
Efficient Anytime Anywhere Algorithms for Vertex Additions in Large and
Dynamic Graphs

Eunice E. Santos, John Korah, Vairavan Murugappan, Suresh Subramanian

Department of Computer Science
Illinois Institute of Technology, Chicago, USA

{eunice.santos, jkorah3}@iit.edu, {vmuruga1, ssubra20}@hawk.iit.edu

Abstract—Over the past decade, there has been a dramatic
increase in the availability of large and dynamic social network
datasets. Conducting social network analysis (SNA) on these
networks is critical for understanding underlying social
phenomena. However, continuously evolving graph structures
require massive recomputations and conducting SNA is infeasible
if the computations have to be restarted for every change. Many
recent works have proposed large-scale graph processing systems
and frameworks, but less attention has been given to scalable SNA
algorithm designs that can efficiently adapt to dynamic graph
changes. Moreover, continuously adapting to dynamic graph
changes such as node/vertex/actor additions/deletions in a
parallel/distributed computational environment can skew the
initial graph partitions, leading to load imbalance issues and
performance degradation. Previous approaches that focus on
computing SNA measures on dynamic graphs either ignore this
critical load-balancing aspect or focus only on measures that are
straightforward and inherently adjustable to changes in the graph
topology. In this work, we have designed an anytime anywhere
closeness centrality algorithm that can efficiently incorporate
vertex additions while avoiding massive recomputations, by
leveraging a generic framework for designing parallel/distributed
algorithms called anytime anywhere. Furthermore, we have also
performed an analysis of the effectiveness of various processor
assignment strategies to mitigate the load imbalances caused by
dynamic graph changes.

Keywords-social network analysis; parallel and distributed
processing; centrality analysis; dynamic graphs; anytime
anywhere algorithms; dynamic vertex addition

I. INTRODUCTION

Availability of large and dynamic social network
information from mediums such as online social media, web
graphs and sensor networks have dramatically increased in
recent times. These large and dynamic datasets, coupled with
social network analysis (SNA) techniques, are helping to
extend our understanding of various underlying social
processes and phenomena. However, applying static graph
analysis methods to analyze the datasets require massive
recomputations. Therefore this can become infeasible with
large increases in network size and rate of network change.
Since, typically, large graph datasets cannot be stored and
analyzed in a single machine, they are distributed across
multiple machines, and various graph partitioning schemes
have been proposed to efficiently distribute the workload
across these machines [1][2][3]. These approaches have

tended to focus on two main aspects: evenly distributing the
vertices across the machines and/or reducing the number of
connections among these graph partitions. However,
dynamic graph updates such as vertex/edge additions and
deletions can skew these initial partitions and create
computation and communication load imbalances. In this
paper, we focus on efficiently performing vertex additions
during the course of SNA. Vertex addition is a natural
phenomenon observed across most real-world social
networks. For instance, social changes such as new actors
joining an online community, adding content to an online
social media, and adding new publications to a citation
network can all be represented as dynamic vertex additions.

One key challenge when performing dynamic vertex
additions is in designing algorithms to efficiently incorporate
the new vertices, without incurring massive recomputations.
This is important as most analysis tools are built for static
networks and require a restart when the underlying network
changes. Another key challenge is maintaining the load
balance across machines in a parallel/distributed
computational environment. Although other graph updates
such as edge changes can also induce some degree of load
imbalance, the magnitude of the imbalance caused by vertex
updates can be substantially higher. This is because vertex
updates can affect both the number of vertices and edges in
each machine. Furthermore, a single vertex change could
initiate multiple edge changes. In addition, social network
graphs exhibit scale-free property and have community
structures [4][5]. Vertices belonging to the same community
share more edges than the vertices belonging to different
communities. Hence, assigning the vertices from the same
community to a partition could reduce the number of edges
between the graph partitions. We refer to such edges with
endpoints in different graph partitions as cut-edges. In a
number of parallel/distributed graph problems, the amount of
communications required between the processors is
determined by the total number of cut-edges between these
processors. In this work, we present various strategies to
assign processors to vertices and evaluate how they affect the
number of new cut-edges introduced during vertex additions.

In our previous work [6]–[10], we proposed an
overarching parallel/distributed anytime anywhere
methodology that can be utilized to design algorithms for
processing and analyzing information/data in various static

and dynamic conditions. In the anytime anywhere
methodology, the term anytime refers to the ability of the
algorithm to provide non-trivial solutions when interrupted.
The quality of these solutions improves in a monotonically
non-decreasing manner with relation to the amount of
computational resources available to the algorithm. The term
anywhere refers to the ability of the algorithm to incorporate
changes in the underlying data/information and also
propagate changes in the analysis. In the domain of large and
dynamic social network analysis, we have developed anytime
anywhere algorithms; specifically for closeness centrality
measurements that can handle edge additions [9] and edge
deletions [10]; and for other SNA measurements [6][8]. In
this work, we provide an anytime anywhere algorithm to
efficiently handle vertex additions while dealing with the
challenge of assigning processors to vertices. In addition, we
analyze the performance of anytime anywhere algorithms for
vertex additions during closeness centrality calculations and
evaluate efficiency when combined with various processor
assignment strategies. Furthermore, we study the
effectiveness of the different processor assignment strategies
and understand how they behave under various dynamic
scenarios.

II. BACKGROUND

Large-scale graph analysis has received a lot of interest
and importance in recent times. This has given rise to a
number of tools [11][12], libraries [13][14], computational
models [15][16], algorithms [17], [18] and load balancing
studies [19][20] in this area. However, in these approaches,
which are focused on providing systems based solutions,
critical aspects such as designing efficient algorithms that can
handle dynamic graph changes and load imbalances caused
by these changes are often overlooked.

Mizan [11] is a Pregel [16] based graph load balancing
system that applies vertex migration techniques for dynamic
load balancing. Pregel based systems use the Bulk
Synchronous Parallel (BSP) programming model, in which
computation is performed in a sequence of supersteps
separated by barriers for communication. The Mizan system
monitors the runtime metrics for each vertex such as the
number of outgoing messages, the number of incoming
messages, and the response time for each superstep. Based on
these metrics, the vertices are migrated to different processors
to reduce the load imbalances. Although Mizan allows adding
new vertices and edges at any superstep, it mainly focuses on
performing load-balancing for static graph analysis.
Furthermore, it does not provide any efficient processor
assignment strategies. Instead, it is assumed that the load
imbalances will be remedied in future steps using the vertex
migration procedure. Vaquero et al. [19] proposed an
adaptive load balancing system that is based on dynamic
vertex migrations. This Pregel based system utilizes a label
propagation heuristic. During every iteration, each vertex
decides whether to stay in the current partition or to migrate
to a different one based on the locality of the highest number

of neighboring vertices. Similar to Mizan, this work does not
consider any initial vertex placement strategies. Moreover,
this work buffers the dynamic graph updates instead of
continuously incorporating the graph changes. However, this
can lead to outdated results especially when computing
measures such as maximum clique and shortest path
calculations. Hermes [20] is a lightweight graph repartitioner
that utilizes a dynamic repartitioning algorithm to reduce the
number of cut-edges and improve the co-location of vertices.
However, their main emphasis is on providing graph data
management rather than graph analysis. Furthermore, it does
not provide any initial processor assignment strategies.

