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Abstract—Over the past decade, there has been a dramatic 
increase in the availability of large and dynamic social network 
datasets. Conducting social network analysis (SNA) on these 
networks is critical for understanding underlying social 
phenomena. However, continuously evolving graph structures 
require massive recomputations and conducting SNA is infeasible 
if the computations have to be restarted for every change. Many 
recent works have proposed large-scale graph processing systems 
and frameworks, but less attention has been given to scalable SNA 
algorithm designs that can efficiently adapt to dynamic graph 
changes. Moreover, continuously adapting to dynamic graph 
changes such as node/vertex/actor additions/deletions in a 
parallel/distributed computational environment can skew the 
initial graph partitions, leading to load imbalance issues and 
performance degradation. Previous approaches that focus on 
computing SNA measures on dynamic graphs either ignore this 
critical load-balancing aspect or focus only on measures that are 
straightforward and inherently adjustable to changes in the graph 
topology. In this work, we have designed an anytime anywhere 
closeness centrality algorithm that can efficiently incorporate 
vertex additions while avoiding massive recomputations, by 
leveraging a generic framework  for designing parallel/distributed 
algorithms called anytime anywhere. Furthermore, we have also 
performed an analysis of the effectiveness of various processor 
assignment strategies to mitigate the load imbalances caused by 
dynamic graph changes.  
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I. INTRODUCTION  

Availability of large and dynamic social network 
information from mediums such as online social media, web 
graphs and sensor networks have dramatically increased in 
recent times. These large and dynamic datasets, coupled with 
social network analysis (SNA) techniques, are helping to 
extend our understanding of various underlying social 
processes and phenomena. However, applying static graph 
analysis methods to analyze the datasets require massive 
recomputations. Therefore this can become infeasible with 
large increases in network size and rate of network change. 
Since, typically, large graph datasets cannot be stored and 
analyzed in a single machine, they are distributed across 
multiple machines, and various graph partitioning schemes 
have been proposed to efficiently distribute the workload 
across these machines [1][2][3]. These approaches have 

tended to focus on two main aspects: evenly distributing the 
vertices across the machines and/or reducing the number of 
connections among these graph partitions. However, 
dynamic graph updates such as vertex/edge additions and 
deletions can skew these initial partitions and create 
computation and communication load imbalances. In this 
paper, we focus on efficiently performing vertex additions 
during the course of SNA. Vertex addition is a natural 
phenomenon observed across most real-world social 
networks. For instance, social changes such as new actors 
joining an online community, adding content to an online 
social media, and adding new publications to a citation 
network can all be represented as dynamic vertex additions.  

One key challenge when performing dynamic vertex 
additions is in designing algorithms to efficiently incorporate 
the new vertices, without incurring massive recomputations. 
This is important as most analysis tools are built for static 
networks and require a restart when the underlying network 
changes. Another key challenge is maintaining the load 
balance across machines in a parallel/distributed 
computational environment. Although other graph updates 
such as edge changes can also induce some degree of load 
imbalance, the magnitude of the imbalance caused by vertex 
updates can be substantially higher. This is because vertex 
updates can affect both the number of vertices and edges in 
each machine. Furthermore, a single vertex change could 
initiate multiple edge changes. In addition, social network 
graphs exhibit scale-free property and have community 
structures [4][5]. Vertices belonging to the same community 
share more edges than the vertices belonging to different 
communities. Hence, assigning the vertices from the same 
community to a partition could reduce the number of edges 
between the graph partitions. We refer to such edges with 
endpoints in different graph partitions as cut-edges. In a 
number of parallel/distributed graph problems, the amount of 
communications required between the processors is 
determined by the total number of cut-edges between these 
processors. In this work, we present various strategies to 
assign processors to vertices and evaluate how they affect the 
number of new cut-edges introduced during vertex additions.  

In our previous work [6]–[10], we proposed an 
overarching parallel/distributed anytime anywhere 
methodology that can be utilized to design algorithms for 
processing and analyzing information/data in various static 



and dynamic conditions. In the anytime anywhere 
methodology, the term anytime refers to the ability of the 
algorithm to provide non-trivial solutions when interrupted. 
The quality of these solutions improves in a monotonically 
non-decreasing manner with relation to the amount of 
computational resources available to the algorithm. The term 
anywhere refers to the ability of the algorithm to incorporate 
changes in the underlying data/information and also 
propagate changes in the analysis. In the domain of large and 
dynamic social network analysis, we have developed anytime 
anywhere algorithms; specifically for closeness centrality 
measurements that can handle edge additions [9] and edge 
deletions [10]; and for other SNA measurements [6][8]. In 
this work, we provide an anytime anywhere algorithm to 
efficiently handle vertex additions while dealing with the 
challenge of assigning processors to vertices. In addition, we 
analyze the performance of anytime anywhere algorithms for 
vertex additions during closeness centrality calculations and 
evaluate efficiency when combined with various processor 
assignment strategies. Furthermore, we study the 
effectiveness of the different processor assignment strategies 
and understand how they behave under various dynamic 
scenarios. 

II. BACKGROUND 

Large-scale graph analysis has received a lot of interest 
and importance in recent times. This has given rise to a 
number of tools [11][12], libraries [13][14], computational 
models [15][16], algorithms [17], [18] and load balancing 
studies [19][20] in this area. However, in these approaches, 
which are focused on providing systems based solutions, 
critical aspects such as designing efficient algorithms that can 
handle dynamic graph changes and load imbalances caused 
by these changes are often overlooked. 

Mizan [11] is a Pregel [16] based graph load balancing 
system that applies vertex migration techniques for dynamic 
load balancing. Pregel based systems use the Bulk 
Synchronous Parallel (BSP) programming model, in which 
computation is performed in a sequence of supersteps 
separated by barriers for communication. The Mizan system 
monitors the runtime metrics for each vertex such as the 
number of outgoing messages, the number of incoming 
messages, and the response time for each superstep. Based on 
these metrics, the vertices are migrated to different processors 
to reduce the load imbalances. Although Mizan allows adding 
new vertices and edges at any superstep, it mainly focuses on 
performing load-balancing for static graph analysis. 
Furthermore, it does not provide any efficient processor 
assignment strategies. Instead, it is assumed that the load 
imbalances will be remedied in future steps using the vertex 
migration procedure. Vaquero et al. [19] proposed an 
adaptive load balancing system that is based on dynamic 
vertex migrations. This Pregel based system utilizes a label 
propagation heuristic. During every iteration, each vertex 
decides whether to stay in the current partition or to migrate 
to a different one based on the locality of the highest number 

of neighboring vertices. Similar to Mizan, this work does not 
consider any initial vertex placement strategies. Moreover, 
this work buffers the dynamic graph updates instead of 
continuously incorporating the graph changes. However, this 
can lead to outdated results especially when computing 
measures such as maximum clique and shortest path 
calculations. Hermes [20] is a lightweight graph repartitioner 
that utilizes a dynamic repartitioning algorithm to reduce the 
number of cut-edges and improve the co-location of vertices. 
However, their main emphasis is on providing graph data 
management rather than graph analysis. Furthermore, it does 
not provide any initial processor assignment strategies. 

Although the methodologies discussed above provide 
general procedures for incorporating vertex/edge changes 
and for load balancing, they do not exploit the structure of 
particular graph problems to efficiently deal with dynamic 
graphs. Instead, these system requires the algorithm 
designers to grapple with such issues. In this work, our focus 
is to exploit the properties of social network analysis 
problems, such as closeness centrality, to formulate efficient 
ways to incorporate graph changes using an anytime 
anywhere framework. In our previous work [6]–[10] we have 
provided efficient anytime anywhere algorithms for 
closeness centrality analysis that can handle dynamic graph 
changes such as edge weight changes [6], edge additions [9], 
and edge deletions [10]. In this work, we provide algorithm 
designs to handle dynamic vertex additions that can 
incorporate dynamic graph changes continuously during the 
analysis. Moreover, we have provided efficient processor 
assignment strategies for reducing the load imbalances 
caused during dynamic vertex additions.  

III. ANYTIME ANYWHERE METHODOLOGY 

The anytime anywhere methodology [6]–[10] offers a 
scalable parallel/distributed framework to design algorithms 
for processing both static and dynamic information/data. One 
specific application domain for this methodology is in social 
networks analysis (SNA), such as in the formulation of SNA 
algorithms that can handle large-scale dynamic graphs. One 
possible technique is for the large input graph to be 
decomposed into smaller sub-graphs and assigned to 
different processors. Results obtained by analyzing these sub-
graphs individually are further combined and refined in 
multiple steps to obtain the final solution. Moreover, dynamic 
graph updates such as node additions are efficiently 
incorporated and the effects of these changes are propagated 
to the entire network with minimal recomputations. The 
anytime anywhere methodology performs these tasks in three 
phases: domain decomposition (DD), initial approximation 
(IA) and recombination (RC). The significance of these 
phases, with an emphasis on social network analysis, are 
discussed below and a more detailed discussion can be found 
in our previous work [6]–[10]. 



A. Domain Decomposition 

The large input graph is decomposed into manageable 
sub-graphs (graph partitions) and assigned to different 
processors in the DD phase. The quality of the initial partition 
affects the quality of the partial results and the amount of 
communication required in the successive steps. One possible 
way to design algorithms in domain decomposition is to 
minimize the number of cut-edges in each sub-graph. Cut-
edges have endpoints belonging to different sub-graphs. Cut-
size of a sub-graph is the number of cut-edges in that sub-
graph. Sub-graphs with higher cut-size will share more edges 
with other sub-graphs and could increase the amount of 
communication performed in the successive steps. Various 
graph partitioning algorithms which minimize the number of 
cut-edges can be considered in this phase. 

