
Exploring RM-Replay for Cluster Scheduling
Zhen Huang, Undergraduate, Department of Computer Science

Blake Ehrenbeck, Undergraduate, Department of Computer Science
Zhiling Lan, Professor, Department of Computer Science

Boyang Li, PhD Student, Department of Computer Science
Illinois Institute of Technology

Chicago, IL
60616

PROJECT OVERVIEW

This project was worked on by undergraduate students,
Blake Ehrenbeck and Zhen Huang under the supervision
of Professor Zhiling Lan and her doctoral student,
Boyang Li. There are two objectives for this project. The
first (1) is to install RM-Replay and explore it by means
of experimentation with different workloads. The second
(2) is to transform a workload trace from jobs run on
Argonne National Lab’s Theta to something that can be
replayed with RM-Replay and run that replay. The
duration of the project was from January 14, 2019 to
April 28, 2019. Every week we met with Professor Lan
and discussed what we had achieved in the week prior,
problems we had encountered, and what we were to do
in the coming week. We also wrote a biweekly report
documenting all of this. The reports are posted on the
project’s website (see Reference section).

 PROJECT TASKS

The subsequent subsections will will guide you through
what we accomplished in a step-by-step fashion:

I. Downloading RM-Replay and Slurm

Downloading RM-Replay is straightforward. Clone the
repository wherever you like:

git clone https://github.com/eth-
cscs/slurm-replay.git

Download a .tar.bz2 version of Slurm into the cloned
directory from above. (See reference section for Slurm
downloads).

II. Building RM-Replay

RM-Replay is run through a Docker container. Ensure
that you have Docker installed on your machine before
continuing, on the machine we were working with, it
was installed for us.

Before we can build the container we need to make some
adjustments on the machine that running RM-Replay (in
our case, Lightning machine):

1. Edit the line 11 in trace_builder_mysql.c file, under
submitter folder, change the it to be #include
“mysql.h” .

2. Line 43 of start_slurmdbd.sh should be changed
from “Daint” to be the name of the cluster you wish
to simulate. In our case, the cluster was named
“jarvis”. In our machines, the document /etc/slurm/
slurm.conf defines the clustername to be jarvis,

3. On Line 39 of start_slurmdbd.sh change “sleep 1” to
be “sleep 30”. This prevents a race condition when
starting the Slurm accounting database.

4. On Lines 54 and 56 of start_slurm.sh change “sleep
2” to be “sleep 300”. This is also to prevent a race
condition when the number of the nodes in your
simulated cluster is large.

5. Also in start_slurm.sh comment out lines 30, 33,34

6. Change “replayuser” on Line 5 of the Dockerfile to
be “slurm”.

After you’ve made these changes navigate to the slurm-
replay folder and build the image:

docker build -t rm_replay_docker --
build-arg SLURM_VERSION=18.08.0 .

• t is the tag or name of the built image
• built-arg is where you can supply the version of

Slurm your cluster was using.

III. Getting Some Data

Before you start the container up, you’ll need some data
to work with. We used our Jarvis clusters machine:

1. Clone the slurm-replay repository on a machine with
access to your cluster’s Slurm accounting database.

2. Build trace_builder_mysql.c:

 gcc -o trace_builder_mysql
trace_builder_mysql.c -I/usr/include/
mariadb `mariadb_config --cflags -—
libs`

3. Generate a Trace.

To get an idea of your workload, you can look at the jobs
that were run on your cluster by typing:

mysql -u slurm -h localhost -P
6819 -p

and then supplying the password to your database (the
password is set in /etc/slurm/slurmdbd.conf).

From here type:

use slurm_acct_db;

Then type (for example):

SELECT job_name, time_start,
time_end FROM jarvis_job_table;

Where jarvis_job_table would be your cluster’s name as
defined in slurm.conf _job_table.

Example MySQL output

Here’s an example of how to generate a trace once
you’ve taken a look at your workload in the database:

./trace_builder_mysql -s '2019-02-04
18:25:00' -e '2019-02-04 19:00:00'
-d slurm_acct_db -h localhost -P
6819 -p[XXXX] -u slurm -c jarvis -
f jarvis.trace

It’s important to note that the time and dates above are
converted from the UNIX timestamp in the database to
something in your local time.