Although the methodologies discussed above provide
general procedures for incorporating vertex/edge changes
and for load balancing, they do not exploit the structure of
particular graph problems to efficiently deal with dynamic
graphs. Instead, these system requires the algorithm
designers to grapple with such issues. In this work, our focus
is to exploit the properties of social network analysis
problems, such as closeness centrality, to formulate efficient
ways to incorporate graph changes using an anytime
anywhere framework. In our previous work [6]–[10] we have
provided efficient anytime anywhere algorithms for
closeness centrality analysis that can handle dynamic graph
changes such as edge weight changes [6], edge additions [9],
and edge deletions [10]. In this work, we provide algorithm
designs to handle dynamic vertex additions that can
incorporate dynamic graph changes continuously during the
analysis. Moreover, we have provided efficient processor
assignment strategies for reducing the load imbalances
caused during dynamic vertex additions.

III. ANYTIME ANYWHERE METHODOLOGY

The anytime anywhere methodology [6]–[10] offers a
scalable parallel/distributed framework to design algorithms
for processing both static and dynamic information/data. One
specific application domain for this methodology is in social
networks analysis (SNA), such as in the formulation of SNA
algorithms that can handle large-scale dynamic graphs. One
possible technique is for the large input graph to be
decomposed into smaller sub-graphs and assigned to
different processors. Results obtained by analyzing these sub-
graphs individually are further combined and refined in
multiple steps to obtain the final solution. Moreover, dynamic
graph updates such as node additions are efficiently
incorporated and the effects of these changes are propagated
to the entire network with minimal recomputations. The
anytime anywhere methodology performs these tasks in three
phases: domain decomposition (DD), initial approximation
(IA) and recombination (RC). The significance of these
phases, with an emphasis on social network analysis, are
discussed below and a more detailed discussion can be found
in our previous work [6]–[10].

A. Domain Decomposition

The large input graph is decomposed into manageable
sub-graphs (graph partitions) and assigned to different
processors in the DD phase. The quality of the initial partition
affects the quality of the partial results and the amount of
communication required in the successive steps. One possible
way to design algorithms in domain decomposition is to
minimize the number of cut-edges in each sub-graph. Cut-
edges have endpoints belonging to different sub-graphs. Cut-
size of a sub-graph is the number of cut-edges in that sub-
graph. Sub-graphs with higher cut-size will share more edges
with other sub-graphs and could increase the amount of
communication performed in the successive steps. Various
graph partitioning algorithms which minimize the number of
cut-edges can be considered in this phase.

B. Initial Approximation

A preliminary approximation is computed in the IA
phase, possibly by individually analyzing the sub-graphs
obtained from the DD phase. Algorithms employed in the IA
phase should support anytime anywhere properties so that the
partial results obtained here can be combined and refined in
the RC phase.

C. Recombination

In this phase, each processor iteratively computes the final
solution by combining and refining its values based on the
information received from neighboring processors. Dynamic
graph changes are continuously incorporated into the sub-
graphs and the effects of these changes are periodically
propagated to the entire network. Furthermore, dynamic
network changes especially node additions can skew the
number of nodes and cut-edges in each sub-graph. Such
network updates can consequently lead to load imbalances.
In this work, we provide various processor assignment
strategies to handle these issues.

IV. ANYTIME ANYWHERE ALGORITHM DESIGN AND

ANALYSIS FOR CLOSENESS CENTRALITY

Centrality measures are key SNA metrics for identifying
important actors/nodes in a social network. Some widely
used centrality measures are degree centrality, betweenness
centrality, closeness centrality, and eigenvector centrality
[21][22]. In this work, we focus on designing efficient
algorithms for closeness centrality computations in large and
dynamic graphs. Closeness centrality of an actor is the
inverse of the sum of all shortest path distances from the actor
to all other actors in the social network and therefore requires
computation of all pairs shortest paths (APSPs). The
computational challenge of calculating APSPs in a large
network that is continuously evolving makes closeness
centrality computation a particularly challenging and
interesting problem.

Given a graph ܩ(ܸ, where ܸ is the set of vertices in the (ܧ
graph and ܧ is the set of edges such that |ܸ| = ݊ and |ܧ| =݉, let ݀(ݑ, represent the shortest path distance between (ݒ

vertices ݑ and ݒ, then closeness centrality Cୡ	of a vertex ݑ ∈ܸ is given by: ܥ(ݑ) = 1∑ ,ݑ)݀)ୀଵݒ

Dynamic graphs can undergo various forms of changes
such as edge weight changes, edge additions/deletions, and
node additions/deletions. In our previous work, we designed
and analyzed algorithms to handle edge weight changes [7],
edge additions [9], and edge deletions [10]. In this work, we
focus on vertex additions. Vertex additions possess similar
challenges encountered in edge additions since a vertex
addition can consist of one or more edge additions. However,
the key challenge that needs to be addressed during vertex
additions is that the newly added vertices could skew the
initial graph partitions, and this can lead to substantial load
imbalances. Furthermore, the magnitude of the change is not
always proportional to the degree of load-imbalance. For
instance, uniform node additions across all processors would
have a lower degree of imbalance when compared to the same
number of node changes distributed across only a few
processors. Additionally, adding vertices of a higher degree
will have a substantial impact on load imbalance when
compared to vertices with a lower degree. In addition to the
degree of a vertex, the number of cut-edges created by a
vertex addition will also be based on the processor to which
it is assigned. For instance, assigning a new vertex to a sub-
graph that have most of its neighboring vertices will reduce
the total number of cut-edges introduced by the vertex
addition. In order to handle these challenges, performing
vertex additions require efficient strategies such as processor
assignment, vertex addition and repartitioning strategies.

Processor assignment strategies provide the ability to
assign a newly added vertex to an appropriate sub-graph that
aims to minimize load imbalances. Moreover, our anywhere
approach for vertex addition efficiently utilizes the processor
assignment strategies to incorporate dynamic changes to the
network. Two examples of such processor assignment
strategies are: round robin based strategy and cut-edge
optimization based strategy. Round robin based processor
assignment strategies focuses only on distributing the new
vertices equally while the cut-edge optimization based
processor assignment strategies also look at the relationships
between the new vertices to minimize the number of cut-
edges. However, for a larger number of changes, the
overhead involved in incorporating the dynamic updates
using anywhere approach for vertex additions could increase
substantially. Therefore, in such cases, it may be better to
repartition the whole graph rather than applying dynamic
changes. However, instead of restarting the analysis from
scratch we can utilize the anytime property of the algorithm
and reuse the partial results calculated thus far. The anytime
anywhere algorithm for closeness centrality consists of three
phases: 1) Domain decomposition (DD), 2) Initial
approximation (IA), and 3) Recombination (RC). A more
detailed discussion about the DD, IA, and RC phases can also
be found in our previous work [6]–[10].

