
Illinois Institute of Technology, Chicago

Implementing and Evaluating

Multi-Resource Scheduling in Slurm

Sirisha Cherala

Master’s Student

Department of Computer Science

Supervisors:

Dr. Zhiling Lan

Yuping Fan, PhD Student

Contents

1 Project Overview 1

2 Project Tasks 2
2.1 Understanding Slurm . 2
2.2 Understanding Slurm Simulator . 2
2.3 Design of Multi-resource Scheduling in Slurm 3
2.4 Implementation of BBSched in Slurm . 3

2.4.1 Adding BBSched Plugin to Slurm . 4
2.4.2 Coding for Multi-resource Scheduling in Slurm 4

3 Results 6
3.1 Experiment 1 . 6
3.2 Experiment 2 . 6
3.3 Observations . 6

4 Conclusion 8

References 9

Appendices 11

A Manual for Multi-resource Scheduling in Slurm 12

i

Chapter 1

Project Overview

The exponential growth in computing power has enabled High Performance Computing(HPC)
Systems to attack problems that are much larger and more complex.One example would be
Data-Intensive applications. To meet intense I/O demand for these applications, Burst buffers
are often employed in production systems. This heterogeneity forces HPC Schedulers which
are mainly CPU Centric to consider multiple resources like Burst Buffers, network bandwidth
in order to make optimized decisions for efficient performance.

In this Project, we consider Slurm, a well-known Scheduler in HPC Systems and incorpo-
rate multi-resource scheduling scheme. This is done by formulating the scheduling problem
into a Multi-Objective optimisation problem and solving it using a multi-objective genetic
algorithm [1]. Existing Slurm Scheduler supports Burst-Buffer Scheduling and allocates jobs
from the waiting queue until either CPU or burst buffer is exhausted. This approach has a
limited efficiency as the depletion of one resource can prevent the queued jobs from allocation
and thus causing the under-utilisation of the other resources.As such, we implement a plugin
called BBSched which when configured allows Slurm to perform multi-resource scheduling.
The implementation is tested using Slurm Simulator[11].

This Project has been performed for a period of 12 weeks starting from January 14 2019
- April 26 2019 under the supervision of Dr.Zhiling Lan and her doctoral student Yuping
Fan. The status of the project and any clarifications were discussed during the weekly
meetings which are held every Thursday from 2:00 - 2:30 PM. Besides for every two weeks,a
Biweekly report has been submitted which summarises the work done in the past two weeks
and the goal for the next two weeks. The reports can be viewed from the webpage at
http://www.cs.iit.edu/~lan/moo.html.

Week No. Task

1 and 2 Understanding Slurm and MOO Scheduler
3 and 4 Installation of Slurm and Running Slurm Controller with Slurmd daemons
5 and 6 Coding for the new Scheduler Plugin ”BBSched”
7 and 8 Understanding Slurm Simulator,installing it on Docker
9 and 10 Integrating the plugin with Slurm Code and Slurm Simulator
11 and 12 Generating the workload trace, debugging to fix errors and result Analysis

Table 1.1: Overview of the Work specified Biweekly.

1

http://www.cs.iit.edu/~lan/moo.html

Chapter 2

Project Tasks

2.1 Understanding Slurm

The main Objective of this project is to implement multi-resource scheduling scheme (named
as ”BBSched”) in Slurm. For this, the first task was to understand Slurm. This is done by
reading the Slurm design from [3] and going through the tutorials which have been deliv-
ered by the Slurm Programmers at various conferences and can be viewable at [2]. These
tutorials and the design manual gave a good insight of Slurm by describing what Slurm is
and what it is not; it’s architecture which includes detailed description of Slurmd, Slurmctld,
Command Line Utilities, Plugins, Communication layer and Security model; the design of
Slurm Control daemon, it’s subsystems: Node manager,Partition manager and Job manager,
it’s configuration and fault tolerance; the design Slurmd daemon; the working of each of
the following command line utilites: scancel, scontrol, squeue, sinfo and srun; and the Job
Initiation design.