B. Initial Approximation 

A preliminary approximation is computed in the IA 
phase, possibly by individually analyzing the sub-graphs 
obtained from the DD phase. Algorithms employed in the IA 
phase should support anytime anywhere properties so that the 
partial results obtained here can be combined and refined in 
the RC phase. 

C. Recombination 

In this phase, each processor iteratively computes the final 
solution by combining and refining its values based on the 
information received from neighboring processors. Dynamic 
graph changes are continuously incorporated into the sub-
graphs and the effects of these changes are periodically 
propagated to the entire network. Furthermore, dynamic 
network changes especially node additions can skew the 
number of nodes and cut-edges in each sub-graph. Such 
network updates can consequently lead to load imbalances. 
In this work, we provide various processor assignment 
strategies to handle these issues. 

IV. ANYTIME ANYWHERE ALGORITHM DESIGN AND 

ANALYSIS FOR CLOSENESS CENTRALITY 

Centrality measures are key SNA metrics for identifying 
important actors/nodes in a social network. Some widely 
used centrality measures are degree centrality, betweenness 
centrality, closeness centrality, and eigenvector centrality 
[21][22]. In this work, we focus on designing efficient 
algorithms for closeness centrality computations in large and 
dynamic graphs. Closeness centrality of an actor is the 
inverse of the sum of all shortest path distances from the actor 
to all other actors in the social network and therefore requires 
computation of all pairs shortest paths (APSPs). The 
computational challenge of calculating APSPs in a large 
network that is continuously evolving makes closeness 
centrality computation a particularly challenging and 
interesting problem.  

Given a graph ܩ(ܸ,  where ܸ is the set of vertices in the (ܧ
graph and ܧ is the set of edges such that |ܸ| = ݊ and |ܧ| =݉, let ݀(ݑ,  represent the shortest path distance between (ݒ

vertices ݑ and ݒ, then closeness centrality Cୡ	of a vertex ݑ ∈ܸ is given by: ܥ(ݑ) = 1∑ ,ݑ)݀ )ୀଵݒ  

Dynamic graphs can undergo various forms of changes 
such as edge weight changes, edge additions/deletions, and 
node additions/deletions. In our previous work, we designed 
and analyzed algorithms to handle edge weight changes [7], 
edge additions [9], and edge deletions [10]. In this work, we 
focus on vertex additions. Vertex additions possess similar 
challenges encountered in edge additions since a vertex 
addition can consist of one or more edge additions. However, 
the key challenge that needs to be addressed during vertex 
additions is that the newly added vertices could skew the 
initial graph partitions, and this can lead to substantial load 
imbalances. Furthermore, the magnitude of the change is not 
always proportional to the degree of load-imbalance. For 
instance, uniform node additions across all processors would 
have a lower degree of imbalance when compared to the same 
number of node changes distributed across only a few 
processors. Additionally, adding vertices of a higher degree 
will have a substantial impact on load imbalance when 
compared to vertices with a lower degree. In addition to the 
degree of a vertex, the number of cut-edges created by a 
vertex addition will also be based on the processor to which 
it is assigned. For instance, assigning a new vertex to a sub-
graph that have most of its neighboring vertices will reduce 
the total number of cut-edges introduced by the vertex 
addition. In order to handle these challenges, performing 
vertex additions require efficient strategies such as processor 
assignment, vertex addition and repartitioning strategies. 

Processor assignment strategies provide the ability to 
assign a newly added vertex to an appropriate sub-graph that 
aims to minimize load imbalances. Moreover, our anywhere 
approach for vertex addition efficiently utilizes the processor 
assignment strategies to incorporate dynamic changes to the 
network. Two examples of such processor assignment 
strategies are: round robin based strategy and cut-edge 
optimization based strategy. Round robin based processor 
assignment strategies focuses only on distributing the new 
vertices equally while the cut-edge optimization based 
processor assignment strategies also look at the relationships 
between the new vertices to minimize the number of cut-
edges. However, for a larger number of changes, the 
overhead involved in incorporating the dynamic updates 
using anywhere approach for vertex additions could increase 
substantially. Therefore, in such cases, it may be better to 
repartition the whole graph rather than applying dynamic 
changes. However, instead of restarting the analysis from 
scratch we can utilize the anytime property of the algorithm 
and reuse the partial results calculated thus far. The anytime 
anywhere algorithm for closeness centrality consists of three 
phases: 1) Domain decomposition (DD), 2) Initial 
approximation (IA), and 3) Recombination (RC). A more 
detailed discussion about the DD, IA, and RC phases can also 
be found in our previous work [6]–[10].  



In this section, we also provide analyses for different 
components of the anytime anywhere algorithms. Some 
analyses presented here have also appeared in our previous 
work [9][10], and in those instances, are appropriately cited. 
The LogP [23] distributed memory model was utilized to 
analyze the runtime for various phases of the algorithm. 

A. Domain Decomposition 

The input graph (ܩ)  is decomposed into balanced sub-
graphs and distributed across the processors in the DD phase. 
The quality of these partitions in terms of the number of cut-
edges and the number of vertices assigned to each processor 
affects the load balancing and the quality of the partial results 
obtained in the successive steps. Given a set of 
processors	ܲ = ሼ ଵܲ, ଶܲ, … , ܲሽ, the vertex set ܸ is partitioned 
into ܲ  distinct sub-sets of vertices ሼ ܸሽୀଵ  during the DD 
phase. Let ܩ(ܸ,  be the graph where ܸ is the set of vertices (ܧ
and ܧ is the set of edges such that |ܸ| = ݊  and	|ܧ| = ݉. Let ܩ( ܸ ∪ ,ܤ  represent the local sub-graph assigned to each	)ܧ
processor	 ܲ, where, ܸ ⊆ ܸ is the set of vertices assigned to 
processor ܲ ܧ , ⊆  is the set of edges that have at least one ܧ
endpoint(vertex) in ܸ , and  ܤ ⊆ ܸ  is set of external 
boundary vertices for processor ܲ . External boundary 
vertices act as bridges that connect the neighboring sub-
graphs to the vertices ܸ in the local sub-graph. Any cut-edge 
optimization based graph partitioning algorithm can be used 
in this phase. Therefore the runtime for this phase depends 
upon the algorithm being used. 

B. Initial Approximation 

The sub-graphs obtained from the DD phase are analyzed 
individually in the IA phase to obtain the first set of partial 
results. These partial results provide a preliminary 
approximation of the entire network. For the closeness 
centrality computation, each processor computes APSP 
values for its local sub-graph. In the IA phase, each processor ܲ  computes the partial results based on the information 
contained in its local sub-graph ܩ.  

A possible algorithm to implement the IA for closeness 
centrality analysis is Dijkstra’s single source shortest path 
algorithm. In our previous work [9][10], we applied a multi-
threaded version of Dijkstra’s single source shortest path 
algorithm to speed up this computation and leverage the 

multiple cores,  and it takes	Ο ൬య ୪୭ುఛయ ൰, where ߬	is the number 

of threads used. The partial results obtained using Dijkstra’s 
algorithm in the IA phase can be further refined in the RC 
phase. 

C. Recombination 

1. INPUT: ሼ ଵܲ, … ܲ , … ܲሽ //set of processors assigned to  
      the problem 
2. INPUT: n //number of vertices in the input graph G 
3. INPUT: ܩ //local sub-graph in processor ܲ 
4. INPUT:	ܦ ܸ //Distance Vectors ൫| ܸ|	 × 	݊൯ for sub-graph ܩ 

generated in the IA phase  

5. FOR EACH processor ܲ  do in parallel 
6.         ݇ = 0 //initialize the recombination step index  
7.         DO //propagate updates to neighboring processors 
8.                 ݇ = ݇ + 1  //increment the recombination step 

index  
9.                 FOR ݆ = 1 to ܲ 
10.                         IF ݅ ≠ ݆ 
11.                                  RECV DVs of external boundary  

vertices from processor ܲ in messages of size	ߙ. 
12.                                  Update local boundary vertices 

using the DVs of external boundary vertices. 
13.                          ELSE 
14.                                  SEND DVs of respective external 

boundary vertices to (ܲ − 1) processors in messages of 
size ߙ. 

15.                 END FOR 
16.                 Choose Recombination strategy(ies) based on 
 the constraints 
17.                 Perform Recombination strategy(ies) 
18.          UNTIL ݇ = ܲ − 1 OR no more updates in any  
               processor 
19. END FOR 

Figure 1. Pseudo-code template of  the recombination phase  for 
closeness centrality [9][10] 

In the RC phase, each processor refines its partial results 
by incorporating the updates received from the neighboring 
processors. This process is repeated in iterative steps until the 
final solution is obtained. One way of performing this process 
is by using Distance Vector Routing (DVR) algorithm [24].  

In this work, we utilized the recombination algorithm for 
closeness centrality computation developed in our previous 
work [9][10], where we applied DVR algorithm to perform 
incremental graph updates across the processors during the 
APSP computation. Each vertex in a sub-graph maintains a 
Distance Vector (DV) to store the current shortest path 
distances to other vertices in the graph. Boundary DVs are 
the distance vectors of the boundary vertices. Boundary 
vertices act as bridges connecting sub-graphs belonging to 
different processors. During each RC step, the boundary 
vertices in each processor receive updates from its 
neighboring processors. Therefore, when propagating 
updates, it is sufficient to send only the updated values of the 
boundary DVs and this significantly reduces the amount of 
communications. We used a personalized all-to-all 
communication schedule that ensures only one message 
traverses the network at any given time in order to prevent 
network flooding and obtain predictable performance. 
Although our communication schedule takes ܱ(ܲଶ) steps for ܲ  processors, it mitigates network flooding.  For static 
graphs, the number of RC steps required to compute final 
APSP values is bounded by the number of processors ܲ . 
However, the number of RC steps required for dynamic 
graphs is based on the step at which dynamic changes are 
incorporated. Hence, during dynamic graph analysis, the 



refinement of the partial results is continued until there are no 
more updates to be exchanged between processors.  