In this section, we also provide analyses for different
components of the anytime anywhere algorithms. Some
analyses presented here have also appeared in our previous
work [9][10], and in those instances, are appropriately cited.
The LogP [23] distributed memory model was utilized to
analyze the runtime for various phases of the algorithm.

A. Domain Decomposition

The input graph (ܩ) is decomposed into balanced sub-
graphs and distributed across the processors in the DD phase.
The quality of these partitions in terms of the number of cut-
edges and the number of vertices assigned to each processor
affects the load balancing and the quality of the partial results
obtained in the successive steps. Given a set of
processors	ܲ = ሼ ଵܲ, ଶܲ, … , ܲሽ, the vertex set ܸ is partitioned
into ܲ distinct sub-sets of vertices ሼ ܸሽୀଵ during the DD
phase. Let ܩ(ܸ, be the graph where ܸ is the set of vertices (ܧ
and ܧ is the set of edges such that |ܸ| = ݊ and	|ܧ| = ݉. Let ܩ(ܸ ∪ ,ܤ represent the local sub-graph assigned to each)ܧ
processor	 ܲ, where, ܸ ⊆ ܸ is the set of vertices assigned to
processor ܲ ܧ , ⊆ is the set of edges that have at least one ܧ
endpoint(vertex) in ܸ , and ܤ ⊆ ܸ is set of external
boundary vertices for processor ܲ . External boundary
vertices act as bridges that connect the neighboring sub-
graphs to the vertices ܸ in the local sub-graph. Any cut-edge
optimization based graph partitioning algorithm can be used
in this phase. Therefore the runtime for this phase depends
upon the algorithm being used.

B. Initial Approximation

The sub-graphs obtained from the DD phase are analyzed
individually in the IA phase to obtain the first set of partial
results. These partial results provide a preliminary
approximation of the entire network. For the closeness
centrality computation, each processor computes APSP
values for its local sub-graph. In the IA phase, each processor ܲ computes the partial results based on the information
contained in its local sub-graph ܩ.

A possible algorithm to implement the IA for closeness
centrality analysis is Dijkstra’s single source shortest path
algorithm. In our previous work [9][10], we applied a multi-
threaded version of Dijkstra’s single source shortest path
algorithm to speed up this computation and leverage the

multiple cores, and it takes	Ο ൬య ୪୭ುఛయ ൰, where ߬	is the number

of threads used. The partial results obtained using Dijkstra’s
algorithm in the IA phase can be further refined in the RC
phase.

C. Recombination

1. INPUT: ሼ ଵܲ, … ܲ , … ܲሽ //set of processors assigned to
 the problem
2. INPUT: n //number of vertices in the input graph G
3. INPUT: ܩ //local sub-graph in processor ܲ
4. INPUT:	ܦ ܸ //Distance Vectors ൫| ܸ|	 × 	݊൯ for sub-graph ܩ

generated in the IA phase

5. FOR EACH processor ܲ do in parallel
6. ݇ = 0 //initialize the recombination step index
7. DO //propagate updates to neighboring processors
8. ݇ = ݇ + 1 //increment the recombination step

index
9. FOR ݆ = 1 to ܲ
10. IF ݅ ≠ ݆
11. RECV DVs of external boundary

vertices from processor ܲ in messages of size	ߙ.
12. Update local boundary vertices

using the DVs of external boundary vertices.
13. ELSE
14. SEND DVs of respective external

boundary vertices to (ܲ − 1) processors in messages of
size ߙ.

15. END FOR
16. Choose Recombination strategy(ies) based on
 the constraints
17. Perform Recombination strategy(ies)
18. UNTIL ݇ = ܲ − 1 OR no more updates in any
 processor
19. END FOR

Figure 1. Pseudo-code template of the recombination phase for
closeness centrality [9][10]

In the RC phase, each processor refines its partial results
by incorporating the updates received from the neighboring
processors. This process is repeated in iterative steps until the
final solution is obtained. One way of performing this process
is by using Distance Vector Routing (DVR) algorithm [24].

In this work, we utilized the recombination algorithm for
closeness centrality computation developed in our previous
work [9][10], where we applied DVR algorithm to perform
incremental graph updates across the processors during the
APSP computation. Each vertex in a sub-graph maintains a
Distance Vector (DV) to store the current shortest path
distances to other vertices in the graph. Boundary DVs are
the distance vectors of the boundary vertices. Boundary
vertices act as bridges connecting sub-graphs belonging to
different processors. During each RC step, the boundary
vertices in each processor receive updates from its
neighboring processors. Therefore, when propagating
updates, it is sufficient to send only the updated values of the
boundary DVs and this significantly reduces the amount of
communications. We used a personalized all-to-all
communication schedule that ensures only one message
traverses the network at any given time in order to prevent
network flooding and obtain predictable performance.
Although our communication schedule takes ܱ(ܲଶ) steps for ܲ processors, it mitigates network flooding. For static
graphs, the number of RC steps required to compute final
APSP values is bounded by the number of processors ܲ .
However, the number of RC steps required for dynamic
graphs is based on the step at which dynamic changes are
incorporated. Hence, during dynamic graph analysis, the

refinement of the partial results is continued until there are no
more updates to be exchanged between processors.

In previous work [9][10], we provided the runtime
analysis for the RC phase, when DVR algorithm is applied to
perform incremental updates. Let ܥ be the number of local
boundary vertices in the processor ܲ and ߛ be the maximum
number of cut-edges for any boundary vertex in ܸ. Based on
previous studies [4][5][25], for the networks with scale-free
property, we can approximate ߛ ≤ ୪୭ . Since our focus is on

social network graphs and as these graphs exhibit scale-free
property we use this bound for ߛ in our analysis. During each
RC step, the processors send and receive DVs of size Ο(݊ܥ),
where ܥ = Ο ቀቁ. Using the information received from the

neighboring processors the boundary vertices are updated
and this takes Ο(݊ߛܥ) . Therefore, the time to share the
information and update the boundary nodes at each

recombination step takes Ο ቀ ୬య୪୭ + ୬మఈ Pܮ + nଶܲ݃ቁ . When

there are no dynamic graph updates the number of RC steps
required is bounded by the number of processors ܲ. This is
because the longest processor chain could be of length ܲ − 1
and therefore the number of RC steps is bounded by ܲ − 1
steps. The total runtime to complete the communication and

boundary vertices updates is: Ο ቀ ୬య୪୭ + ୬మఈ ܲଶܮ + nଶܲଶ݃ቁ. Here ܮ and ݃ represent the latency and gap from the LogP model.
The maximum size of a single message exchanged between
the processors is represented by ߙ. Maximum message size ߙ
is bounded by the memory capacity of the processor and is
chosen such that the network remains lightly loaded during
communications.