These are the options:

4. Edit the .trace file you get back by finding and
replacing all instances of the partition your jobs ran
on (for example the “debug" partition) with
“normal”. Do this for all but the first instance of the
word “debug”. You can do this in a hex editor.

5. Then create the group and passwd files. For
example:

 python create_group_passwd.py -
passwd submitter/jarvis.trace_passwd
-group submitter/jarvis.trace_group
-n jarvis

The two paths supplied above correspond to
trace_passwd and trace_group files generated by
trace_builder_mysql in the previous step. Once you get
back the files from this command, make sure that in each
file you replace “replayuser” with “slurm”.

6. Finally generate a dump of your Slurm database. For
example:

mysqldump -u slurm -p -P 6819 -h
localhost slurm_acct_db \
 acct_table acct_coord_table
qos_table tres_table \
 user_table jarvis_assoc_table >
slurmdb_tbl_slurm-18.08.0.sql

Now, go back to Lightning machine that we run RM-
Replay with. Place the group, passwd, sql dump file,
and trace file in a folder named data that is in the same
directory as slurm-replay. Type chown 777 data
to give this data folder the correct permissions. In a new
subdirectory of data labeled slurmcfg: include: the
gres.conf, slurm.conf, slurmdbd.conf, and topology.conf
from your cluster. If you don’t have gres.conf or
topology.conf files, they can be empty files.

You also need to make sure slurm-replay sets the values
of certain plugins to none. If slurm-replay fails to make
these changes (because the format of the config file is
different in Slurm versions other than the one the author
of rm-replay used), look at configure_slurm.sh in the
slurm-replay directory and make the changes yourself.

We needed to make the following adjustments:

* Change any hostnames or addresses you may find in
this file to localhost.

IV. Starting the Container

Before you can start the container you will need to create
a file to fix some SQL configurations: Create a file
named fix_cnf

The contents of the file should look like this:

To run the image, run this command:

docker run --rm -it --volume /
home/rm-replay-c/data:/slurm/data --
volume /home/rm-replay-c/data/
jarvis_etc_passwd:/etc/passwd --
volume /home/rm-replay-c/data/
jarvis_etc_group:/etc/group --volume
/home/rm-replay-c/slurm-replay/
fix_cnf:/etc/mysql/my.cnf rm_replay_3

rm_replay_3 is the tag supplied when building the
Docker image.

You will then be inside the Docker image. From here
you can run experiments with RM-Replay. The only
other thing you will need to change each time is the start
& end times inside start_replay.sh. For an unknown
reason, it does not correctly find the start and end times
from the trace. Convert the start and end times of your
workload to UNIX timestamps and fill in those values
for START_TIME and END_TIME in the file. Use three
minutes before the start time you want and three minutes

[mysqld]
socket=/slurm/run/mysqld/mysqld.lock
innodb_buffer_pool_size=1024M
innodb_log_file_size=64M
innodb_lock_wait_timeout=900

[client]
protocol=tcp

!includedir /etc/mysql/my.cnf.d
AuthType=auth/none
CryptoType=crypto/none

PluginDir=/slurm/slurmR/lib/slurm

ProctrackType=proctrack/linuxproc

SlurmctldPidFile=/slurm/slurmR/log/
slurmctld.pid
SlurmdPidFile=/slurm/slurmR/log/
slurmd.pid

SlurmdSpoolDir=/slurm/slurmR/spool/
log
StateSaveLocation=/slurm/slurmR/log/
state

SwitchType=switch/none

TaskPlugin=task/none

ControlMachine=localhost
ControlAddr=localhost

after the end time you want just for some padding. You
can start a replay like this for example:

./start_replay.sh -w ../data/jarvis.
2019.02.27.trace -r 0.0001 -n test
-p 3

• w is the path to your trace in the data folder
• r is ratio of actual seconds to replayed seconds
• n is the name of your experiment
• p 3 means you want to use the same nodes as done

in the workload versus letting slurm-replay decide
which nodes to schedule

Don’t worry if you get errors about multiple hostnames
or addresses being listed.