In previous work [9][10], we provided the runtime 
analysis for the RC phase, when DVR algorithm is applied to 
perform incremental updates. Let ܥ be the number of local 
boundary vertices in the processor ܲ  and ߛ be the maximum 
number of cut-edges for any boundary vertex in ܸ. Based on 
previous studies [4][5][25], for the networks with scale-free 
property, we can approximate ߛ ≤ ୪୭ . Since our focus is on 

social network graphs and as these graphs exhibit scale-free 
property we use this bound for ߛ in our analysis. During each 
RC step, the processors send and receive DVs of size Ο(݊ܥ), 
where ܥ = Ο ቀቁ. Using the information received from the 

neighboring processors the boundary vertices are updated 
and this takes Ο(݊ߛܥ) . Therefore, the time to share the 
information and update the boundary nodes at each 

recombination step takes Ο ቀ ୬య୪୭  + ୬మఈ Pܮ + nଶܲ݃ቁ . When 

there are no dynamic graph updates the number of RC steps 
required is bounded by the number of processors ܲ. This is 
because the longest processor chain could be of length ܲ − 1 
and therefore the number of RC steps is bounded by ܲ − 1 
steps. The total runtime to complete the communication and 

boundary vertices updates is: Ο ቀ ୬య୪୭  + ୬మఈ ܲଶܮ + nଶܲଶ݃ቁ. Here ܮ and ݃ represent the latency and gap from the LogP model. 
The maximum size of a single message exchanged between 
the processors is represented by ߙ. Maximum message size ߙ 
is bounded by the memory capacity of the processor and is 
chosen such that the network remains lightly loaded during 
communications.  

1) Recombination Strategies 
In addition to the information sharing with the 

neighboring processors, one of the key steps in the RC phase 
is to perform the recombination strategy(ies). Recombination 
strategies provide the capability to perform various updates 
and computations on the graph. These strategies include (but 
not limited to) static graph updates, dynamic changes such as 
vertex/edge additions and deletions, processor assignments 
and load balancing.  

The recombination strategy(ies) performed in each 
iteration (on each processor) varies based on a set of 
constraints. These constraints help us guide the choice of 
strategy(ies) based on the requirements during the 
recombination step. For instance, constraints may include 
information such as user defined values, system specified 
thresholds, dynamic change requirements and static 
refinements. Moreover, these constraints can be expanded 
based on evolving requirements. Let ߶  be this set of 
constraints. Let ࣛ be the algorithm used to choose the 
recombination strategy, which takes in various inputs 
including the set of constraints ߶. The runtime of ࣛ  at a 
recombination step is represented as ܶ(ࣛ).The algorithm 
used to perform the recombination strategy is represented by ࣛோ . Depending on the design of the recombination strategy, 
Algorithm ࣛோ  may take in various inputs including the 

graph ܩ  and dynamic changes to G, such as set of new 
vertices ܸᇱ  of size ݊ᇱ  and set of new edges ܧᇱ  of size ݉ᇱ . 
There are various ways to implement Algorithm ࣛோ , 
including as a distributed algorithm across the processors. 
The run time of the recombination strategy at a recombination 
step is represented as ܶ(ࣛோ).   

An example of a basic recombination strategy is the static 
graph analysis for closeness centrality calculations that was 
described earlier in section IV.C. In this strategy, the partial 
results are iteratively combined and refined. In a slight 
modification to the strategy, the newly obtained values on the 
boundary DVs can be used to update the DVs of the local 
vertices using Floyd-Warshall’s algorithm, as shown in 
previous work [9][10]. This will help in providing more up-
to-date partial results to the user without having to depend on 
future recombination steps. Performing updates to the local 
DVs require an all-pairs shortest path calculation within the 
local sub-graph. In this case the time taken to perform the 

local DV updates at a recombination step is Οቀయమቁ . 

Therefore, the overall run time of the recombination strategy 
at a recombination step is: ܶ(ࣛோ) = Οቆ݊ଷܲଶ + nଷPlog ݊ + nଶߙ Pܮ + nଶܲ݃ቇ 

As mentioned before, in the worst case, the maximum 
number of RC steps required is Ο(ܲ). The overall running 
time of the recombination phase is Ο(ܶ(ࣛ)ܲ +	ܶ(ࣛோ)ܲ). After substituting for ܶ(ࣛோ), we get: ΟቆT(ࣛ)P + nଷܲ + nଷlog ݊ + nଶߙ ܲଶܮ + nଶܲଶ݃ቇ 

 

a) Vertex Addition Strategy 
The recombination strategy also checks for dynamic 

changes and incorporates these changes at the end of the 
refinements during each RC step. In particular, in this work 
we focus on handling vertex additions. Vertex addition 
consists of two key steps, determining the processor 
assignments to the new vertices and incorporating the new 
information into the existing graph. Figure 2 shows the 
pseudo-code template for a vertex addition strategy. This 
recombination strategy is performed on line 17 of the 
recombination algorithm presented in Figure 1. 
1. Read dynamic changes input 
2. Perform processor placement strategy 
3. Perform vertex addition strategy 

Figure 2. Pseudo-code template for vertex addition strategy 

When a set of vertices is added during the course of 
analysis, it is initially assigned to a particular processor based 
on a processor assignment strategy. Processor assignment 
strategies are critical to prevent computation and 
communication load imbalances during vertex additions. 
Although there are many ways to approach this issue, to 
demonstrate the capability of our framework we focus on the 
following two key factors that will affect the running time, 
the number of vertices and the number of cut-edges assigned 



to each processor. If the number of vertices increases in one 
or more processors compared to others it can lead to a 
computational load imbalance. Similarly, if the number of 
cut-edges increases in one or more processors compared to 
others then it can result in a communication load imbalance. 
Both computation and communication load imbalances will 
lead to an increase in overall run-time.  

Specifically in this paper, we choose two processor 
assignment strategies, namely round robin based processor 
assignment strategy (RoundRobin-PS) and cut edge 
optimization based processor assignment strategy (CutEdge-
PS). The RoundRobin-PS, which represents the straight 
forward and easy to implement approach for load balancing, 
distributes the vertices evenly across the processors and has 
minimal overhead. However, it does not consider the 
relationships or connections between the newly added 
vertices. Consequently, when vertices with community 
structure are added, the RoundRobin-PS method can create a 
higher number of cut-edges when compared to the second 
approach, CutEdge-PS. The CutEdge-PS approach is a more 
sophisticated approach, which considers the newly added 
vertices and the edges between these vertices as an 
independent graph. This graph is partitioned into sub-graphs 
based on the number of processors such that it minimizes the 
number of cut-edges between these new partitions. Let ࣛ 
denote the algorithm used for the processor assignment 
strategy in a recombination step, with a run time of ܶ(ࣛ). 
In RoundRobin-PS, new vertices are assigned to the 
processors in a circular fashion and therefore the run time of 
the processor algorithm strategy is Ο(݊ᇱ). However, any cut 
edge optimization based graph partitioning algorithm can be 
substituted for CutEdge-PS and therefore the runtime of 
CutEdge-PS will be dependent on this choice. 
1. INPUT: ܲ = ሼ ଵܲ, … ܲ, … ܲሽ //set of processors assigned to 

the problem 
2. INPUT: n //number of vertices in the input graph G 
3. INPUT: ܩ	//sub-graph assigned to processor ܲ 
4. INPUT: ܬܦܣ //Adjacency list for ܸ in sub-graph ܩ  
5. INPUT: ܦ ܸ  //Distance Vectors ൫| ܸ|	 × 	݊൯ for sub-graph ܩ  
6. INPUT: ߩ //set of new vertices and edges to be added 
7. INPUT: ܹᇱ = ൛〈ݓ,ଵ, … , ,,ݓ … ,  ,ᇲᇲ〉ൟ  //weights of theݓ

new edges to be added  
8. INPUT: ܲᇱ = ൛ ଵܲᇱ, … , ܲᇱ, … , ܲᇲᇱ ൟ  //processors where the 

new vert݅ܿ݁ݏ need to be added 

9. INPUT:	ܲᇱᇱ = ൛〈 ܲ,ଵᇱᇱ , … , ܲ,ᇱᇱ , … , ܲ,ᇲᇲᇱᇱ 〉ൟ  //processors 

containing the target vertices of the new edges to be added 
10. FOR EACH processor ܲ  do in parallel 
11.     FOR EACH vertex ܽ to be added   
12.         IF ܽ has to be added to sub-graph ܩ 
13.             ADD vertex ܽ to ܬܦܣ 
14.             ADD new row and column to ܦ ܸ  and initialize 

to ∞ 
15.         ELSE 
16.             ADD new column to ܦ ܸ  and initialize it to ∞ 
17.         END IF 

18.     END FOR  
19.   FOR EACH new vertex ܽ  
20.         FOR EACH edge ൫ܽ, ܾ൯ to be added 
21.             IF ܾ ∈ ܸ  
22.                 SEND row ܦ ܸൣ ܾ൧ to all other processors            