1) Recombination Strategies
In addition to the information sharing with the

neighboring processors, one of the key steps in the RC phase
is to perform the recombination strategy(ies). Recombination
strategies provide the capability to perform various updates
and computations on the graph. These strategies include (but
not limited to) static graph updates, dynamic changes such as
vertex/edge additions and deletions, processor assignments
and load balancing.

The recombination strategy(ies) performed in each
iteration (on each processor) varies based on a set of
constraints. These constraints help us guide the choice of
strategy(ies) based on the requirements during the
recombination step. For instance, constraints may include
information such as user defined values, system specified
thresholds, dynamic change requirements and static
refinements. Moreover, these constraints can be expanded
based on evolving requirements. Let ߶ be this set of
constraints. Let ࣛ be the algorithm used to choose the
recombination strategy, which takes in various inputs
including the set of constraints ߶. The runtime of ࣛ at a
recombination step is represented as ܶ(ࣛ).The algorithm
used to perform the recombination strategy is represented by ࣛோ . Depending on the design of the recombination strategy,
Algorithm ࣛோ may take in various inputs including the

graph ܩ and dynamic changes to G, such as set of new
vertices ܸᇱ of size ݊ᇱ and set of new edges ܧᇱ of size ݉ᇱ .
There are various ways to implement Algorithm ࣛோ ,
including as a distributed algorithm across the processors.
The run time of the recombination strategy at a recombination
step is represented as ܶ(ࣛோ).

An example of a basic recombination strategy is the static
graph analysis for closeness centrality calculations that was
described earlier in section IV.C. In this strategy, the partial
results are iteratively combined and refined. In a slight
modification to the strategy, the newly obtained values on the
boundary DVs can be used to update the DVs of the local
vertices using Floyd-Warshall’s algorithm, as shown in
previous work [9][10]. This will help in providing more up-
to-date partial results to the user without having to depend on
future recombination steps. Performing updates to the local
DVs require an all-pairs shortest path calculation within the
local sub-graph. In this case the time taken to perform the

local DV updates at a recombination step is Οቀయమቁ .

Therefore, the overall run time of the recombination strategy
at a recombination step is: ܶ(ࣛோ) = Οቆ݊ଷܲଶ + nଷPlog ݊ + nଶߙ Pܮ + nଶܲ݃ቇ

As mentioned before, in the worst case, the maximum
number of RC steps required is Ο(ܲ). The overall running
time of the recombination phase is Ο(ܶ(ࣛ)ܲ +	ܶ(ࣛோ)ܲ). After substituting for ܶ(ࣛோ), we get: ΟቆT(ࣛ)P + nଷܲ + nଷlog ݊ + nଶߙ ܲଶܮ + nଶܲଶ݃ቇ

a) Vertex Addition Strategy
The recombination strategy also checks for dynamic

changes and incorporates these changes at the end of the
refinements during each RC step. In particular, in this work
we focus on handling vertex additions. Vertex addition
consists of two key steps, determining the processor
assignments to the new vertices and incorporating the new
information into the existing graph. Figure 2 shows the
pseudo-code template for a vertex addition strategy. This
recombination strategy is performed on line 17 of the
recombination algorithm presented in Figure 1.
1. Read dynamic changes input
2. Perform processor placement strategy
3. Perform vertex addition strategy

Figure 2. Pseudo-code template for vertex addition strategy

When a set of vertices is added during the course of
analysis, it is initially assigned to a particular processor based
on a processor assignment strategy. Processor assignment
strategies are critical to prevent computation and
communication load imbalances during vertex additions.
Although there are many ways to approach this issue, to
demonstrate the capability of our framework we focus on the
following two key factors that will affect the running time,
the number of vertices and the number of cut-edges assigned

to each processor. If the number of vertices increases in one
or more processors compared to others it can lead to a
computational load imbalance. Similarly, if the number of
cut-edges increases in one or more processors compared to
others then it can result in a communication load imbalance.
Both computation and communication load imbalances will
lead to an increase in overall run-time.

Specifically in this paper, we choose two processor
assignment strategies, namely round robin based processor
assignment strategy (RoundRobin-PS) and cut edge
optimization based processor assignment strategy (CutEdge-
PS). The RoundRobin-PS, which represents the straight
forward and easy to implement approach for load balancing,
distributes the vertices evenly across the processors and has
minimal overhead. However, it does not consider the
relationships or connections between the newly added
vertices. Consequently, when vertices with community
structure are added, the RoundRobin-PS method can create a
higher number of cut-edges when compared to the second
approach, CutEdge-PS. The CutEdge-PS approach is a more
sophisticated approach, which considers the newly added
vertices and the edges between these vertices as an
independent graph. This graph is partitioned into sub-graphs
based on the number of processors such that it minimizes the
number of cut-edges between these new partitions. Let ࣛ
denote the algorithm used for the processor assignment
strategy in a recombination step, with a run time of ܶ(ࣛ).
In RoundRobin-PS, new vertices are assigned to the
processors in a circular fashion and therefore the run time of
the processor algorithm strategy is Ο(݊ᇱ). However, any cut
edge optimization based graph partitioning algorithm can be
substituted for CutEdge-PS and therefore the runtime of
CutEdge-PS will be dependent on this choice.
1. INPUT: ܲ = ሼ ଵܲ, … ܲ, … ܲሽ //set of processors assigned to

the problem
2. INPUT: n //number of vertices in the input graph G
3. INPUT: ܩ	//sub-graph assigned to processor ܲ
4. INPUT: ܬܦܣ //Adjacency list for ܸ in sub-graph ܩ
5. INPUT: ܦ ܸ //Distance Vectors ൫| ܸ|	 × 	݊൯ for sub-graph ܩ
6. INPUT: ߩ //set of new vertices and edges to be added
7. INPUT: ܹᇱ = ൛〈ݓ,ଵ, … , ,,ݓ … , ,ᇲᇲ〉ൟ //weights of theݓ

new edges to be added
8. INPUT: ܲᇱ = ൛ ଵܲᇱ, … , ܲᇱ, … , ܲᇲᇱ ൟ //processors where the

new vert݅ܿ݁ݏ need to be added

9. INPUT:	ܲᇱᇱ = ൛〈 ܲ,ଵᇱᇱ , … , ܲ,ᇱᇱ , … , ܲ,ᇲᇲᇱᇱ 〉ൟ //processors

containing the target vertices of the new edges to be added
10. FOR EACH processor ܲ do in parallel
11. FOR EACH vertex ܽ to be added
12. IF ܽ has to be added to sub-graph ܩ
13. ADD vertex ܽ to ܬܦܣ
14. ADD new row and column to ܦ ܸ and initialize

to ∞
15. ELSE
16. ADD new column to ܦ ܸ and initialize it to ∞
17. END IF

18. END FOR
19. FOR EACH new vertex ܽ
20. FOR EACH edge ൫ܽ, ܾ൯ to be added
21. IF ܾ ∈ ܸ
22. SEND row ܦ ܸൣ ܾ൧ to all other processors

