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ABSTRACT
Road safety is a major global public health concern, and effective
prediction of traffic accidents at a fine-grained spatial scale plays
a critical role in reducing roadway deaths and serious injuries.
However, previous studies have either overlooked implicit spatial
correlations or inadequately simulated road structures due to the
lack of graph-structured datasets. To bridge this gap, we introduce
a graph-based Traffic Accident Prediction (TAP) data repository,
along with two representative tasks: accident occurrence and sever-
ity prediction. With its real-world graph structures, comprehensive
geographical coverage, and rich geospatial features, this reposi-
tory has considerable potential to facilitate various traffic-related
tasks. We extensively evaluate eleven Graph Neural Network (GNN)
baselines using the constructed datasets. We also develop a novel
GNN-based model, which can capture additional angular and direc-
tional information from road networks. We demonstrate that the
proposed model consistently outperforms the baselines. The data
and code are available at https://github.com/baixianghuang/travel.
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1 INTRODUCTION
Road traffic accidents are the leading cause of death for young peo-
ple globally [24]. The U.S. traffic fatality rate has experienced an
alarming 19 percent surge from 2019 to 2021, marking the high-
est number of road deaths in the U.S. Fatality Analysis Reporting
System’s history since 2005 [1, 22]. Therefore, understanding and
mitigating traffic crashes is an imperative task. Traffic crash pre-
diction at a fine-grained spatial scale (e.g., a traffic intersection)

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGSPATIAL ’23, November 13–16, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0168-9/23/11.
https://doi.org/10.1145/3589132.3625655

Figure 1: A road network with various environmental fea-
tures (e.g., traffic signs, speed limits, and road types).

can help governments mitigate traffic risks, such as informing the
design of future road networks and planning accident-response
facilities with the awareness of risk-prone accident hotspots [23].

This work focuses on the environmental risk factors of traffic
accidents: in particular, can we predict how risk-prone a road intersec-
tion is only based on geospatial map data. Specifically, we concentrate
on accidents occurring around intersections (also known as junc-
tions or crossroads) due to the following reasons: (1) Representing
intersections as nodes and roads as edges aligns with real-world
road networks; (2) The majority of traffic crashes tend to occur
near intersections [9]; (3) Intersections typically contain transporta-
tion infrastructure such as traffic lights, stop signs, and pedestrian
crosswalks, which provide valuable environmental features.

Figure 1 shows a typical urban road network that has various
road types, each exhibiting distinctive attributes such as lane counts
and road lengths. Consequently, various road types and features
may pose different crash risks. For instance, a high-volume freeway
is likely to have more roadway crashes than a less traveled two-lane
residential road because the freeway has more traffic and a higher
speed limit [21]. Moreover, road characteristics such as turning
radius and direction also affect road safety. In general, sharper road
curves are more dangerous [17].

Previous studies commonly employ hand-crafted features and
discretize a region into sub-regions using a grid and overlook the un-
derlying graph structure and implicit spatial correlations [3, 26]. In
comparison, Graph Neural Networks (GNNs) incorporate surround-
ing spatial information by aggregating features from neighbors
multiple hops away. However, the scarcity of graph-based datasets
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Table 1: Comparison with existing traffic prediction datasets.

Dataset Type Geospatial Graph-based Coverage Time

UK Traffic Accidents [14] Accident Nation-wide (1.6M rows) 2016
NY State Motor Vehicle Crashes [13] Accident State-wide (3.5M rows) 2022
Maryland Vehicle Crashes [19] Accident State-wide (0.9M rows) 2023
NY City Motor Vehicle Collisions [4] Accident City-wide (2.0M rows) 2023
Chicago Traffic Crashes [12] Accident City-wide (0.7M rows) 2023
TAP Accident ✓ ✓ Nation-wide (17.0M nodes and 43.0M edges) 2023

is a major obstacle of applying GNNs for this task. Previous studies
generate artificial graphs in a manner that does not adequately
capture real-world road structures [7, 27]. Moreover, the major-
ity of existing datasets [4, 12, 13] have limited coverage and lack
geospatial features, while also lacking graph structure information,
thereby making the application of GNNs infeasible.

To construct the Traffic Accident Prediction (TAP) data repos-
itory, we first collect raw accident records, street geospatial data,
and graph structure information. The crash data are integrated
with graph structure and geospatial features. We then compute geo-
metric data based on graph structures. The TAP is organized into
city-level and state-level, covering 1,000 U.S. cities and 49 states,
which allows users to study various traffic-related problems.

Significantly facilitated by the proposed data repository, we de-
velop a novel framework called Traffic Accident Vulnerability Esti-
mation via Linkage (TRAVEL). This framework aggregates features
from its neighbors in a way that captures both the angles and
directions of roads adjacent to a node.