                                                //using tree broadcast 
23.             ELSE 
24.                 RECV row ܦ ܸൣ ܾ൧ from processor ܲᇱᇱ 
25.             END IF 
26.             IF ݓ, < ܦ	 ܸሾܽሿൣ ܾ൧ 
27.                 FOR EACH ݑ ∈ ܸ 
28.                     FOR EACH ݒ ∈ ܸ 
29.                         IF 	ܦ ܸሾݑሿሾݒሿ	 > ܦ ܸሾݑሿሾܽሿ + ,ݓ ܦ + ܸൣ ܾ൧ሾݒሿ 
ܦ                             .30 ܸሾݑሿሾݒሿ = ܦ ܸሾݑሿሾܽሿ + ,ݓ ܦ + ܸൣ ܾ൧ሾݒሿ 
31.                         END IF 
32.                     END FOR 
33.                 END FOR 
34.             END IF  
35.             IF ܽ ∈ ܸ  AND ܾ ∈ ܸ //update adj. list after 

adding edges 

36.                 ADD edge ൫ܽ, ܾ൯ to ܬܦܣሾܽሿ and ܬܦܣൣ ܾ൧ 
37.             ELSE IF ܽ ∈ ܸ  AND ܾ ∉ ܸ 
38.                 ADD edge ൫ܽ, ܾ൯ to ܬܦܣሾܽሿ 
39.                 Notify ܲᇱᇱ	to start sending DV of ܾ to ܲᇱ 
40.             ELSE IF ܽ ∉ ܸ AND ܾ ∈ ܸ                ADD 

edge ൫ܽ, ܾ൯ to ܬܦܣൣ ܾ൧ 
41.                 Notify ܲᇱ	to start sending DV of ܽ to ܲ,ᇱᇱ  
42.             END IF 
43.       END FOR  
44.    END FOR  
45. END FOR  

Figure 3. Pseudo-code 3 Anywhere approach for vertex addition 

     Vertex additions consist of two key steps. First, the new 
vertices are added to the existing sub-graphs. Second, the 
edges corresponding to the new vertices are added.  Let ܽ be 
the new vertex that is added to a sub-graph  ܩ in processor ܲ . The vertex ܽ is added to the DV of processor ܲ . Since 
each existing vertex can now have a path to the new vertex, 
DVs of existing vertices across all processors are extended to 
store this new value (Figure 3, line 11 - 18). The vertex 
additions are simultaneously performed across all processors. 
Once the new vertices are added, we perform edge additions 
based on the anytime anywhere edge addition algorithm 
described in our previous work [9]. Let ൫ܽ, ܾ൯ be the new 
edge that has to be added. The edge addition algorithm first 
examines whether the new edge has affected any previously 
computed shortest path values (Figure 3, line 28 - 32). This 
is done by evaluating the inequality	ܦ ܸሾݑሿሾݒሿ	 > ܦ ܸሾݑሿሾܽሿ ,ݓ+ ܦ + ܸൣ ܾ൧ሾݒሿ, where ݑ ∈ ܸ and ݒ ∈ ܸ. The paths affected 



by the new edge addition are updated and propagated to the 
neighboring processors. 

Let ݉ᇱᇱ	 denote the degree of some new vertex added to the 
graph. Since the existing vertices could have a path to the 
newly added vertex, the DVs of the existing vertices are 
updated. Based on the add edge algorithm [9], to add Ο(݉ᇱᇱ)	edges it takes: Οቆ݉ᇱᇱܮ log ܲ +݉ᇱᇱ݊݃ log ܲ +݉ᇱᇱ ݊ଶܲቇ 

To add ݊ᇱ vertices, there is also an additional cost to resize 
and maintain the DVs. Assuming that the size of the vector is 
doubled every time the resize takes place, this operation has 

a cost of Ο ቀ(ାᇲ)మ ቁ. Therefore, the overall running time for 

vertex addition strategy to add ݊ᇱ vertices and ݉ᇱ	edges, at a 
recombination step is:  Οቆܶ(ܣ) + ݉ᇱܮ log ܲ +݉ᇱ݊݃ logܲ + ݉ᇱ ݊ଶܲ + (݊ + ݊ᇱ)ଶܲ ቇ 

b) Repartition Strategy 
In this subsection, we describe a strategy for dealing with 

scenarios where large network changes can render the 
previously discussed vertex addition strategy inefficient. In 
such cases, it may be more efficient to repartition the entire 
graph rather than using our vertex addition strategy.  
However, restarting the entire analysis from scratch incurs 
significant overhead. In our approach, we can reduce this 
overhead by leveraging the properties of the algorithm and 
reusing the partial results computed in previous 
recombination steps. In our repartitioning strategy 
(Repartition-S), the entire graph along with the newly added 
vertices are repartitioned. Although repartitioning the entire 
graph has an overhead, this method can effectively reduce the 
total number of cut-edges when compared to other methods. 
Note that, in Repartition-S, we do not perform the vertex 
addition strategy used in RoundRobin-PS and CutEdge-PS.  

Any cut-edge optimization based graph partitioning 
algorithm can be used to repartition the graph and therefore 
the time take to repartition the graph is dependent on the 
algorithm used. Here, repartitioning could reassign an 
existing vertex to a different processor and this requires 
communicating the partial results to the appropriate 
processor. This communication step uses the communication 
schedule discussed in section IV.C. It should be noted that in 
the Repartition-S, the DVs of the existing vertices are not 
immediately updated based on the new vertex additions as in 
RoundRobin-PS or CutEdge-PS. This can lead to additional 
RC steps in the Repartition-S method. 

V. EXPERIMENTAL RESULTS 

We evaluated the performance of our approach on a 
distributed Linux cluster with 32 compute nodes connected 
over 1 Gb/s Ethernet network. Each compute node has dual 
Intel Xeon E5 (1.8 GHz) processors with 8 core per processor 
and 32 GB of memory. We implemented our algorithms 
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using the C++ programming language, MPICH’s Message 
Passing Interface (MPI) library was used for inter-processor 
communications and OpenMP for implementing the 
multithreaded aspects of our algorithm. All our experiments 
were conducted on 16 processors with graphs of 50,000 
vertices. Since real-world social networks exhibit scale-free 
property, we generated undirected scale-free graphs for our 
evaluations using the Pajek1 network analysis tool. 

A. Experimental Setup 

Based on the theoretical analysis described in section IV.C, 
we expect both the number of vertex additions and the stage 
of analysis, at which the new vertices are added, to have an 
impact on the performance of our anytime anywhere vertex 
addition algorithm. The number of vertices added affects the 
time taken to perform dynamic updates. In particular, for a 
larger number of vertex additions the overhead to incorporate 
these changes can be substantially higher. Based on our 
analysis, this dynamic vertex addition cost could be avoided 
by performing the repartition strategy. We evaluate the 
performance of our recombination strategies to understand 
how they behave under different dynamic conditions.   

In our implementation, we carefully selected algorithms 
and strategies for the various components of our framework 
to evaluate the impact of vertex additions and load balancing 
strategies on the overall run time. Moreover, the algorithms 
used in DD, IA and the recombination strategies can be 
modified without affecting other components of the 
framework. This gives us the flexibility to use various 
algorithms and communication schedules to better 
understand the efficiency of our framework. 

We implemented the DD phase using Parallel Graph 
Partitioning and Fill-reducing Matrix Ordering (ParMETIS) 
algorithm [2]. ParMETIS is a prominent parallel graph 
partitioning algorithm that produces balanced partitions 
while minimizing the total number of cut-edges across the 
partitions. Since Repartition-S performs graph partitioning 
on the entire graph, we reused the algorithm from the DD 
phase. For the experiments, we implemented CutEdge-PS 
using METIS [26] serial graph partitioning algorithm. Each 
processor computes the METIS partition for the newly added 
vertices and the partition with the lower number of cut-edges 
is chosen for processor assignment. Also, it must be noted 
that CutEdge-PS is designed to consider only the new vertices 
and the edges between them. Considering both the existing 
and new vertices during processor assignment may require 
relocation of the existing vertices to other processors. 
Relocating existing vertices would require communicating 
the vertex information and its partial results, which in turn 
would increase the vertex additions overhead. Therefore, in 
this paper, we do not consider migrating the existing vertices 
and their edges in this approach, but will consider this in 
future work. 



B. Results 

In this section, we report the performance results for the 
anytime anywhere vertex addition algorithm during closeness 
centrality computations. As mentioned in the previous 
section, both CutEdge-PS and Repartition-S attempt to 
minimize the number of cut-edges and also balance the 
number of vertices across the processors. The following 
experiments were conducted to compare the performance of 
various strategies. 

1) Anytime Anywhere and Baseline Restart 
In a large-scale social network analysis, incorporating 

dynamic changes during the course of the analysis is critical 
since static graph analysis methods that restart the 
computation from scratch for every change can take a 
significant amount of time and lead to obsolete results. In this 
experiment, we compare the performance of the anytime 
anywhere approach to a baseline restart method that restarts 
the computation from scratch for every change. Figure 4 
shows the results for the baseline restart and the anytime 
anywhere approach with RoundRobin-PS. The RoundRobin-
PS is a simple approach that evenly distributes the newly 
added vertices to the sub-graphs without considering the 
edges or the relationships between them. By comparing the 
baseline restart method with the RoundRobin-PS we can see 
the effectiveness of the anytime anywhere methodology even 
when a simple processor assignment strategy is adopted. The 
baseline restart method does not have an anytime property 
(e.g. cannot reuse any partial results). However, the anytime 
anywhere approach (RoundRobin-PS) reuses the partial 
results and updates only the parts of the network that are 
affected by the dynamic graph changes. This shows the 
efficiency of the anytime anywhere algorithm for performing 
dynamic vertex additions. 