 //using tree broadcast
23. ELSE
24. RECV row ܦ ܸൣ ܾ൧ from processor ܲᇱᇱ
25. END IF
26. IF ݓ, < ܦ	 ܸሾܽሿൣ ܾ൧
27. FOR EACH ݑ ∈ ܸ
28. FOR EACH ݒ ∈ ܸ
29. IF 	ܦ ܸሾݑሿሾݒሿ	 > ܦ ܸሾݑሿሾܽሿ + ,ݓ ܦ + ܸൣ ܾ൧ሾݒሿ
ܦ .30 ܸሾݑሿሾݒሿ = ܦ ܸሾݑሿሾܽሿ + ,ݓ ܦ + ܸൣ ܾ൧ሾݒሿ
31. END IF
32. END FOR
33. END FOR
34. END IF
35. IF ܽ ∈ ܸ AND ܾ ∈ ܸ //update adj. list after

adding edges

36. ADD edge ൫ܽ, ܾ൯ to ܬܦܣሾܽሿ and ܬܦܣൣ ܾ൧
37. ELSE IF ܽ ∈ ܸ AND ܾ ∉ ܸ
38. ADD edge ൫ܽ, ܾ൯ to ܬܦܣሾܽሿ
39. Notify ܲᇱᇱ	to start sending DV of ܾ to ܲᇱ
40. ELSE IF ܽ ∉ ܸ AND ܾ ∈ ܸ ADD

edge ൫ܽ, ܾ൯ to ܬܦܣൣ ܾ൧
41. Notify ܲᇱ	to start sending DV of ܽ to ܲ,ᇱᇱ
42. END IF
43. END FOR
44. END FOR
45. END FOR

Figure 3. Pseudo-code 3 Anywhere approach for vertex addition

 Vertex additions consist of two key steps. First, the new
vertices are added to the existing sub-graphs. Second, the
edges corresponding to the new vertices are added. Let ܽ be
the new vertex that is added to a sub-graph ܩ in processor ܲ . The vertex ܽ is added to the DV of processor ܲ . Since
each existing vertex can now have a path to the new vertex,
DVs of existing vertices across all processors are extended to
store this new value (Figure 3, line 11 - 18). The vertex
additions are simultaneously performed across all processors.
Once the new vertices are added, we perform edge additions
based on the anytime anywhere edge addition algorithm
described in our previous work [9]. Let ൫ܽ, ܾ൯ be the new
edge that has to be added. The edge addition algorithm first
examines whether the new edge has affected any previously
computed shortest path values (Figure 3, line 28 - 32). This
is done by evaluating the inequality	ܦ ܸሾݑሿሾݒሿ	 > ܦ ܸሾݑሿሾܽሿ ,ݓ+ ܦ + ܸൣ ܾ൧ሾݒሿ, where ݑ ∈ ܸ and ݒ ∈ ܸ. The paths affected

by the new edge addition are updated and propagated to the
neighboring processors.

Let ݉ᇱᇱ	 denote the degree of some new vertex added to the
graph. Since the existing vertices could have a path to the
newly added vertex, the DVs of the existing vertices are
updated. Based on the add edge algorithm [9], to add Ο(݉ᇱᇱ)	edges it takes: Οቆ݉ᇱᇱܮ log ܲ +݉ᇱᇱ݊݃ log ܲ +݉ᇱᇱ ݊ଶܲቇ

To add ݊ᇱ vertices, there is also an additional cost to resize
and maintain the DVs. Assuming that the size of the vector is
doubled every time the resize takes place, this operation has

a cost of Ο ቀ(ାᇲ)మ ቁ. Therefore, the overall running time for

vertex addition strategy to add ݊ᇱ vertices and ݉ᇱ	edges, at a
recombination step is: Οቆܶ(ܣ) + ݉ᇱܮ log ܲ +݉ᇱ݊݃ logܲ + ݉ᇱ ݊ଶܲ + (݊ + ݊ᇱ)ଶܲ ቇ

b) Repartition Strategy
In this subsection, we describe a strategy for dealing with

scenarios where large network changes can render the
previously discussed vertex addition strategy inefficient. In
such cases, it may be more efficient to repartition the entire
graph rather than using our vertex addition strategy.
However, restarting the entire analysis from scratch incurs
significant overhead. In our approach, we can reduce this
overhead by leveraging the properties of the algorithm and
reusing the partial results computed in previous
recombination steps. In our repartitioning strategy
(Repartition-S), the entire graph along with the newly added
vertices are repartitioned. Although repartitioning the entire
graph has an overhead, this method can effectively reduce the
total number of cut-edges when compared to other methods.
Note that, in Repartition-S, we do not perform the vertex
addition strategy used in RoundRobin-PS and CutEdge-PS.

Any cut-edge optimization based graph partitioning
algorithm can be used to repartition the graph and therefore
the time take to repartition the graph is dependent on the
algorithm used. Here, repartitioning could reassign an
existing vertex to a different processor and this requires
communicating the partial results to the appropriate
processor. This communication step uses the communication
schedule discussed in section IV.C. It should be noted that in
the Repartition-S, the DVs of the existing vertices are not
immediately updated based on the new vertex additions as in
RoundRobin-PS or CutEdge-PS. This can lead to additional
RC steps in the Repartition-S method.

V. EXPERIMENTAL RESULTS

We evaluated the performance of our approach on a
distributed Linux cluster with 32 compute nodes connected
over 1 Gb/s Ethernet network. Each compute node has dual
Intel Xeon E5 (1.8 GHz) processors with 8 core per processor
and 32 GB of memory. We implemented our algorithms

1 http://mrvar.fdv.uni-lj.si/pajek/

using the C++ programming language, MPICH’s Message
Passing Interface (MPI) library was used for inter-processor
communications and OpenMP for implementing the
multithreaded aspects of our algorithm. All our experiments
were conducted on 16 processors with graphs of 50,000
vertices. Since real-world social networks exhibit scale-free
property, we generated undirected scale-free graphs for our
evaluations using the Pajek1 network analysis tool.