This deep understanding of Slurm and its plugins helped in knowing that the multi-
resource scheduling scheme needs to be incorporated as a new scheduling plugin so as to
keep the existing functionality undisturbed and configure the new scheduling scheme only
when it is required by the system administrator. As such, the programmer guide and plugin
implementation details of Slurm are read from [8] and [7]. Further, the Slurm code from
github [6] has been analysed by installing it in the local machine. Specifically, the prevailing
scheduling plugins namely sched/builtin and sched/backfill have been explored so as to know
how the slurm control daemon(precisely the Job Manager) communicates with the scheduling
plugins. Besides, various Slurm scheduling design papers [10] [5] have been examined.

2.2 Understanding Slurm Simulator

Time accelerated simulation of workloads is needed to verify the implementation of Multi-
resource scheduling in Slurm. As such, an Open source Slurm Simulator based on [4], [13] and
[12] is used in this project. As, it is important to understand the work flow of the simulator
before using it, the aforementioned papers have been read. Further, the code of the simulator
from the github [11] has been analysed line by line to get a clear overview of its working.

2

CHAPTER 2. PROJECT TASKS 3

2.3 Design of Multi-resource Scheduling in Slurm

The design of Multi-resource Scheduling in Slurm is shown in the figure below.

Figure 2.1: Design of Multi-Resource Scheduler in Slurm

In this project, a new Scheduler Plugin namely ”BBSched” has been added to the Slurm
Scheduler Plugins. As such, when scheduler type is configured as SchedulerType=sched/bbsched
in slurm.conf, the Job Scheduler of Slurm Control Daemon schedules jobs based on the pri-
ority ordering from the BBSched plugin. This Priority ordering used by BBSched plugin to
optimise multiple resources is based on the Genetic Algorithm for Multi-objective Optimisa-
tion.

Since, the simulator uses the Slurm Code for scheduling, the change in configuration
automatically reflects to the Simulator and as such no specific design changes are needed in
Simulator.

2.4 Implementation of BBSched in Slurm

The implementation of the new plugin ”BBSched” is done and tested on docker container
running on a virtual machine on Lightning Server of IIT. The IP Address of lightning server
is 216.47.142.240 and virtual machine is 192.168.122.99. Inside the docker container, all
the modified changes related to Slurm and Slurm Container are present in /home/slurm

CHAPTER 2. PROJECT TASKS 4

folder. The Step by Step manual written as a part of Appendix would give more details on
Installation. Here, we specify only the implementation part.

2.4.1 Adding BBSched Plugin to Slurm

The Slurm related code is present in /home/slurm/slurm sim ws/slurm simulator and slurm
simulator code is present in /home/slurm/slurm sim ws/slurm sim tools. Inorder to add the
new plugin to Slurm code, a new directory called bbsched is created and added to Makefile.am
both of which are located at /src/plugins/sched. Inside bbsched folder, four files are added
namely bbsched.c, bbsched.h, bbsched wrapper.c and Makefile.am. Once all the files have
been added, ./autogen.sh is run on the Slurm’s top level directory so as to update the existing
Makefile.in files and create the new Makefile.in file for the bbsched plugin. Besides, config-
ure.ac is modified to identify the new Makefile to be built at Slurm configure time. Precisely
the following line: src/plugins/sched/bbsched/Makefile is added to configure.ac inorder for
the plugin to be built at Slurm Configure time.

2.4.2 Coding for Multi-resource Scheduling in Slurm

Here, the functionality added in each file of the new plugin: src/plugins/sched/bbsched is
described.

• bbsched wrapper.c :
This file has the functions which are mandatory for Scheduler plugins and directly fol-
lows the Slurm Scheduler Plugin Api documentation [9]. It includes:
1. Entry point function init() where the global initialisation is placed. This includes
creation of threads specific to the bbsched plugin, acquiring locks and code specific to
simulation mode like running the bbsched plugin from main simulation loop.
2. fini() function which releases the acquired mutexes, stops the plugin agent and
suspends the execution of the bbsched thread.
3. slurm sched p reconfig function which rereads the configuration files in case on
any changes.
4. All the other functions which have no specific implementation have been stubbed.