 
Figure 4. Performance comparison of anytime anywhere and 

baseline restart methods for 512 vertex additions using 16 
processors on a graph with 50,000 vertices 

2) Vertex Additions at Single RC Step 
One of the key challenges when performing dynamic 

vertex additions is to reduce the computation/communication 
load imbalances among the processors. Our previous 
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experiment showed the efficiency of the anytime anywhere 
algorithm in performing vertex additions, however, it does 
not go in detail into the effects of the load balancing 
strategies. In this experiment, a set of vertices ranging 
between 500 and 6000 are added at different stages of the 
analysis using CutEdge-PS, RoundRobin-PS, and 
Repartition-S. To test the effects of CutEdge-PS, the new 
vertices that are added in our experiments were extracted 
from a larger graph using Pajek’s Louvain 2  community 
extraction method.  

Figure 5 shows the performance results for vertex additions 
during the initial stages of the analysis (RC0). For a smaller 
number of vertex additions, the time taken to propagate the 
dynamic updates is less compared to the time taken for partial 
result communication and partitioning, therefore 
RoundRobin-PS and CutEdge-PS perform better than 
Repartition-S. However, for a substantially higher number of 
changes, the overhead to propagate dynamic updates 
increases, leading to Repartition-S outperforming both 
RoundRobin-PS and CutEdge-PS. Repartition-S utilizes the 
anytime property of the algorithm to reduce the number of 
recomputations and display better performance when there is 
a substantial change in the underlying network. However, the 
downside for using Repartition-S is that additional 
recombination steps may be needed. Figure 6 shows the 
performance comparison of different strategies for vertex 
additions happening at the later stages of the analysis (RC8). 
Similar to the previous results both CutEdge-PS and 
RoundRobin-PS perform better when the number of changes 
is low. However, as the number of changes increases the 
overhead to perform anywhere vertex addition also increases, 
therefore Repartition-S performs better when the number of 
changes is high. 

 
Figure 5 . Performance comparison of different strategies for 

vertex additions at recombination step 0 (RC0) using 16 
processors on a graph with 50,000 vertices 

Even though the performance gain from the CutEdge-PS 
when compared to the RoundRobin-PS is small, analyzing 
the final network/graph produced after adding the new 
vertices shows that the number of new cut-edges (Figure 7) 
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created by CutEdge-PS was less when compared to the 
number of new cut-edges from the RoundRobin-PS. 
Therefore, when compared to RoundRobin-PS, for a large set 
of vertex additions with multiple communities CutEdge-PS 
may effectively reduce the number of cut-edges and therefore 
reduces the running time. 

 
Figure 6. Performance comparison of different strategies for 

vertex additions at recombination step 8 (RC8) using 16 
processors on a graph with 50,000 vertices  

 
Figure 7. Number of new cut-edges created by different strategies 

on a graph with 50,000 vertices using 16 processors 

3) Incremental Vertex Additions 
In real-world scenarios, the networks evolve continuously, 

resulting in smaller number of changes over the course of 
analysis instead of one large update at a particular stage of 
the analysis. In order to capture this effect, in this experiment, 
we perform vertex additions distributed across multiple 
stages (10 RC steps) of the analysis. For instance, in the 5611 
vertex additions experiment, at each RC step, approximately 
560 vertices are added. Figure 8 shows the results for 
incremental vertex additions on a graph with 50,000 vertices. 
Baseline restart approach has to restart the computation for 
every update and therefore performs significantly slower than 
other methods. For a smaller number of updates, both 
CutEdge-PS and RoundRobin-PS performs better than 
Repartition-S. This is due to the fact that the Repartition-S 
has to do partitioning and redistribute the partial results every 
time there is an update, this takes much longer than the 
overhead involved in CutEdge-PS and RoundRobin-PS. 
However, as the number of vertex additions increases, the 

overhead to perform anywhere vertex addition algorithm in 
both CutEdge-PS and RoundRobin-PS increases. Therefore, 
in these experiments, we can see that for a large number of 
vertex additions, Repartition-S performed better. 

4) Summary 
Our results show that anytime anywhere methodology can 

be used to design efficient algorithms for dynamic vertex 
additions. However, it is also clear that there is no one 
strategy, such as the processor assignment strategy, that is 
efficient for all situations. From our experimental results, we 
provide the following insights: 
• For a relatively smaller number of vertex additions and 

for higher rates of network changes, the anytime 
anywhere approach of utilizing only the new information 
and incorporating the changes as and when the changes 
occur provides the most efficient and accurate results (as 
shown in Figure 8).  

• For a larger number of changes happening at a single step 
of the analysis, the overhead involved in updating and 
changing the existing results increase considerably. 
Therefore, the Repartition-S uses the anytime property 
to provide an efficient middle ground, between restarting 
from scratch and using the vertex addition strategy, 
which yields better results when the number of vertex 
additions are large, as seen in Figure 5 and Figure 6. 

 
Figure 8. Performance comparison of different strategies for 

incremental vertex additions using 16 processors on a graph with 
50,000 vertices 

VI. CONCLUSION 

In this paper, we proposed an anytime anywhere algorithm 
for handling vertex additions during closeness centrality 
computations. Both theoretical analysis and empirical 
evaluations illustrate the effectiveness of the anytime 
anywhere approach in handling dynamic vertex updates. 
Furthermore, we analyzed the effectiveness of different 
processor assignment strategies and presented their 
performance for different forms of vertex additions such as 
single step and incremental additions. The RoundRobin-PS 
and the CutEdge-PS performed better for real-world 
scenarios, where the dynamic updates happen continuously 
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over time. However, Repartition-S performed better when a 
large number of vertex updates happen at a single stage of the 
analysis. This illustrates how various processor assignment 
and repartitioning strategies can be combined with the 
anytime anywhere vertex addition approach to handle 
different forms of vertex additions. In the future, we plan to 
design anytime anywhere algorithms to also handle vertex 
deletions and develop graph rebalancing strategies to deal 
with load imbalances caused by these changes. We also plan 
to investigate anytime anywhere methodologies to handle 
issues such as fault tolerance in the cloud and other 
parallel/distributed platforms. 

REFERENCES 

[1] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel 
Scheme for Partitioning Irregular Graphs,” SIAM Journal on 
Scientific Computing, vol. 20, no. 1. pp. 359–392, 1998. 

[2] G. Karypis and V. Kumar, “A parallel algorithm for multilevel 
graph partitioning and sparse matrix ordering,” J. Parallel 
Distrib. Comput., pp. 1–21, 1998. 

[3] A. Abou-Rjeili and G. Karypis, “Multilevel algorithms for 
partitioning power-law graphs,” in Proceedings 20th IEEE 
International Parallel & Distributed Processing Symposium, 
2006, p. 10 pp. 

[4] M. E. J. Newman, “Ego-centered networks and the ripple 
effect,” Soc. Networks, vol. 25, no. 1, pp. 83–95, 2003. 

[5] M. E. J. Newman, “The structure and function of complex 
networks,” SIAM Rev., vol. 45, no. 2, pp. 167–256, 2003. 

[6] E. E. Santos, L. Pan, D. Arendt, and M. Pittkin, “An Effective 
Anytime Anywhere Parallel Approach for Centrality 
Measurements in Social Network Analysis,” in 2006 IEEE 
International Conference on Systems, Man and Cybernetics, 
2006, vol. 6, pp. 4693–4698. 

[7] E. E. Santos, L. Pan, D. Arendt, H. Xia, and M. Pittkin, “An 
Anytime Anywhere Approach for Computing All Pairs 
Shortest Paths for Social Network Analysis,” in Integrated 
Design and Process Technology, 2006. 

[8] L. Pan and E. E. Santos, “An anytime-anywhere approach for 
maximal clique enumeration in social network analysis,” in 
IEEE International Conference on Systems, Man and 
Cybernetics , 2008. SMC 2008, 2008, pp. 3529–3535. 

[9] E. E. Santos, J. Korah, V. Murugappan, and S. Subramanian, 
“Effectively Handling New Relationship Formations in 
Closeness Centrality Analysis of Social Networks Using 
Anytime Anywhere Methodology,” 2016 IEEE International 
Conferences on Big Data and Cloud Computing (BDCloud), 
Social Computing and Networking (SocialCom), Sustainable 
Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom). pp. 354–361, 2016. 

[10] E. E. Santos, J. Korah, V. Murugappan, and S. Subramanian, 
“Efficient Anytime Anywhere Algorithms for Closeness 
Centrality in Large and Dynamic Graphs,” in 2016 IEEE 
International Parallel and Distributed Processing Symposium 
Workshops (IPDPSW), 2016, pp. 1821–1830. 

[11] Z. Khayyat, K. Awara, A. Alonazi, and D. Williams, “Mizan : 
A System for Dynamic Load Balancing in Large-scale Graph 
Processing,” EuroSys, pp. 169–182, 2013. 

[12] R. Chen, X. Weng, B. He, and M. Yang, “Large graph 
processing in the cloud,” Proc. 2010 Int. Conf. Manag. Data - 
SIGMOD ’10, pp. 1123–1126, 2010. 

[13] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “PEGASUS: 
Mining peta-scale graphs,” Knowl. Inf. Syst., vol. 27, no. 2, pp. 
303–325, 2011. 

[14] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, 
“Software and Algorithms for Graph Queries on Multithreaded 
Architectures,” 2007 IEEE Int. Parallel Distrib. Process. 
Symp., 2007. 