A. Experimental Setup

Based on the theoretical analysis described in section IV.C,
we expect both the number of vertex additions and the stage
of analysis, at which the new vertices are added, to have an
impact on the performance of our anytime anywhere vertex
addition algorithm. The number of vertices added affects the
time taken to perform dynamic updates. In particular, for a
larger number of vertex additions the overhead to incorporate
these changes can be substantially higher. Based on our
analysis, this dynamic vertex addition cost could be avoided
by performing the repartition strategy. We evaluate the
performance of our recombination strategies to understand
how they behave under different dynamic conditions.

In our implementation, we carefully selected algorithms
and strategies for the various components of our framework
to evaluate the impact of vertex additions and load balancing
strategies on the overall run time. Moreover, the algorithms
used in DD, IA and the recombination strategies can be
modified without affecting other components of the
framework. This gives us the flexibility to use various
algorithms and communication schedules to better
understand the efficiency of our framework.

We implemented the DD phase using Parallel Graph
Partitioning and Fill-reducing Matrix Ordering (ParMETIS)
algorithm [2]. ParMETIS is a prominent parallel graph
partitioning algorithm that produces balanced partitions
while minimizing the total number of cut-edges across the
partitions. Since Repartition-S performs graph partitioning
on the entire graph, we reused the algorithm from the DD
phase. For the experiments, we implemented CutEdge-PS
using METIS [26] serial graph partitioning algorithm. Each
processor computes the METIS partition for the newly added
vertices and the partition with the lower number of cut-edges
is chosen for processor assignment. Also, it must be noted
that CutEdge-PS is designed to consider only the new vertices
and the edges between them. Considering both the existing
and new vertices during processor assignment may require
relocation of the existing vertices to other processors.
Relocating existing vertices would require communicating
the vertex information and its partial results, which in turn
would increase the vertex additions overhead. Therefore, in
this paper, we do not consider migrating the existing vertices
and their edges in this approach, but will consider this in
future work.

B. Results

In this section, we report the performance results for the
anytime anywhere vertex addition algorithm during closeness
centrality computations. As mentioned in the previous
section, both CutEdge-PS and Repartition-S attempt to
minimize the number of cut-edges and also balance the
number of vertices across the processors. The following
experiments were conducted to compare the performance of
various strategies.

1) Anytime Anywhere and Baseline Restart
In a large-scale social network analysis, incorporating

dynamic changes during the course of the analysis is critical
since static graph analysis methods that restart the
computation from scratch for every change can take a
significant amount of time and lead to obsolete results. In this
experiment, we compare the performance of the anytime
anywhere approach to a baseline restart method that restarts
the computation from scratch for every change. Figure 4
shows the results for the baseline restart and the anytime
anywhere approach with RoundRobin-PS. The RoundRobin-
PS is a simple approach that evenly distributes the newly
added vertices to the sub-graphs without considering the
edges or the relationships between them. By comparing the
baseline restart method with the RoundRobin-PS we can see
the effectiveness of the anytime anywhere methodology even
when a simple processor assignment strategy is adopted. The
baseline restart method does not have an anytime property
(e.g. cannot reuse any partial results). However, the anytime
anywhere approach (RoundRobin-PS) reuses the partial
results and updates only the parts of the network that are
affected by the dynamic graph changes. This shows the
efficiency of the anytime anywhere algorithm for performing
dynamic vertex additions.

Figure 4. Performance comparison of anytime anywhere and

baseline restart methods for 512 vertex additions using 16
processors on a graph with 50,000 vertices

2) Vertex Additions at Single RC Step
One of the key challenges when performing dynamic

vertex additions is to reduce the computation/communication
load imbalances among the processors. Our previous

2 http://mrvar.fdv.uni-lj.si/pajek/community/LouvainVOS.htm

experiment showed the efficiency of the anytime anywhere
algorithm in performing vertex additions, however, it does
not go in detail into the effects of the load balancing
strategies. In this experiment, a set of vertices ranging
between 500 and 6000 are added at different stages of the
analysis using CutEdge-PS, RoundRobin-PS, and
Repartition-S. To test the effects of CutEdge-PS, the new
vertices that are added in our experiments were extracted
from a larger graph using Pajek’s Louvain 2 community
extraction method.

Figure 5 shows the performance results for vertex additions
during the initial stages of the analysis (RC0). For a smaller
number of vertex additions, the time taken to propagate the
dynamic updates is less compared to the time taken for partial
result communication and partitioning, therefore
RoundRobin-PS and CutEdge-PS perform better than
Repartition-S. However, for a substantially higher number of
changes, the overhead to propagate dynamic updates
increases, leading to Repartition-S outperforming both
RoundRobin-PS and CutEdge-PS. Repartition-S utilizes the
anytime property of the algorithm to reduce the number of
recomputations and display better performance when there is
a substantial change in the underlying network. However, the
downside for using Repartition-S is that additional
recombination steps may be needed. Figure 6 shows the
performance comparison of different strategies for vertex
additions happening at the later stages of the analysis (RC8).
Similar to the previous results both CutEdge-PS and
RoundRobin-PS perform better when the number of changes
is low. However, as the number of changes increases the
overhead to perform anywhere vertex addition also increases,
therefore Repartition-S performs better when the number of
changes is high.

Figure 5 . Performance comparison of different strategies for

vertex additions at recombination step 0 (RC0) using 16
processors on a graph with 50,000 vertices

Even though the performance gain from the CutEdge-PS
when compared to the RoundRobin-PS is small, analyzing
the final network/graph produced after adding the new
vertices shows that the number of new cut-edges (Figure 7)

0

50

100

150

200

RC0 RC4 RC8

Ti
m

e
(in

 m
in

ut
es

)

RC step at which the vertices are added

Baseline Restart vs. Anytime Anywhere

Anytime Anywhere (RoundRobin-PS) Baseline Restart

0

200

400

600

800

512 1873 3830 5611

Ti
m

e
(in

 m
in

ut
es

)

Number of vertices added

Vertex Additions at RC0

Repartition-S RoundRobin-PS

CutEdge-PS

created by CutEdge-PS was less when compared to the
number of new cut-edges from the RoundRobin-PS.
Therefore, when compared to RoundRobin-PS, for a large set
of vertex additions with multiple communities CutEdge-PS
may effectively reduce the number of cut-edges and therefore
reduces the running time.