• bbsched.c
This file has the function which implements Multi-resource scheduling. Inorder to im-
plement the code, the base paper [1] has been thoroughly read. Besides, CQSim [14] [15]
has been installed and the Multi-Objective Optimisation (MOO) Scheduler in CQSim
has been examined so as to code Slurm in a Similar way.
As such the following functions are implemented:
1. run genetic algorithm function: This is the entry point of the Multi-objective op-
timization algorithm. It is called by the sort job queue function to update the priority
ordering of the jobs in the waiting queue. The basic functionality includes, considering
the jobs only pertaining to the window size and performing population initialization,
parent selection, crossover, mutation and survivor selection. This process is done for
around 500 iterations (generations) and the population after the last generation is re-
turned.

CHAPTER 2. PROJECT TASKS 5

2. init population function: This function generates a random binary value for each
of the jobs in the window. So, For example if the number of jobs in window is 5 and
random ordering is 10110, it implies that 1,3 and 4 jobs are selected; 2 and 4 are not.
We then check if this ordering of jobs is actually feasible. This is done by computing
CPU Utilisation(described in detail in compute fitness value function). All the feasible
orderings of jobs are returned at the last, the size of which is equal to the population
size considered.
3. parent selection function: This function returns two randomly selected orderings
from the populations initialised above.
4. crossover function: This function uses the parent list generated above and swaps
the ordering at random position.It then checks for the feasibility of the swapped order-
ing and returns the feasible list as result.
5. mutation function: This function is used to introduce diversity so that the al-
gorithm would not be trapped in the local optima. Specifically, it looks over all the
orderings in the feasible population and flips the binary value at a random position. It
them checks for the feasible orderings in the flipped list and returns them.
6. survivor selection function: This function returns the best among the recently
generated orderings and separates them into two sets. Pareto Solutions in Set1 and
rest in Set2. A solution is chosen as a Pareto solution, if improving one of its objectives
would deteriorate at least one other objective [1]. If the set1 has less number of order-
ings than the population size considered, all the orderings in set1 are returned and the
best among set2 are appended.
7. compute fitness value function: For each of the job orderings, this function takes
into account the jobs which have a binary value of 1 (implies those that are selected) and
sums up the number of nodes required by each of the jobs. It then looks for the total
number of nodes using assoc mgr functions and also gets the currently allocated nodes.
Then utilisation is computed as (total nodes - available nodes + required nodes)/total
nodes. Here available nodes = total nodes - allocated nodes and required nodes is the
sum of number of nodes required by each of the jobs in the ordering.
8. sort job queue function: This function takes the waiting list of Jobs updated each
time by the Job Manager of Slurm and calls the run genetic algorithm function de-
scribed above. It then takes the best among the orderings returns and the jobs which
have binary value of 1 are added to the queue.

• bbsched.h
This is a header file for the bbsched plugin

• Makefile.am
This is written using the existing Makefile.am of sched/builtin as a model. It basically
specifies the top source directory of Slurm and the files inside the current directory
which need to be built at compile time.

Further, slight modifications are made to /src/slurmctld/simulator.c file to accomodate
for bbsched plugin. These modifications include calling the plugin from Simulator main loop
for job scheduling and including bbsched output in the log file. Further, bbsched job schedul-
ing statistics are added to /src/slrumctld/slurmctld.h and debug flags to /slurm/slurm.h.in.

Chapter 3

Results

Here, Slurm is configured such that it manages 10 compute nodes and 5 users with 2 accounts.
The Job trace consisting of 500 jobs is generated using a R Script and is similar to the log
from Theta machine.

3.1 Experiment 1

Here, SchedulerType is configured as sched/bbsched in slurm.conf present in /home/slurm/slurm sim ws/sim/micro/baseline/etc
folder. The simulation time for 500 Jobs was 23 seconds.

• Average Job Slow down: Between 5-7 Seconds

• CPU Utilisation - 70-77%

3.2 Experiment 2

Here, SchedulerType is configured as sched/builtin in slurm.conf. The simulation time for
500 Jobs was 15 Seconds.

• Average Job Slow down: Around 6 Seconds

• CPU Utilisation - 73%

Note: The results with builtin (FIFO) scheduling are not direct as the simulator doesn’t
seem to use the builtin plugin of the Slurm and it only schedules 50 jobs out of 500 jobs given
as input. The above result is an extrapolated value.

3.3 Observations

Here, we are optimising a single resource, so the effect of the Multi Objective Optimisation
algorithm doesn’t seem much. But if we add more resources like Burst Buffer, the efficient
utilisation of multiple resources would be seen.