Our contributions are the following:

• We construct and release a new data repository that signif-
icantly simplifies the application of graph-based machine
learning methods for traffic crash prediction and analysis.

• We formulate traffic accident prediction as a node prediction
problem, with the objective of forecasting accident occur-
rences or severity levels across a given road network.

• We propose a new GNN architecture, TRAVEL, which can
capture angular and directional information from road net-
works. We show that our proposed model consistently out-
performs 13 state-of-the-art machine learning baselines.

2 DATA REPOSITORY CONSTRUCTION
The Traffic Accident Prediction (TAP) data repository incorporates
real-world graph structure and geospatial information. Our data
repository is readily accessible and designed to be user-friendly.
Its data format can seamlessly integrate with existing GNNs. We
compare existing datasets in Table 1. The TAP incorporates real-
world graph structure information, contains rich geospatial features,
and has comprehensive geographical coverage. Data statistics and
numerical measures can be found in our GitHub repository. We are
committed to regularly updating the dataset with the latest traffic
crash records and auxiliary features.

2.1 Data Collection
The raw accident events come from Bing Map Traffic [2, 20]. It
contains about 2.8 million traffic accident data between January

Table 2: Edge features (top) and node features (bottom) in-
cluded in our datasets.

Graph features Description

highway The type of a road (tertiary, motorway, etc.).
length The length of a road.
bridge Indicates whether a road represents a bridge.
lanes The number of lanes of a road.
oneway Indicates whether a road is a one-way street.
maxspeed The maximum legal speed limit of a road.
access Describes restrictions on the use of a road.
tunnel Indicates whether a road runs in a tunnel.
junction Describes the junction type of a road.
angle Angular information of a road.
direction Directional information about a road.

highway The road type of a node.
street_count The number of roads connected to a node.

2016 and December 2021. Traffic accident data are typically col-
lected from police reports [4, 8, 19]. However, traffic flow and speed
data are less available as traffic monitoring devices are not widely
available or completely prohibited by laws [5, 28]. We also use
OpenStreetMap (OSM) [16], a collaborative initiative that provides
a freely available geospatial database, as our data source. OSM
data contain rich environmental features such as road type, road
length, and the number of lanes. OSM includes walkable, drivable,
and bikeable urban road data. We use drivable public road data
(private-access or service roads not included).

2.2 Data Preprocessing
We first build road networks using structural and geospatial fea-
tures from OSM. The features are listed in Table 2. The angular
and directional features will be discussed in section 3.1. We run
reverse geocoding to find the corresponding addresses of accident
coordinates using Nominatim [11]. Next, the geocoded data are
split according to settlement hierarchy: there are 49 states and
1,585 cities. Since the spatial distribution of traffic crashes is sparse
and imbalanced, there are limited positive samples for small cities.
Therefore, We only select the top 1,000 cities.

Next, missing values are replaced with a new category, and fea-
ture data are encoded using one-hot encoding. Then the coordinate
data of accident locations are used to find the nearest correspond-
ing graph nodes based on the haversine distance. For the accident
occurrence prediction task, binary labels are added to each node
indicating whether it contains at least one accident. For the severity
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prediction task, average accident severities are bucketized into 8
classes (using an interval size of 0.5) to be used as labels. The sever-
ity feature uses an integer from 0 to 7 to specify the magnitude of
the accident’s impact from low to high.

3 METHODOLOGY
We model a road network as a weighted directed graph, where
vertices represent endpoints (intersections or dead-end nodes) and
edges represent roads. In the accident occurrence prediction task,
we aim to output a binary prediction indicating whether a node has
accidents or not. In the accident severity prediction task, We aim to
forecast the severity of each node from a set of 8 classes. Therefore,
both tasks are formulated as node classification problems.

3.1 TRAVEL Framework
The TrafficAccident Vulnerability Estimation via Linkage (TRAVEL)
framework is a GNN-based approach that can capture geospatial
and additional angular and directional information. The angular
component captures angle-related information about an intersec-
tion (e.g., whether it has a right or left turn, sharp turns, etc.). The
directional component contains the direction feature of a road: for
instance, whether it is heading north-to-south versus east-to-west.