[15] J. Dean and S. Ghemawat, “MapReduce : Simplified Data 
Processing on Large Clusters,” Commun. ACM, vol. 51, no. 1, 
pp. 1–13, 2008. 

[16] G. Malewicz et al., “Pregel : A System for Large-Scale Graph 
Processing,” in SIGMOD’10, 2010, pp. 135–145. 

[17] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail, 
“Approximating Betweenness Centrality,” in Algorithms and 
Models for the Web-Graph, Berlin Heidelberg: Springer, 2007, 
pp. 124–137. 

[18] M. Lee, J. Lee, and J. Park, “QUBE: a Quick algorithm for 
Updating Betweenness centrality,” in Proceedings of the 21st 
international conference on World Wide Web, 2012, pp. 351–
360. 

[19] L. M. Vaquero and C. Martella, “Adaptive Partitioning of 
Large-Scale Dynamic Graphs,” in Proceedings of the 4th 
Annual Symposium on Cloud Computing, 2013, p. 35:1--35:2. 

[20] D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: 
Dynamic Partitioning for Distributed Social Network Graph 
Databases,” in EDBT, 2015. 

[21] M. E. J. Newman, Networks. An introduction. New York, NY, 
USA, 2010. 

[22] K. Okamoto, W. Chen, and X. Y. Li, “Ranking of closeness 
centrality for large-scale social networks,” in International 
Workshop on Frontiers in Algorithmics, 2008, vol. 5059 
LNCS, pp. 186–195. 

[23] D. Culler et al., “LogP: Towards a realistic model of parallel 
computation,” in Proceedings of the fourth ACM SIGPLAN 
symposium on Principles and practice of parallel 
programming, 1993, pp. 1–12. 

[24] J. F. Kurose and K. W. Ross, Computer Networking A Top-
Down Approach Featuring the Internet, vol. 1. Pearson 
Education India, 2005. 

[25] R. Albert and A. L. Barabasi, “Statistical mechanics of 
complex networks,” Rev. Mod. Phys., vol. 74, no. 1, pp. 47–97, 
2002. 