Figure 6. Performance comparison of different strategies for

vertex additions at recombination step 8 (RC8) using 16
processors on a graph with 50,000 vertices

Figure 7. Number of new cut-edges created by different strategies

on a graph with 50,000 vertices using 16 processors

3) Incremental Vertex Additions
In real-world scenarios, the networks evolve continuously,

resulting in smaller number of changes over the course of
analysis instead of one large update at a particular stage of
the analysis. In order to capture this effect, in this experiment,
we perform vertex additions distributed across multiple
stages (10 RC steps) of the analysis. For instance, in the 5611
vertex additions experiment, at each RC step, approximately
560 vertices are added. Figure 8 shows the results for
incremental vertex additions on a graph with 50,000 vertices.
Baseline restart approach has to restart the computation for
every update and therefore performs significantly slower than
other methods. For a smaller number of updates, both
CutEdge-PS and RoundRobin-PS performs better than
Repartition-S. This is due to the fact that the Repartition-S
has to do partitioning and redistribute the partial results every
time there is an update, this takes much longer than the
overhead involved in CutEdge-PS and RoundRobin-PS.
However, as the number of vertex additions increases, the

overhead to perform anywhere vertex addition algorithm in
both CutEdge-PS and RoundRobin-PS increases. Therefore,
in these experiments, we can see that for a large number of
vertex additions, Repartition-S performed better.

4) Summary
Our results show that anytime anywhere methodology can

be used to design efficient algorithms for dynamic vertex
additions. However, it is also clear that there is no one
strategy, such as the processor assignment strategy, that is
efficient for all situations. From our experimental results, we
provide the following insights:
• For a relatively smaller number of vertex additions and

for higher rates of network changes, the anytime
anywhere approach of utilizing only the new information
and incorporating the changes as and when the changes
occur provides the most efficient and accurate results (as
shown in Figure 8).

• For a larger number of changes happening at a single step
of the analysis, the overhead involved in updating and
changing the existing results increase considerably.
Therefore, the Repartition-S uses the anytime property
to provide an efficient middle ground, between restarting
from scratch and using the vertex addition strategy,
which yields better results when the number of vertex
additions are large, as seen in Figure 5 and Figure 6.

Figure 8. Performance comparison of different strategies for

incremental vertex additions using 16 processors on a graph with
50,000 vertices

VI. CONCLUSION

In this paper, we proposed an anytime anywhere algorithm
for handling vertex additions during closeness centrality
computations. Both theoretical analysis and empirical
evaluations illustrate the effectiveness of the anytime
anywhere approach in handling dynamic vertex updates.
Furthermore, we analyzed the effectiveness of different
processor assignment strategies and presented their
performance for different forms of vertex additions such as
single step and incremental additions. The RoundRobin-PS
and the CutEdge-PS performed better for real-world
scenarios, where the dynamic updates happen continuously

0

200

400

600

800

512 1873 3830 5611

Ti
m

e
(in

 m
in

ut
es

)

Number of vertices added

Vertex Additions at RC8

Repartition-S RoundRobin-PS
CutEdge-PS

0

20000

40000

60000

80000

512 1873 3830 5611N
um

be
r o

f n
ew

 c
ut

-e
dg

es

Number of vertices added

Number of New Cut-Edges

Repartition-S CutEdge-PS RoundRobin-PS 0

200

400

600

800

51
(512)

187
(1873)

383
(3830)

561
(5611)

Ti
m

e
(in

 m
in

ut
es

)

Number of vertices added at each RC step
(cummulative number of vertices added)

Incremental Vertex Additions

Baseline Restart Repartition-S
RoundRobin-PS CutEdge-PS

over time. However, Repartition-S performed better when a
large number of vertex updates happen at a single stage of the
analysis. This illustrates how various processor assignment
and repartitioning strategies can be combined with the
anytime anywhere vertex addition approach to handle
different forms of vertex additions. In the future, we plan to
design anytime anywhere algorithms to also handle vertex
deletions and develop graph rebalancing strategies to deal
with load imbalances caused by these changes. We also plan
to investigate anytime anywhere methodologies to handle
issues such as fault tolerance in the cloud and other
parallel/distributed platforms.

REFERENCES

[1] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs,” SIAM Journal on
Scientific Computing, vol. 20, no. 1. pp. 359–392, 1998.

[2] G. Karypis and V. Kumar, “A parallel algorithm for multilevel
graph partitioning and sparse matrix ordering,” J. Parallel
Distrib. Comput., pp. 1–21, 1998.

[3] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for
partitioning power-law graphs,” in Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium,
2006, p. 10 pp.

[4] M. E. J. Newman, “Ego-centered networks and the ripple
effect,” Soc. Networks, vol. 25, no. 1, pp. 83–95, 2003.

[5] M. E. J. Newman, “The structure and function of complex
networks,” SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003.

[6] E. E. Santos, L. Pan, D. Arendt, and M. Pittkin, “An Effective
Anytime Anywhere Parallel Approach for Centrality
Measurements in Social Network Analysis,” in 2006 IEEE
International Conference on Systems, Man and Cybernetics,
2006, vol. 6, pp. 4693–4698.

[7] E. E. Santos, L. Pan, D. Arendt, H. Xia, and M. Pittkin, “An
Anytime Anywhere Approach for Computing All Pairs
Shortest Paths for Social Network Analysis,” in Integrated
Design and Process Technology, 2006.

[8] L. Pan and E. E. Santos, “An anytime-anywhere approach for
maximal clique enumeration in social network analysis,” in
IEEE International Conference on Systems, Man and
Cybernetics , 2008. SMC 2008, 2008, pp. 3529–3535.

[9] E. E. Santos, J. Korah, V. Murugappan, and S. Subramanian,
“Effectively Handling New Relationship Formations in
Closeness Centrality Analysis of Social Networks Using
Anytime Anywhere Methodology,” 2016 IEEE International
Conferences on Big Data and Cloud Computing (BDCloud),
Social Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom). pp. 354–361, 2016.

[10] E. E. Santos, J. Korah, V. Murugappan, and S. Subramanian,
“Efficient Anytime Anywhere Algorithms for Closeness
Centrality in Large and Dynamic Graphs,” in 2016 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2016, pp. 1821–1830.

[11] Z. Khayyat, K. Awara, A. Alonazi, and D. Williams, “Mizan :
A System for Dynamic Load Balancing in Large-scale Graph
Processing,” EuroSys, pp. 169–182, 2013.

[12] R. Chen, X. Weng, B. He, and M. Yang, “Large graph
processing in the cloud,” Proc. 2010 Int. Conf. Manag. Data -
SIGMOD ’10, pp. 1123–1126, 2010.

[13] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS:
Mining peta-scale graphs,” Knowl. Inf. Syst., vol. 27, no. 2, pp.
303–325, 2011.

[14] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny,
“Software and Algorithms for Graph Queries on Multithreaded
Architectures,” 2007 IEEE Int. Parallel Distrib. Process.
Symp., 2007.

[15] J. Dean and S. Ghemawat, “MapReduce : Simplified Data
Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1,
pp. 1–13, 2008.

[16] G. Malewicz et al., “Pregel : A System for Large-Scale Graph
Processing,” in SIGMOD’10, 2010, pp. 135–145.

[17] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail,
“Approximating Betweenness Centrality,” in Algorithms and
Models for the Web-Graph, Berlin Heidelberg: Springer, 2007,
pp. 124–137.