Besides, the following is the graph that shows the Simulation time Vs Number of gener-
ations by BBSched Scheduler.

6

CHAPTER 3. RESULTS 7

Figure 3.1: Simulation Time Vs No. of Generations

Chapter 4

Conclusion

In this project, Slurm and Slurm Simulator have been deeply explored and their installation
is done on Docker. Further, Multi-resource scheduling has been implemented in Slurm by
adding a new plugin called BBSched to the Scheduler Plugins. The workload trace to test
the implementation has been generated based on theta log and the results were examined
for 500 Jobs. Since, the CPU optimisation is considered in this project pertaining to time
limitations, the utilisation seems to be nearly same. The future work would involve fixing
the issue with slurm simulator when scheduler type is builtin and to incorporate burst buffer
management in Simulator so as test the Multi-resource scheduling.

8

References

[1] Yuping Fan, Zhiling Lan, Paul M. Rich, William E. Allcock, Michael E. Papka, Brian
Austin, and David Paul. Scheduling beyond cpus for hpc. ACM HPDC, November 2019.

[2] Morris Jette. Slurm video tutorials. https://slurm.schedmd.com/tutorials.html.

[3] Morris Jette and Mark Grondona. Slurm design. https://slurm.schedmd.com/slurm_
design.pdf.

[4] Ana Jokanovic, Marco D’Amico, and Julita Corbalan. Evaluating slurm simulator
with real-machine slurm and vice versa. The 9th International Workshop on Perfor-
mance Modeling, Benchmarking, and Simulation of High-Performance Computer Sys-
tems, November 2018. https://ieeexplore.ieee.org/document/8641556.

[5] Michal Novotn. Slurm scheduling thesis. https://is.muni.cz/th/c4s5x/thesis.pdf.

[6] SchedMD. Slurm github. https://github.com/SchedMD/slurm.

[7] SchedMD. Slurm plugin guide. https://slurm.schedmd.com/plugins.html.

[8] SchedMD. Slurm programmer guide. https://slurm.schedmd.com/programmer_

guide.html.

[9] SchedMD. Slurm scheduler api plugin. https://slurm.schedmd.com/schedplugins.

html.

[10] SchedMD. Slurm scheduling design. https://slurm.schedmd.com/slurm_ug_2012/

SUG-2012-Scheduling.pdf.

[11] Nikolay Simakov. Slurm simulator github. https://github.com/

ubccr-slurm-simulator.

[12] Nikolay Simakov and Martins D. Innu. A Slurm Simulator: Implementation and
Parametric Analysis. January 2018. https://www.researchgate.net/publication/

322026152_A_Slurm_Simulator_Implementation_and_Parametric_Analysis.

[13] Nikolay Simakov and Martins D. Innu. Slurm simulator: Improving slurm scheduler
performance on large hpc systems by utilization of multiple controllers and node sharing.
Proceedings of the Practice and Experience on Advanced Research Computing Article No.
25, July 2018. https://dl.acm.org/citation.cfm?id=3219111.

9

https://slurm.schedmd.com/tutorials.html
https://slurm.schedmd.com/slurm_design.pdf
https://slurm.schedmd.com/slurm_design.pdf
https://ieeexplore.ieee.org/document/8641556
https://is.muni.cz/th/c4s5x/thesis.pdf
https://github.com/SchedMD/slurm
https://slurm.schedmd.com/plugins.html
https://slurm.schedmd.com/programmer_guide.html
https://slurm.schedmd.com/programmer_guide.html
https://slurm.schedmd.com/schedplugins.html
https://slurm.schedmd.com/schedplugins.html
https://slurm.schedmd.com/slurm_ug_2012/SUG-2012-Scheduling.pdf
https://slurm.schedmd.com/slurm_ug_2012/SUG-2012-Scheduling.pdf
https://github.com/ubccr-slurm-simulator
https://github.com/ubccr-slurm-simulator
https://www.researchgate.net/publication/322026152_A_Slurm_Simulator_Implementation_and_Parametric_Analysis
https://www.researchgate.net/publication/322026152_A_Slurm_Simulator_Implementation_and_Parametric_Analysis
https://dl.acm.org/citation.cfm?id=3219111

REFERENCES 10

[14] SPEAR-IIT. Cqsim: A trace-based, event-driven scheduling simulator. https://

github.com/SPEAR-IIT/CQSim.