[26] G. Karypis and V. Kumar, “Multilevel k-way Partitioning 
Scheme for Irregular Graphs,” J. Parallel Distrib. Comput., 
vol. 48, no. 1, pp. 96–129, 1998. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AbadiMT-CondensedLight
    /ACaslon-Italic
    /ACaslon-Regular
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-Italic
    /AGaramond-Regular
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AgencyFB-Bold
    /AgencyFB-Reg
    /AGOldFace-Outline
    /AharoniBold
    /Algerian
    /Americana
    /Americana-ExtraBold
    /AndaleMono
    /AndaleMonoIPA
    /AngsanaNew
    /AngsanaNew-Bold
    /AngsanaNew-BoldItalic
    /AngsanaNew-Italic
    /AngsanaUPC
    /AngsanaUPC-Bold
    /AngsanaUPC-BoldItalic
    /AngsanaUPC-Italic
    /Anna
    /ArialAlternative
    /ArialAlternativeSymbol
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialMT-Black
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /ArrusBT-Bold
    /ArrusBT-BoldItalic
    /ArrusBT-Italic
    /ArrusBT-Roman
    /AvantGarde-Book
    /AvantGarde-BookOblique
    /AvantGarde-Demi
    /AvantGarde-DemiOblique
    /AvantGardeITCbyBT-Book
    /AvantGardeITCbyBT-BookOblique
    /BakerSignet
    /BankGothicBT-Medium
    /Barmeno-Bold
    /Barmeno-ExtraBold
    /Barmeno-Medium
    /Barmeno-Regular
    /Baskerville
    /BaskervilleBE-Italic
    /BaskervilleBE-Medium
    /BaskervilleBE-MediumItalic
    /BaskervilleBE-Regular
    /Baskerville-Bold
    /Baskerville-BoldItalic
    /Baskerville-Italic
    /BaskOldFace
    /Batang
    /BatangChe
    /Bauhaus93
    /Bellevue
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlingAntiqua-Bold
    /BerlingAntiqua-BoldItalic
    /BerlingAntiqua-Italic
    /BerlingAntiqua-Roman
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BernhardModernBT-Bold
    /BernhardModernBT-BoldItalic
    /BernhardModernBT-Italic
    /BernhardModernBT-Roman
    /BiffoMT
    /BinnerD
    /BinnerGothic
    /BlackadderITC-Regular
    /Blackoak
    /blex
    /blsy
    /Bodoni
    /Bodoni-Bold
    /Bodoni-BoldItalic
    /Bodoni-Italic
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /Bodoni-Poster
    /Bodoni-PosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /Bookman-Demi
    /Bookman-DemiItalic
    /Bookman-Light
    /Bookman-LightItalic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolOne-Regular
    /BookshelfSymbolSeven
    /BookshelfSymbolThree-Regular
    /BookshelfSymbolTwo-Regular
    /Botanical
    /Boton-Italic
    /Boton-Medium
    /Boton-MediumItalic
    /Boton-Regular
    /Boulevard
    /BradleyHandITC
    /Braggadocio
    /BritannicBold
    /Broadway
    /BrowalliaNew
    /BrowalliaNew-Bold
    /BrowalliaNew-BoldItalic
    /BrowalliaNew-Italic
    /BrowalliaUPC
    /BrowalliaUPC-Bold
    /BrowalliaUPC-BoldItalic
    /BrowalliaUPC-Italic
    /BrushScript
    /BrushScriptMT
    /CaflischScript-Bold
    /CaflischScript-Regular
    /Calibri
    /Calibri-Bold
    /Calibri-BoldItalic
    /Calibri-Italic
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Cambria
    /Cambria-Bold
    /Cambria-BoldItalic
    /Cambria-Italic
    /CambriaMath
    /Candara
    /Candara-Bold
    /Candara-BoldItalic
    /Candara-Italic
    /Carta
    /CaslonOpenfaceBT-Regular
    /Castellar
    /CastellarMT
    /Centaur
    /Centaur-Italic
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchL-Bold
    /CenturySchL-BoldItal
    /CenturySchL-Ital
    /CenturySchL-Roma
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /CGTimes-Bold
    /CGTimes-BoldItalic
    /CGTimes-Italic
    /CGTimes-Regular
    /CharterBT-Bold
    /CharterBT-BoldItalic
    /CharterBT-Italic
    /CharterBT-Roman
    /CheltenhamITCbyBT-Bold
    /CheltenhamITCbyBT-BoldItalic
    /CheltenhamITCbyBT-Book
    /CheltenhamITCbyBT-BookItalic
    /Chiller-Regular
    /Cmb10
    /CMB10
    /Cmbsy10
    /CMBSY10
    /CMBSY5
    /CMBSY6
    /CMBSY7
    /CMBSY8
    /CMBSY9
    /Cmbx10
    /CMBX10
    /Cmbx12
    /CMBX12
    /Cmbx5
    /CMBX5
    /Cmbx6
    /CMBX6
    /Cmbx7
    /CMBX7
    /Cmbx8
    /CMBX8
    /Cmbx9
    /CMBX9
    /Cmbxsl10
    /CMBXSL10
    /Cmbxti10
    /CMBXTI10
    /Cmcsc10
    /CMCSC10
    /Cmcsc8
    /CMCSC8
    /Cmcsc9
    /CMCSC9
    /Cmdunh10
    /CMDUNH10
    /Cmex10
    /CMEX10
    /CMEX7
    /CMEX8
    /CMEX9
    /Cmff10
    /CMFF10
    /Cmfi10
    /CMFI10
    /Cmfib8
    /CMFIB8
    /Cminch
    /CMINCH
    /Cmitt10
    /CMITT10
    /Cmmi10
    /CMMI10
    /Cmmi12
    /CMMI12
    /Cmmi5
    /CMMI5
    /Cmmi6
    /CMMI6
    /Cmmi7
    /CMMI7
    /Cmmi8
    /CMMI8
    /Cmmi9
    /CMMI9
    /Cmmib10
    /CMMIB10
    /CMMIB5
    /CMMIB6
    /CMMIB7
    /CMMIB8
    /CMMIB9
    /Cmr10
    /CMR10
    /Cmr12
    /CMR12
    /Cmr17
    /CMR17
    /Cmr5
    /CMR5
    /Cmr6
    /CMR6
    /Cmr7
    /CMR7
    /Cmr8
    /CMR8
    /Cmr9
    /CMR9
    /Cmsl10
    /CMSL10
    /Cmsl12
    /CMSL12
    /Cmsl8
    /CMSL8
    /Cmsl9
    /CMSL9
    /Cmsltt10
    /CMSLTT10
    /Cmss10
    /CMSS10
    /Cmss12
    /CMSS12
    /Cmss17
    /CMSS17
    /Cmss8
    /CMSS8
    /Cmss9
    /CMSS9
    /Cmssbx10
    /CMSSBX10
    /Cmssdc10
    /CMSSDC10
    /Cmssi10
    /CMSSI10
    /Cmssi12
    /CMSSI12
    /Cmssi17
    /CMSSI17
    /Cmssi8
    /CMSSI8
    /Cmssi9
    /CMSSI9
    /Cmssq8
    /CMSSQ8
    /Cmssqi8
    /CMSSQI8
    /Cmsy10
    /CMSY10
    /Cmsy5
    /CMSY5
    /Cmsy6
    /CMSY6
    /Cmsy7
    /CMSY7
    /Cmsy8
    /CMSY8
    /Cmsy9
    /CMSY9
    /Cmtcsc10
    /CMTCSC10
    /Cmtex10
    /CMTEX10
    /Cmtex8
    /CMTEX8
    /Cmtex9
    /CMTEX9
    /Cmti10
    /CMTI10
    /Cmti12
    /CMTI12
    /Cmti7
    /CMTI7
    /Cmti8
    /CMTI8
    /Cmti9
    /CMTI9
    /Cmtt10
    /CMTT10
    /Cmtt12
    /CMTT12
    /Cmtt8
    /CMTT8
    /Cmtt9
    /CMTT9
    /Cmu10
    /CMU10
    /Cmvtt10
    /CMVTT10
    /ColonnaMT
    /Colossalis-Bold
    /ComicSansMS
    /ComicSansMS-Bold
    /Consolas
    /Consolas-Bold
    /Consolas-BoldItalic
    /Consolas-Italic
    /Constantia
    /Constantia-Bold
    /Constantia-BoldItalic
    /Constantia-Italic
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /Copperplate-ThirtyThreeBC
    /Corbel
    /Corbel-Bold
    /Corbel-BoldItalic
    /Corbel-Italic
    /CordiaNew
    /CordiaNew-Bold
    /CordiaNew-BoldItalic
    /CordiaNew-Italic
    /CordiaUPC
    /CordiaUPC-Bold
    /CordiaUPC-BoldItalic
    /CordiaUPC-Italic
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /CourierX-Bold
    /CourierX-BoldOblique
    /CourierX-Oblique
    /CourierX-Regular
    /CreepyRegular
    /CurlzMT
    /David-Bold
    /David-Reg
    /DavidTransparent
    /Dcb10
    /Dcbx10
    /Dcbxsl10
    /Dcbxti10
    /Dccsc10
    /Dcitt10
    /Dcr10
    /Desdemona
    /DilleniaUPC
    /DilleniaUPCBold
    /DilleniaUPCBoldItalic
    /DilleniaUPCItalic
    /Dingbats
    /DomCasual
    /Dotum
    /DotumChe
    /DoulosSIL
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversGothicBT-Regular
    /EngraversMT
    /EraserDust
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /ErieBlackPSMT
    /ErieLightPSMT
    /EriePSMT
    /EstrangeloEdessa
    /Euclid
    /Euclid-Bold
    /Euclid-BoldItalic
    /EuclidExtra
    /EuclidExtra-Bold
    /EuclidFraktur
    /EuclidFraktur-Bold
    /Euclid-Italic
    /EuclidMathOne
    /EuclidMathOne-Bold
    /EuclidMathTwo
    /EuclidMathTwo-Bold
    /EuclidSymbol
    /EuclidSymbol-Bold
    /EuclidSymbol-BoldItalic
    /EuclidSymbol-Italic
    /EucrosiaUPC
    /EucrosiaUPCBold
    /EucrosiaUPCBoldItalic
    /EucrosiaUPCItalic
    /EUEX10
    /EUEX7
    /EUEX8
    /EUEX9
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /FelixTitlingMT
    /Fences
    /FencesPlain
    /FigaroMT
    /FixedMiriamTransparent
    /FootlightMTLight
    /Formata-Italic
    /Formata-Medium
    /Formata-MediumItalic
    /Formata-Regular
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothicITCbyBT-Book
    /FranklinGothicITCbyBT-BookItal
    /FranklinGothicITCbyBT-Demi
    /FranklinGothicITCbyBT-DemiItal
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FrankRuehl
    /FreesiaUPC
    /FreesiaUPCBold
    /FreesiaUPCBoldItalic
    /FreesiaUPCItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Frutiger-Black
    /Frutiger-BlackCn
    /Frutiger-BlackItalic
    /Frutiger-Bold
    /Frutiger-BoldCn
    /Frutiger-BoldItalic
    /Frutiger-Cn
    /Frutiger-ExtraBlackCn
    /Frutiger-Italic
    /Frutiger-Light
    /Frutiger-LightCn
    /Frutiger-LightItalic
    /Frutiger-Roman
    /Frutiger-UltraBlack
    /Futura-Bold
    /Futura-BoldOblique
    /Futura-Book
    /Futura-BookOblique
    /FuturaBT-Bold
    /FuturaBT-BoldItalic
    /FuturaBT-Book
    /FuturaBT-BookItalic
    /FuturaBT-Medium
    /FuturaBT-MediumItalic
    /Futura-Light
    /Futura-LightOblique
    /GalliardITCbyBT-Bold
    /GalliardITCbyBT-BoldItalic
    /GalliardITCbyBT-Italic
    /GalliardITCbyBT-Roman
    /Garamond
    /Garamond-Bold
    /Garamond-BoldCondensed
    /Garamond-BoldCondensedItalic
    /Garamond-BoldItalic
    /Garamond-BookCondensed
    /Garamond-BookCondensedItalic
    /Garamond-Italic
    /Garamond-LightCondensed
    /Garamond-LightCondensedItalic
    /Gautami
    /GeometricSlab703BT-Light
    /GeometricSlab703BT-LightItalic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /GeorgiaRef
    /Giddyup
    /Giddyup-Thangs
    /Gigi-Regular
    /GillSans
    /GillSans-Bold
    /GillSans-BoldItalic
    /GillSans-Condensed
    /GillSans-CondensedBold
    /GillSans-Italic
    /GillSans-Light
    /GillSans-LightItalic
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GloucesterMT-ExtraCondensed
    /Gothic-Thirteen
    /GoudyOldStyleBT-Bold
    /GoudyOldStyleBT-BoldItalic
    /GoudyOldStyleBT-Italic
    /GoudyOldStyleBT-Roman
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /GoudyTextMT-LombardicCapitals
    /GSIDefaultSymbols
    /Gulim
    /GulimChe
    /Gungsuh
    /GungsuhChe
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /Helvetica
    /Helvetica-Black
    /Helvetica-BlackOblique
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Condensed
    /Helvetica-Condensed-Black
    /Helvetica-Condensed-BlackObl
    /Helvetica-Condensed-Bold
