multiple sources with different levels of information reliability. In our future work, we plan 

to extend this scenario by incorporating factors such as the speed and the response time of the patrol vessel, speed of the 

skiffs, distance to the coast and other relevant factors that will enable us to realistically analyze the overall effectiveness 

of the strategies adopted by the sea crews. The Somali scenario discussed here illustrates the significance of situational 

awareness and communication capabilities in military environments to enable entities to self-synchronize and 

autonomously undertake actions to enable overall mission effectiveness.  

7.  CONCLUSION AND FUTURE DIRECTIONS 

In this paper, we introduced caBKBs as a rigorous, overarching and axiomatic framework for modeling complex military 

targets. We described the challenges involved in modeling the behavior of target system that exhibits CAS characteristics. 

Furthermore, we presented two key processes, information aggregation and information composition that are crucial to 

model the behavior of such complex targets. In particular, methodologies for incorporating information from multiple 

intelligent sources with varying reliabilities were described. The significance of modeling the NCO capabilities of the 

target system and ability of caBKBs to leverage the N-COPP framework for efficient network representation and network 

performance analysis were also presented. We developed an initial measure to analyze the level of self-synchronization in 

real-world based military target systems. We designed a Somali piracy based target modeling scenario, modeled their 

physical (communication) and social network structure and illustrated the information aggregation process using caBKBs. 

In particular, we analyzed how events, actions, situational awareness and intelligence information reliability influence the 

level of self-synchronization between the Somali pirate crews. 
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As future work, we plan to study the interaction between network dynamism and information aggregation. We will 

investigate how to efficiently perform information aggregation when the underlying network structure of the target system 

is continuously evolving. We are also interested in developing a systematic procedure to identify conditions that can induce 

substantial change in the behavior of the system and its components, and applying information composition process to 

model the effects of such radical changes. In addition, we will extend the Somali piracy scenario by explicitly modeling 

the pirate groups underlying network infrastructures and modeling interactions among other entities such as foreign navies, 

neighboring pirate crews and other stakeholders. 
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