[18] M. Lee, J. Lee, and J. Park, “QUBE: a Quick algorithm for
Updating Betweenness centrality,” in Proceedings of the 21st
international conference on World Wide Web, 2012, pp. 351–
360.

[19] L. M. Vaquero and C. Martella, “Adaptive Partitioning of
Large-Scale Dynamic Graphs,” in Proceedings of the 4th
Annual Symposium on Cloud Computing, 2013, p. 35:1--35:2.

[20] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes:
Dynamic Partitioning for Distributed Social Network Graph
Databases,” in EDBT, 2015.

[21] M. E. J. Newman, Networks. An introduction. New York, NY,
USA, 2010.

[22] K. Okamoto, W. Chen, and X. Y. Li, “Ranking of closeness
centrality for large-scale social networks,” in International
Workshop on Frontiers in Algorithmics, 2008, vol. 5059
LNCS, pp. 186–195.

[23] D. Culler et al., “LogP: Towards a realistic model of parallel
computation,” in Proceedings of the fourth ACM SIGPLAN
symposium on Principles and practice of parallel
programming, 1993, pp. 1–12.

[24] J. F. Kurose and K. W. Ross, Computer Networking A Top-
Down Approach Featuring the Internet, vol. 1. Pearson
Education India, 2005.

[25] R. Albert and A. L. Barabasi, “Statistical mechanics of
complex networks,” Rev. Mod. Phys., vol. 74, no. 1, pp. 47–97,
2002.

[26] G. Karypis and V. Kumar, “Multilevel k-way Partitioning
Scheme for Irregular Graphs,” J. Parallel Distrib. Comput.,
vol. 48, no. 1, pp. 96–129, 1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /blex
 /blsy
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /Cmb10
 /CMB10
 /Cmbsy10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /Cmbx10
 /CMBX10
 /Cmbx12
 /CMBX12
 /Cmbx5
 /CMBX5
 /Cmbx6
 /CMBX6
 /Cmbx7
 /CMBX7
 /Cmbx8
 /CMBX8
 /Cmbx9
 /CMBX9
 /Cmbxsl10
 /CMBXSL10
 /Cmbxti10
 /CMBXTI10
 /Cmcsc10
 /CMCSC10
 /Cmcsc8
 /CMCSC8
 /Cmcsc9
 /CMCSC9
 /Cmdunh10
 /CMDUNH10
 /Cmex10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /Cmff10
 /CMFF10
 /Cmfi10
 /CMFI10
 /Cmfib8
 /CMFIB8
 /Cminch
 /CMINCH
 /Cmitt10
 /CMITT10
 /Cmmi10
 /CMMI10
 /Cmmi12
 /CMMI12
 /Cmmi5
 /CMMI5
 /Cmmi6
 /CMMI6
 /Cmmi7
 /CMMI7
 /Cmmi8
 /CMMI8
 /Cmmi9
 /CMMI9
 /Cmmib10
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /Cmr10
 /CMR10
 /Cmr12
 /CMR12
 /Cmr17
 /CMR17
 /Cmr5
 /CMR5
 /Cmr6
 /CMR6
 /Cmr7
 /CMR7
 /Cmr8
 /CMR8
 /Cmr9
 /CMR9
 /Cmsl10
 /CMSL10
 /Cmsl12
 /CMSL12
 /Cmsl8
 /CMSL8
 /Cmsl9
 /CMSL9
 /Cmsltt10
 /CMSLTT10
 /Cmss10
 /CMSS10
 /Cmss12
 /CMSS12
 /Cmss17
 /CMSS17
 /Cmss8
 /CMSS8
 /Cmss9
 /CMSS9
 /Cmssbx10
 /CMSSBX10
 /Cmssdc10
 /CMSSDC10
 /Cmssi10
 /CMSSI10
 /Cmssi12
 /CMSSI12
 /Cmssi17
 /CMSSI17
 /Cmssi8
 /CMSSI8
 /Cmssi9
 /CMSSI9
 /Cmssq8
 /CMSSQ8
 /Cmssqi8
 /CMSSQI8
 /Cmsy10
 /CMSY10
 /Cmsy5
 /CMSY5
 /Cmsy6
 /CMSY6
 /Cmsy7
 /CMSY7
 /Cmsy8
 /CMSY8
 /Cmsy9
 /CMSY9
 /Cmtcsc10
 /CMTCSC10
 /Cmtex10
 /CMTEX10
 /Cmtex8
 /CMTEX8
 /Cmtex9
 /CMTEX9
 /Cmti10
 /CMTI10
 /Cmti12
 /CMTI12
 /Cmti7
 /CMTI7
 /Cmti8
 /CMTI8
 /Cmti9
 /CMTI9
 /Cmtt10
 /CMTT10
 /Cmtt12
 /CMTT12
 /Cmtt8
 /CMTT8
 /Cmtt9
 /CMTT9
 /Cmu10
 /CMU10
 /Cmvtt10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Dcb10
 /Dcbx10
 /Dcbxsl10
 /Dcbxti10
 /Dccsc10
 /Dcitt10
 /Dcr10
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /DoulosSIL
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KristenITC-Regular
 /KrutiDev040Bold
 /KrutiDev040BoldItalic
 /KrutiDev040Condensed
 /KrutiDev040Italic
 /KrutiDev040Thin
 /KrutiDev040Wide
 /KrutiDev060
 /KrutiDev060Bold
 /KrutiDev060BoldItalic
 /KrutiDev060Condensed
 /KrutiDev060Italic
 /KrutiDev060Thin
 /KrutiDev060Wide
 /KrutiDev070
 /KrutiDev070Condensed
 /KrutiDev070Italic
 /KrutiDev070Thin
 /KrutiDev070Wide
 /KrutiDev080
 /KrutiDev080Condensed
 /KrutiDev080Italic
 /KrutiDev080Wide
 /KrutiDev090
 /KrutiDev090Bold
 /KrutiDev090BoldItalic
 /KrutiDev090Condensed
 /KrutiDev090Italic
 /KrutiDev090Thin
 /KrutiDev090Wide
 /KrutiDev100
 /KrutiDev100Bold
 /KrutiDev100BoldItalic
 /KrutiDev100Condensed
 /KrutiDev100Italic
 /KrutiDev100Thin
 /KrutiDev100Wide
 /KrutiDev120
 /KrutiDev120Condensed
 /KrutiDev120Thin
 /KrutiDev120Wide
 /KrutiDev130
 /KrutiDev130Condensed
 /KrutiDev130Thin
 /KrutiDev130Wide
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MTExtraTiger
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SILDoulosIPA
 /SimHei
 /SimSun
 /SimSun-PUA
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /SymbolTiger
 /SymbolTigerExpert
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Tiger
 /TigerExpert
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