    /Helvetica-Condensed-BoldObl
    /Helvetica-Condensed-Light
    /Helvetica-Condensed-LightObl
    /Helvetica-Condensed-Oblique
    /Helvetica-Fraction
    /Helvetica-Narrow
    /Helvetica-Narrow-Bold
    /Helvetica-Narrow-BoldOblique
    /Helvetica-Narrow-Oblique
    /Helvetica-Oblique
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Humanist521BT-BoldCondensed
    /Humanist521BT-Light
    /Humanist521BT-LightItalic
    /Humanist521BT-RomanCondensed
    /Imago-ExtraBold
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /IrisUPC
    /IrisUPCBold
    /IrisUPCBoldItalic
    /IrisUPCItalic
    /Ironwood
    /ItcEras-Medium
    /ItcKabel-Bold
    /ItcKabel-Book
    /ItcKabel-Demi
    /ItcKabel-Medium
    /ItcKabel-Ultra
    /JasmineUPC
    /JasmineUPC-Bold
    /JasmineUPC-BoldItalic
    /JasmineUPC-Italic
    /JoannaMT
    /JoannaMT-Italic
    /Jokerman-Regular
    /JuiceITC-Regular
    /Kartika
    /Kaufmann
    /KaufmannBT-Bold
    /KaufmannBT-Regular
    /KidTYPEPaint
    /KinoMT
    /KodchiangUPC
    /KodchiangUPC-Bold
    /KodchiangUPC-BoldItalic
    /KodchiangUPC-Italic
    /KorinnaITCbyBT-Regular
    /KristenITC-Regular
    /KrutiDev040Bold
    /KrutiDev040BoldItalic
    /KrutiDev040Condensed
    /KrutiDev040Italic
    /KrutiDev040Thin
    /KrutiDev040Wide
    /KrutiDev060
    /KrutiDev060Bold
    /KrutiDev060BoldItalic
    /KrutiDev060Condensed
    /KrutiDev060Italic
    /KrutiDev060Thin
    /KrutiDev060Wide
    /KrutiDev070
    /KrutiDev070Condensed
    /KrutiDev070Italic
    /KrutiDev070Thin
    /KrutiDev070Wide
    /KrutiDev080
    /KrutiDev080Condensed
    /KrutiDev080Italic
    /KrutiDev080Wide
    /KrutiDev090
    /KrutiDev090Bold
    /KrutiDev090BoldItalic
    /KrutiDev090Condensed
    /KrutiDev090Italic
    /KrutiDev090Thin
    /KrutiDev090Wide
    /KrutiDev100
    /KrutiDev100Bold
    /KrutiDev100BoldItalic
    /KrutiDev100Condensed
    /KrutiDev100Italic
    /KrutiDev100Thin
    /KrutiDev100Wide
    /KrutiDev120
    /KrutiDev120Condensed
    /KrutiDev120Thin
    /KrutiDev120Wide
    /KrutiDev130
    /KrutiDev130Condensed
    /KrutiDev130Thin
    /KrutiDev130Wide
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothic
    /LetterGothic-Bold
    /LetterGothic-BoldOblique
    /LetterGothic-BoldSlanted
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LetterGothic-Slanted
    /LevenimMT
    /LevenimMTBold
    /LilyUPC
    /LilyUPCBold
    /LilyUPCBoldItalic
    /LilyUPCItalic
    /Lithos-Black
    /Lithos-Regular
    /LotusWPBox-Roman
    /LotusWPIcon-Roman
    /LotusWPIntA-Roman
    /LotusWPIntB-Roman
    /LotusWPType-Roman
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Lydian
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /Map-Symbols
    /MathA
    /MathB
    /MathC
    /Mathematica1
    /Mathematica1-Bold
    /Mathematica1Mono
    /Mathematica1Mono-Bold
    /Mathematica2
    /Mathematica2-Bold
    /Mathematica2Mono
    /Mathematica2Mono-Bold
    /Mathematica3
    /Mathematica3-Bold
    /Mathematica3Mono
    /Mathematica3Mono-Bold
    /Mathematica4
    /Mathematica4-Bold
    /Mathematica4Mono
    /Mathematica4Mono-Bold
    /Mathematica5
    /Mathematica5-Bold
    /Mathematica5Mono
    /Mathematica5Mono-Bold
    /Mathematica6
    /Mathematica6Bold
    /Mathematica6Mono
    /Mathematica6MonoBold
    /Mathematica7
    /Mathematica7Bold
    /Mathematica7Mono
    /Mathematica7MonoBold
    /MatisseITC-Regular
    /MaturaMTScriptCapitals
    /Mesquite
    /Mezz-Black
    /Mezz-Regular
    /MICR
    /MicrosoftSansSerif
    /MingLiU
    /Minion-BoldCondensed
    /Minion-BoldCondensedItalic
    /Minion-Condensed
    /Minion-CondensedItalic
    /Minion-Ornaments
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /Miriam
    /MiriamFixed
    /MiriamTransparent
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MonotypeSorts
    /MSAM10
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MS-Gothic
    /MSHei
    /MSLineDrawPSMT
    /MS-Mincho
    /MSOutlook
    /MS-PGothic
    /MS-PMincho
    /MSReference1
    /MSReference2
    /MSReferenceSansSerif
    /MSReferenceSansSerif-Bold
    /MSReferenceSansSerif-BoldItalic
    /MSReferenceSansSerif-Italic
    /MSReferenceSerif
    /MSReferenceSerif-Bold
    /MSReferenceSerif-BoldItalic
    /MSReferenceSerif-Italic
    /MSReferenceSpecialty
    /MSSong
    /MS-UIGothic
    /MT-Extra
    /MTExtraTiger
    /MT-Symbol
    /MT-Symbol-Italic
    /MVBoli
    /Myriad-Bold
    /Myriad-BoldItalic
    /Myriad-Italic
    /Myriad-Roman
    /Narkisim
    /NewCenturySchlbk-Bold
    /NewCenturySchlbk-BoldItalic
    /NewCenturySchlbk-Italic
    /NewCenturySchlbk-Roman
    /NewMilleniumSchlbk-BoldItalicSH
    /NewsGothic
    /NewsGothic-Bold
    /NewsGothicBT-Bold
    /NewsGothicBT-BoldItalic
    /NewsGothicBT-Italic
    /NewsGothicBT-Roman
    /NewsGothic-Condensed
    /NewsGothic-Italic
    /NewsGothicMT
    /NewsGothicMT-Bold
    /NewsGothicMT-Italic
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NimbusMonL-Bold
    /NimbusMonL-BoldObli
    /NimbusMonL-Regu
    /NimbusMonL-ReguObli
    /NimbusRomNo9L-Medi
    /NimbusRomNo9L-MediItal
    /NimbusRomNo9L-Regu
    /NimbusRomNo9L-ReguItal
    /NimbusSanL-Bold
    /NimbusSanL-BoldCond
    /NimbusSanL-BoldCondItal
    /NimbusSanL-BoldItal
    /NimbusSanL-Regu
    /NimbusSanL-ReguCond
    /NimbusSanL-ReguCondItal
    /NimbusSanL-ReguItal
    /Nimrod
    /Nimrod-Bold
    /Nimrod-BoldItalic
    /Nimrod-Italic
    /NSimSun
    /Nueva-BoldExtended
    /Nueva-BoldExtendedItalic
    /Nueva-Italic
    /Nueva-Roman
    /NuptialScript
    /OCRA
    /OCRA-Alternate
    /OCRAExtended
    /OCRB
    /OCRB-Alternate
    /OfficinaSans-Bold
    /OfficinaSans-BoldItalic
    /OfficinaSans-Book
    /OfficinaSans-BookItalic
    /OfficinaSerif-Bold
    /OfficinaSerif-BoldItalic
    /OfficinaSerif-Book
    /OfficinaSerif-BookItalic
    /OldEnglishTextMT
    /Onyx
    /OnyxBT-Regular
    /OzHandicraftBT-Roman
    /PalaceScriptMT
    /Palatino-Bold
    /Palatino-BoldItalic
    /Palatino-Italic
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Palatino-Roman
    /PapyrusPlain
    /Papyrus-Regular
    /Parchment-Regular
    /Parisian
    /ParkAvenue
    /Penumbra-SemiboldFlare
    /Penumbra-SemiboldSans
    /Penumbra-SemiboldSerif
    /PepitaMT
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /PhotinaCasualBlack
    /Playbill
    /PMingLiU
    /Poetica-SuppOrnaments
    /PoorRichard-Regular
    /PopplLaudatio-Italic
    /PopplLaudatio-Medium
    /PopplLaudatio-MediumItalic
    /PopplLaudatio-Regular
    /PrestigeElite
    /Pristina-Regular
    /PTBarnumBT-Regular
    /Raavi
    /RageItalic
    /Ravie
    /RefSpecialty
    /Ribbon131BT-Bold
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /Rockwell-Light
    /Rockwell-LightItalic
    /Rod
    /RodTransparent
    /RunicMT-Condensed
    /Sanvito-Light
    /Sanvito-Roman
    /ScriptC
    /ScriptMTBold
    /SegoeUI
    /SegoeUI-Bold
    /SegoeUI-BoldItalic
    /SegoeUI-Italic
    /Serpentine-BoldOblique
    /ShelleyVolanteBT-Regular
    /ShowcardGothic-Reg
    /Shruti
    /SILDoulosIPA
    /SimHei
    /SimSun
    /SimSun-PUA
    /SnapITC-Regular
    /StandardSymL
    /Stencil
    /StoneSans
    /StoneSans-Bold
    /StoneSans-BoldItalic
    /StoneSans-Italic
    /StoneSans-Semibold
    /StoneSans-SemiboldItalic
    /Stop
    /Swiss721BT-BlackExtended
    /Sylfaen
    /Symbol
    /SymbolMT
    /SymbolTiger
    /SymbolTigerExpert
    /Tahoma
    /Tahoma-Bold
    /Tci1
    /Tci1Bold
    /Tci1BoldItalic
    /Tci1Italic
    /Tci2
    /Tci2Bold
    /Tci2BoldItalic
    /Tci2Italic
    /Tci3
    /Tci3Bold
    /Tci3BoldItalic
    /Tci3Italic
    /Tci4
    /Tci4Bold
    /Tci4BoldItalic
    /Tci4Italic
    /TechnicalItalic
    /TechnicalPlain
    /Tekton
    /Tekton-Bold
    /TektonMM
    /Tempo-HeavyCondensed
    /Tempo-HeavyCondensedItalic
    /TempusSansITC
    /Tiger
    /TigerExpert
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldItalicOsF
    /Times-BoldSC
    /Times-ExtraBold
    /Times-Italic
    /Times-ItalicOsF
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Times-RomanSC
    /Trajan-Bold
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-CondensedMedium
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Univers-Bold
    /Univers-BoldItalic
    /UniversCondensed-Bold
    /UniversCondensed-BoldItalic
    /UniversCondensed-Medium
    /UniversCondensed-MediumItalic
    /Univers-Medium
    /Univers-MediumItalic
    /URWBookmanL-DemiBold
    /URWBookmanL-DemiBoldItal
    /URWBookmanL-Ligh
    /URWBookmanL-LighItal
    /URWChanceryL-MediItal
    /URWGothicL-Book
    /URWGothicL-BookObli
    /URWGothicL-Demi
    /URWGothicL-DemiObli
    /URWPalladioL-Bold
    /URWPalladioL-BoldItal
    /URWPalladioL-Ital
    /URWPalladioL-Roma
    /USPSBarCode
    /VAGRounded-Black
    /VAGRounded-Bold
    /VAGRounded-Light
    /VAGRounded-Thin
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VerdanaRef
    /VinerHandITC
    /Viva-BoldExtraExtended
    /Vivaldii
    /Viva-LightCondensed
    /Viva-Regular
    /VladimirScript
    /Vrinda
    /Webdings
    /Westminster
    /Willow
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /WP-ArabicScriptSihafa
    /WP-ArabicSihafa
    /WP-BoxDrawing
    /WP-CyrillicA
    /WP-CyrillicB
    /WP-GreekCentury
    /WP-GreekCourier
    /WP-GreekHelve
    /WP-HebrewDavid
    /WP-IconicSymbolsA
    /WP-IconicSymbolsB
    /WP-Japanese
    /WP-MathA
    /WP-MathB
    /WP-MathExtendedA
    /WP-MathExtendedB
    /WP-MultinationalAHelve
    /WP-MultinationalARoman
    /WP-MultinationalBCourier
    /WP-MultinationalBHelve
    /WP-MultinationalBRoman
    /WP-MultinationalCourier
    /WP-Phonetic
    /WPTypographicSymbols
    /XYATIP10
    /XYBSQL10
    /XYBTIP10
    /XYCIRC10
    /XYCMAT10
    /XYCMBT10
    /XYDASH10
    /XYEUAT10
    /XYEUBT10
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZapfHumanist601BT-Bold
    /ZapfHumanist601BT-BoldItalic
    /ZapfHumanist601BT-Demi
    /ZapfHumanist601BT-DemiItalic
    /ZapfHumanist601BT-Italic
    /ZapfHumanist601BT-Roman
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