3.1.1 Angular Component. A graph has node features x𝑣 for node
𝑣 and edge attributes e𝑢𝑣 for edge (𝑢, 𝑣). The angular component
augments the message passing process from node 𝑢 to node 𝑣 with
angle information between the road (𝑢, 𝑣) and all the other roads
intersecting at node 𝑣 . Given points𝑢, 𝑣 ,𝑤 , let ∠(−→𝑢𝑣,−→𝑤𝑣) denote the
directed angle from −→𝑢𝑣 to −→𝑤𝑣 . The angular component is designed
to augment the messages passed from𝑢 to 𝑣 with information about
the angles between road (𝑢, 𝑣) and other roads intersecting at 𝑣 .
Formally, the set of directed angles between road (𝑢, 𝑣) and each of
the other roads at 𝑣 is: Φ𝑢𝑣 := {∠(−→𝑢𝑣,−→𝑤𝑣) : 𝑤 ∈ N𝑣 \ {𝑢}}

Next, we design a aggregation function to emphasize the pres-
ence of informative features from Φ𝑢𝑣 : 1) sharp left turns, 2) sharp
right turns, and 3) nearly straight roads. We define Φ𝜋

𝑢𝑣 as the set
{|𝜋 − 𝜙 | : 𝜙 ∈ Φ𝑢𝑣}, then aggregating as (where ∥ denotes con-
catenation): a𝑢𝑣 := min(Φ𝑢𝑣) ∥ max(Φ𝑢𝑣) ∥ min(Φ𝜋

𝑢𝑣). The first
two parts correspond to the sharpest angles of left and right turns
to edge (𝑢, 𝑣). The third part corresponds to the angle of (𝑢, 𝑣) to
the road which is closest to a straight road along with (𝑢, 𝑣). Such
aggregated angular information a𝑢𝑣 provides a concise summary
of the angles information between (𝑢, 𝑣) and other roads at 𝑣 .

The angular component incorporates angular information a𝑢𝑣
when passing a message along (𝑢, 𝑣). This component takes in node
representations h𝑣 (suppressing the layer number since we only
describe a single TRAVEL layer), and outputs the angular node
representations hAngle𝑣 :

hAngle𝑣 = ReLU(Wh𝑣 +mAngle
N(𝑣) ) (1)

mAngle
N(𝑣) =

∑︁
𝑢∈N(𝑣)

MLP(h𝑢 ∥ e𝑢𝑣 ∥ a𝑢𝑣) (2)

where W represents a trainable weight matrix. Initial 0-th layer
embeddings are equal to node features x𝑣 . mN(𝑣) denotes the ag-
gregated message from node 𝑣 ’s neighborhood N(𝑣).

3.1.2 Directional Component. The directional information are use-
ful because in some cities, north-south roads may have different
characteristics from east-west roads. This component captures the
direction that each road is heading in. Let lat𝑢 and lon𝑢 denote
the latitude and longitude of node 𝑢, respectively. We compute the
edge direction (𝑢, 𝑣) as: d𝑢𝑣 = (lat𝑣 − lat𝑢 , lon𝑣 − lon𝑢 )

hDir𝑣 = ReLU(Wh𝑣 +mDir
N(𝑣) ) (3)

mDir
N(𝑣) =

∑︁
𝑢∈N(𝑣)

MLP(h𝑢 ∥ e𝑢𝑣 ∥ d𝑢𝑣) (4)

3.1.3 Combined TRAVEL Layer. The complete TRAVEL layer is
the concatenation of the angular and directional components, i.e.,
hAngle𝑣 ∥ hDir𝑣 . This TRAVEL layer can be straightforwardly trained
using standard loss functions or plugged into any existing GNN.

4 EXPERIMENTS
In the accident occurrence prediction task. Table 3 shows the pre-
diction results on the six sample cities. We run every experiment
three times and report the average score along with the standard
deviation in the format of "average score ± standard deviation".
We generally observe that: (1) The proposed TRAVEL consistently
achieves the best performance on all the metrics due to its ability
to capture angular and directional features on top of other environ-
mental features. (2) GNN-based approaches generally outperform
XGBoost and MLP. This is because nodes in GNNs can aggregate
feature information from their neighbors, while the MLP and XG-
Boost can only learn from local feature data. (3) GNN variants
that support multi-dimensional edge features generally outperform
models that do not support them. We include additional experimen-
tal results, evaluation details, and settings in our GitHub repository
or the extended version of this paper [6].

5 RELATEDWORK
Early work applied statistical regression models to predict traffic
accidents [15]. Najjar et al. [10] trained Convolutional Neural Net-
works on satellite images to produce a traffic risk map. Another line
of research also included temporal features. Prior research applied
k-means clustering, and logistic regression [18]. Chen et al. [3]
used stacked denoising autoencoders to infer traffic risk. Yu et al.
[25] combined Long Short-TermMemory and stacked autoencoders
for post-accident condition prediction. Some recent research ap-
plies GNNs to this task. However, their graph constructions fail to
adequately capture the structures present in actual road systems.
For example, Zhou et al. [26] used Graph Convolutional Networks
for accident prediction over a rectangular grid. Zhou et al. [27]
formulated graphs by dividing an area into grids and adding edges
between grids with strong correlations. In contrast, our approach
not only takes advantage of graph structures but also incorporates
real-world environmental features.