[15] Xu Yang, Zhou Zhou, Sean Wallace, Zhiling Lan, Wei Tang, Susan Coghlan, and
Michael E. Papka. Integrating dynamic pricing of electricity into energy aware schedul-
ing for hpc systems. SC ’13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, November 2013. https:

//ieeexplore.ieee.org/document/6877493.

https://github.com/SPEAR-IIT/CQSim
https://github.com/SPEAR-IIT/CQSim
https://ieeexplore.ieee.org/document/6877493
https://ieeexplore.ieee.org/document/6877493

Appendices

11

Appendix A

Manual for Multi-resource
Scheduling in Slurm

The following Steps for installation of Slurm and Slurm Simulator can be directly executed
on Centos distribution of Linux. If not, docker needs to be installed.
If Docker is used, the following steps need to be followed before the actual installation [11].

1. Pull a centos Image from docker.
command: sudo docker pull centos:7

2. Run this centos Image.
command:
sudo docker run -d -it --privileged 〈image-id〉 /usr/sbin/init
sudo docker exec -it 〈container-id〉 /bin/bash

Note :
We need to run in privileged mode as we need systemctld requires CAP SYS ADMIN
capability but docker drops this permission to non privileged containers. We can’t start
slurm, otherwise.

This would give access to Shell on the container running with Centos Operating System.
Steps for installation of Slurm and Slurm Simulator:

1. Install Sudo
command:
yum install sudo

2. Creating a user called slurm:
command:
useradd -d /home/slurm -ms /bin/bash slurm
usermod -aG wheel slurm
yum clean all

12

APPENDIX A. MANUAL FOR MULTI-RESOURCE SCHEDULING IN SLURM 13

3. Installing Dependencies:

a. Install MySQL (Maria DB)
command:
yum -y install mariadb-server
yum -y install mariadb-devel
systemctl enable mariadb
systemctl start mariadb
mysql secure installation

b. Install Python
command:
yum -y install epel-release
yum -y install python34 python34-libs python34-devel python34-numpy python34-scipy
python34-pip
yum install python34-setuptools
sudo easy install-3.4 pip
pip3 install pymysql
pip3 install pandas

Note :
If there is an error saying ”Broken toolchain: cannot link a simple C program” then
use the following command to install gcc:
Command :
yum install python-devel
yum -y install gcc-c++

Note :
If there is an error related to installation of numpy packages while installing pandas.
Do the following:
cd /usr/lib64/python3.4/site-packages
rm -rf numpy
rm -rf 〈numpy-egg-info〉

c. Install R
yum -y install wget
yum -y install R R-Rcpp R-Rcpp-devel
yum -y install texlive-*

d. Install R Studio
wget https://download2.rstudio.org/server/centos6/x86 64/rstudio-server-rhel-1.2.1335-
x86 64.rpm
yum -y install rstudio-server-rhel-1.2.1335-x86 64.rpm

APPENDIX A. MANUAL FOR MULTI-RESOURCE SCHEDULING IN SLURM 14

e. Installing Depending Packages of R
The following commands are to be run inside R. So in the command Prompt type ’R’
This takes to the R Workspace where in the following commands needs to be executed
install.packages(”ggplot2”)
install.packages(”gridExtra”)
install.packages(”cowplot”)
install.packages(”lubridate”)
install.packages(”rPython”)
install.packages(”rstudioapi”)

Note :
If the install package command asks to select a domain, please select the one corre-
sponding to the country you are located at. This would give a faster download speed.