How to get the correct results: There is a C file under the
submitter folder called: trace_metrics.c and this file will
calculate metrics including utilization. average wait-time
etc. But this some parameters in this file need to be edit
to match user’s machine configuration, otherwise user
might get wrong output or the output is unreadable.

1. In line 113, make a new line inside the function
computer_metrics, add line : *nwait = 0;

2. Change the number of nodes on Lines 246 and 247
to match your cluster.

3. Delete the “+2” on Line 248

4. On Line 180 change “> 3*60” to “>=0”

5. Type “make all”

6. To see the corrected metrics.log file in the data
folder tun this command:

./trace_metrics -w [path to
generated .trace file] -r 4

The 4 just gives some padding.

A functional build of RM-Replay is on jarvis at IIT
under the rm-replay-c user’s home directory. The name
of the image is rm_replay_3. Instructions for how to use
this build are in a file named INSTRUCTIONS.

RESULTS

There are total three experiments that we done with RM-
Replay.

(1) The first experiment on RM-Replay is replaying a
trace file we built from our Jarvis machine which ran a
single job of a C program that implement Gaussian
Elimination utilizing three nodes. The two graphs below
show a script of the job, and the log of successful replay
of the job.

Job Script

example of part of the output from metric.log:

Makespan=198 Util=0.37500000
Avg_Wait(4.00000000,0,00000000,1,4,0.0
000)

There are 8 nodes in Jarvis machine and in the first
experiment, only 3 of them were been used, so the
output log was correct.

(2) After we test that RM-Replay can work well with
Jarvis machine at least for one job, we decided to test
whether it will work for multiple jobs that expect
backfilling in the scheduler, and examine the utilization
and wait time in the RM-Replay output to see if it match
with the information appeared in Slurm Database on
Jarvis machine. So the second experiment we did is to
submit four jobs (same C program in the first
experiment) at the same time, and each jobs are different
in terms of resources they use, and running time. The
diagram on the next page shows how the Slurm will run
them:

Output from metric.log:

Makespan=445 Util=0.90168539
Avg_Wait(69.50000000,69.54494949,4,1,1
55,1.0006)

All matched with the Slurm scheduler log. So the replay for these
four jobs was succeeded.

(3) After we knew RM-Replay can replay multiple jobs
and the output of it is accurate as we tested in the second
experiment, we decided to test its scalability by running
large log file from real-world supercomputers. We
downloaded the log file from Argonne National
Laboratory’s theta machine. However, we were unable to
get consistent results (errors) once we began trying to
run the converted Cobalt trace files. We suspect there are
some race conditions since changes to the sleep lines in
the start_*.sh files yield different errors once the cluster
size and number of jobs is large. Sometimes we got
errors stating that Slurm was unable to connect to the
controller. We also got errors about the node host being
unreachable. This is sometimes fixed by replacing
localhost in the slurm.conf with the result of hostname -s
from inside the container. But it is difficult to get the
same error to reproduce. Other times the jobs were
supposedly replayed, but the output trace would be
empty as well as the resulting job_table in the database.
Despite many days of investigation, we were unable to
find the cause of this and therefore unable to get metrics
from replaying theta logs. When the jobs are run, but the
database is empty, but no error is produced making it
incredibly difficult to problem.

CONCLUSIONS

Experimenting with RM-Replay allowed us to learn
about the workings of Slurm as well as Docker. We were
able to run small workloads from a small cluster at IIT,
but unfortunately could not successfully get a larger
workload from a large cluster to replay successfully. The
slurm-replay project found on GitHub requires quite a
bit of configuration and changes to work on setups other
than the author’s, so we hope that from this project
future work with RM-Replay is made easier.

REFERENCES

1. http://www.cs.iit.edu/~lan/rm-replay.html
2. https://github.com/eth-cscs/slurm-replay
3. https://docs.docker.com/engine/reference/run/
4. https://www.schedmd.com/archives.php