6 CONCLUSION
In this paper, we affirm the benefits of GNNs for the task of road-
way crash prediction. We first formulate the accident occurrence
and severity prediction tasks as node classification problems. To
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Table 3: Accident occurrence prediction results in terms of F1 score(%) and AUC(%).

Miami Los Angeles Orlando Dallas Houston New York

Classifier F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC

XGBoost 11.8±1.6 53.1±0.4 16.5±0.4 54.5±0.1 39.4±1.1 61.4±0.3 31.0±2.2 58.5±0.8 16.1±0.6 53.8±0.2 23.8±0.8 56.8±0.3
MLP 13.0±0.8 61.3±1.9 16.0±0.5 66.3±0.1 38.8±1.9 65.6±2.0 32.5±1.1 67.8±0.4 15.9±0.7 64.0±0.4 23.7±0.9 65.6±1.2
GCN 20.0±3.3 68.5±3.3 40.2±1.1 80.4±0.3 51.6±0.8 73.1±1.2 39.8±1.9 73.1±0.4 16.4±1.3 66.7±0.2 39.2±3.7 75.5±0.4
ChebNet 20.7±2.9 71.3±3.6 39.8±1.8 81.0±0.3 53.1±0.6 76.7±1.6 42.0±0.5 75.8±0.4 23.8±0.5 69.6±0.5 40.9±4.3 78.3±1.1
ARMANet 19.2±3.3 69.5±3.5 40.8±1.0 80.9±0.4 51.5±1.3 75.7±1.4 41.2±0.5 75.6±0.2 23.1±0.4 69.2±0.7 42.4±1.1 77.7±0.6
GraphSAGE 20.7±2.4 67.6±2.8 41.6±0.5 80.5±0.3 52.6±1.3 74.1±1.2 44.2±0.5 74.4±0.3 23.7±0.4 68.5±0.4 42.5±1.1 76.3±0.1
TAGCN 25.2±1.1 73.5±2.4 49.5±0.7 84.7±0.2 53.3±2.5 77.2±1.2 45.4±0.4 77.0±0.5 23.7±0.6 70.5±0.3 42.0±1.1 81.5±0.2
GIN 22.8±1.2 72.7±2.6 41.6±0.7 81.8±0.2 54.7±1.4 76.6±1.1 41.3±2.0 75.2±0.3 20.9±1.0 68.0±0.3 41.7±2.1 79.1±0.5
GAT 22.6±1.5 68.3±3.0 41.6±0.4 80.9±0.2 55.3±1.3 74.1±1.0 42.1±1.5 73.6±0.3 17.8±0.8 67.3±0.3 42.2±0.5 76.6±0.4
MPNN 38.8±2.1 82.4±1.0 46.0±1.6 83.9±0.2 61.4±2.5 81.8±0.7 48.5±1.9 79.4±0.4 28.2±1.7 73.5±0.5 44.9±0.8 86.9±0.4
CGC 34.4±2.7 79.5±1.5 45.0±1.2 81.5±0.2 59.0±2.1 81.1±0.8 48.5±0.5 79.2±0.7 27.3±1.9 72.3±0.1 40.6±1.2 85.4±0.8
Transformer 37.7±3.3 81.0±1.9 48.9±0.3 83.8±0.3 62.9±1.6 82.0±0.7 49.8±0.7 80.0±0.7 28.4±0.7 73.9±0.4 43.1±0.7 87.2±0.4
GEN 44.9±3.1 81.0±2.4 48.6±6.2 82.7±0.9 63.0±1.1 81.2±0.9 56.5±1.7 79.5±0.1 34.1±6.0 73.7±0.4 47.3±1.4 87.7±0.9
TRAVEL 51.9±1.0 84.9±0.9 55.3±0.9 85.9±0.5 65.0±0.4 82.3±0.4 58.0±0.9 80.8±0.7 46.4±0.7 74.5±0.3 51.1±0.9 88.2±0.2

stimulate future research in this field, we construct and release
a comprehensive graph-based data repository. We also evaluate
state-of-the-art machine learning approaches using the proposed
data. The proposed datasets feature real-world graph structures
and geospatial data, making them a reliable, comprehensive, and
user-friendly resource for traffic crash analysis. Furthermore, we
propose our TRAVEL framework, designed to capture angular and
directional attributes. The experiments show that TRAVEL con-
sistently outperforms the baselines. For future work, we plan to
investigate the explainability of geospatial and geometric features,
as well as their correlations with traffic accident risk.
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