4. Create a workspace in /home/slurm:
command:
cd /home/slurm
mkdir slurm sim ws
cd slurm sim ws

5. Copy the Slurm Simulator code from Virtual machine:
Command:
sudo docker cp slurm simulator 〈containerid〉:/home/slurm/slurm sim ws/
cd slurm simulator

6. Prepare Building directory
Command:
cd ..
mkdir bld opt
cd bld opt

7. Run slurm simulator configure command
Command:
/home/slurm/slurm sim ws/slurm simulator/configure \
–prefix=/home/slurm/slurm sim ws/slurm opt \
–enable-simulator –enable-pam –without-munge –enable-front-end \
–with-mysql-config=/usr/bin –disable-debug CFLAGS=“-g -O3 -D NDEBUG=1”

Command to compile the Slurm code:
make -j install

8. Copy Slurm Simulator Code
sudo docker cp slurm sim tools 〈containerid〉:/home/slurm/slurm sim ws/

APPENDIX A. MANUAL FOR MULTI-RESOURCE SCHEDULING IN SLURM 15

9. Create a top level directory for Simulation
Command:
cd /home/slurm/slurm sim ws
mkdir -p /home/slurm/slurm sim ws/sim/micro

10. Copy existing Slurm configuration to Simulation Directory
Command:
cd /home/slurm/slurm sim ws
slurm sim tools/src/cp slurm conf dir.py -o -s slurm opt \
slurm sim tools/tutorials/micro cluster/etc sim/micro/baseline

11. Populate SlurmDB
Run Slurmdbd in foreground mode

Commands:
export SLURM CONF=/home/slurm/slurm sim ws/sim/micro/baseline/etc/slurm.conf

Run :

/home/slurm/slurm sim ws/slurm opt/sbin/slurmdbd

In a separate terminal populate SlurmDB using Slurm sacctmgr utility:

export SLURM CONF=/home/slurm/slurm sim ws/sim/micro/baseline/etc/slurm.conf

export SACCTMGR=/home/slurm/slurm sim ws/slurm opt/bin/sacctmgr

$SACCTMGR -i modify QOS set normal Priority=0
$SACCTMGR -i modify QOS Name=supporters Priority=100
$SACCTMGR -i add cluster Name=micro Fairshare=1 QOS=normal,supporters
$SACCTMGR -i add account name=account1 Fairshare=100
$SACCTMGR -i add account name=account2 Fairshare=100

$SACCTMGR -i add user name=user1 DefaultAccount=account1 MaxSubmitJobs=1000
$SACCTMGR -i add user name=user2 DefaultAccount=account1 MaxSubmitJobs=1000
$SACCTMGR -i add user name=user3 DefaultAccount=account1 MaxSubmitJobs=1000
$SACCTMGR -i add user name=user4 DefaultAccount=account2 MaxSubmitJobs=1000
$SACCTMGR -i add user name=user5 DefaultAccount=account2 MaxSubmitJobs=1000
$SACCTMGR -i modify user set qoslevel=”normal,supporters”

unset SLURM CONF
Terminate the first Slurmdbd

APPENDIX A. MANUAL FOR MULTI-RESOURCE SCHEDULING IN SLURM 16

12. Perform Simulation
Modify Scheduler type as SchedulerType=sched/bbsched in slurm.conf present at /home/slurm/slurm sim ws/sim/micro/baseline/etc
Run:
/home/slurm/slurm sim ws/slurm sim tools/src/run sim.py -e \
/home/slurm/slurm sim ws/sim/micro/baseline/etc -s \
/home/slurm/slurm sim ws/slurm opt -d

Note :
Results are present in /home/slurm/slurm sim ws/slurm sim tools/src/results folder. Trace
is present at /home/slurm/slurm sim ws/slurm sim tools/tutorials/results/micro cluster/test.trace.

To brief the directory structure which is based on [11], the actual slurm code is present in
slurm directory and the simulator source code is in slurm sim tools folder. All the compiled
Slurm code is present in bld opt folder and as such if any change in slurm code is made, we
need to run the command: ” make -j install ” in this folder. slurm opt folder has the command
line utilities in bin folder and Slurm control daemon, Slurm DB daemon and Slurmd daemon
runnable files in sbin folder.

Figure A.1: Directory Structure of Installation

	Project Overview
	Project Tasks
	Understanding Slurm
	Understanding Slurm Simulator
	Design of Multi-resource Scheduling in Slurm
	Implementation of BBSched in Slurm
	Adding BBSched Plugin to Slurm
	Coding for Multi-resource Scheduling in Slurm

	Results
	Experiment 1
	Experiment 2
	Observations

	Conclusion
	References
	Appendices
	Manual for Multi-resource Scheduling in Slurm

